Heterogeneous burden of lung disease in smokers with borderline airflow obstruction

Cheryl S Pirozzi, Tian Gu, Pedro M Quibrera, Elizabeth E Carretta, MeiLan K Han, Susan Murray, Christopher B Cooper, Donald P Tashkin, Eric C Kleerup, Igor Barjaktarevic, Eric A Hoffman, Carlos H Martinez, Stephanie A Christenson, Nadia N Hansel, R Graham Barr, Eugene R Bleecker, Victor E Ortega, Fernando J Martinez, Richard E Kanner, Robert Paine 3rd, NHLBI SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS), Neil E Alexis, Wayne H Anderson, R Graham Barr, Eugene R Bleecker, Richard C Boucher, Russell P Bowler, Elizabeth E Carretta, Stephanie A Christenson, Alejandro P Comellas, Christopher B Cooper, David J Couper, Gerard J Criner, Ronald G Crystal, Jeffrey L Curtis, Claire M Doerschuk, Mark T Dransfield, Christine M Freeman, MeiLan Lan K Han, Nadia N Hansel, Annette T Hastie, Eric A Hoffman, Robert J Kaner, Richard E Kanner, Eric C Kleerup, Jerry A Krishnan, Lisa M LaVange, Stephen C Lazarus, Fernando J Martinez, Deborah A Meyers, John D Newell Jr, Elizabeth C Oelsner, Wanda K O'Neal, Robert Paine 3rd, Nirupama Putcha, Stephen I Rennard, Donald P Tashkin, Mary Beth Scholand, J Michael Wells, Robert A Wise, Prescott G Woodruff, Lisa Postow, Thomas Croxton, Cheryl S Pirozzi, Tian Gu, Pedro M Quibrera, Elizabeth E Carretta, MeiLan K Han, Susan Murray, Christopher B Cooper, Donald P Tashkin, Eric C Kleerup, Igor Barjaktarevic, Eric A Hoffman, Carlos H Martinez, Stephanie A Christenson, Nadia N Hansel, R Graham Barr, Eugene R Bleecker, Victor E Ortega, Fernando J Martinez, Richard E Kanner, Robert Paine 3rd, NHLBI SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS), Neil E Alexis, Wayne H Anderson, R Graham Barr, Eugene R Bleecker, Richard C Boucher, Russell P Bowler, Elizabeth E Carretta, Stephanie A Christenson, Alejandro P Comellas, Christopher B Cooper, David J Couper, Gerard J Criner, Ronald G Crystal, Jeffrey L Curtis, Claire M Doerschuk, Mark T Dransfield, Christine M Freeman, MeiLan Lan K Han, Nadia N Hansel, Annette T Hastie, Eric A Hoffman, Robert J Kaner, Richard E Kanner, Eric C Kleerup, Jerry A Krishnan, Lisa M LaVange, Stephen C Lazarus, Fernando J Martinez, Deborah A Meyers, John D Newell Jr, Elizabeth C Oelsner, Wanda K O'Neal, Robert Paine 3rd, Nirupama Putcha, Stephen I Rennard, Donald P Tashkin, Mary Beth Scholand, J Michael Wells, Robert A Wise, Prescott G Woodruff, Lisa Postow, Thomas Croxton

Abstract

Background: The identification of smoking-related lung disease in current and former smokers with normal FEV1 is complex, leading to debate regarding using a ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC) of less than 0.70 versus the predicted lower limit of normal (LLN) for diagnosis of airflow obstruction. We hypothesized that the discordant group of ever-smokers with FEV1/FVC between the LLN and 0.70 is heterogeneous, and aimed to characterize the burden of smoking-related lung disease in this group.

Methods: We compared spirometry, chest CT characteristics, and symptoms between 161 ever-smokers in the discordant group and 940 ever-smokers and 190 never-smokers with normal FEV1 and FEV1/FVC > 0.70 in the SPIROMICS cohort. We also estimated sensitivity and specificity for diagnosing objective radiographic evidence of chronic obstructive pulmonary disease (COPD) using different FEV1/FVC criteria thresholds.

Results: The discordant group had more CT defined emphysema and non-emphysematous gas trapping, lower post-bronchodilator FEV1 and FEF25-75, and higher respiratory medication use compared with the other two groups. Within the discordant group, 44% had radiographic CT evidence of either emphysema or non-emphysematous gas trapping; an FEV1/FVC threshold of 0.70 has greater sensitivity but lower specificity compared with LLN for identifying individuals with CT abnormality.

Conclusions: Ever-smokers with normal FEV1 and FEV1/FVC < 0.70 but > LLN are a heterogeneous group that includes significant numbers of individuals with and without radiographic evidence of smoking-related lung disease. These findings emphasize the limitations of diagnosing COPD based on spirometric criteria alone.

Keywords: Airway obstruction; Chronic obstructive pulmonary disease; Emphysema; Forced expiratory volume; Maximal Midexpiratory flow rate; Pulmonary function tests; Spirometry.

Conflict of interest statement

Ethics approval and consent to participate

The research protocol was approved by the institutional review boards of all participating institutions and all participants gave written informed consent. Institutional review board approval reference numbers for each clinical site are available as Additional file 5.

Consent for publication

Not applicable

Competing interests

Dr. Tashkin reports personal fees from Boehringer-Ingelheim, personal fees from AstraZeneca, personal fees from Sunovion, personal fees from Theravance/Innoviva, personal fees from Mylan, outside the submitted work. Dr. Kleerup reports grants from NIH, grants from Foundation for the NIH, during the conduct of the study; grants from Boehringer Ingelheim, grants from Novartis, grants from Pearl/AstraZeneca, grants from Sunovion/Sepracor, outside the submitted work. Boehringer Ingelheim and GlaxoSmithKline supplied inhalers for pulmonary function testing in this study. Dr. Han reports personal fees from GSK, personal fees from BI, personal fees from AZ, non-financial support from Sunovion, non-financial support from Novartis, outside the submitted work. Dr. Cooper reports grants from Equinox Health Clubs, personal fees from Equinox Health Clubs, grants from Amgen, personal fees from PulmonX, GlaxoSmithKline, outside the submitted work; and works with scientific engagement for the GlaxoSmithKline Global Respiratory Franchise. Dr. Barjaktarevic reports grants from NIH, during the conduct of the study; personal fees from Astra Zeneca, from Grifols, from CSL Behring, outside the submitted work. Dr. Hoffman is a founder and shareholder of VIDA Diagnostics, a company commercializing lung image analysis software developed, in part, at the University of Iowa. Dr. Christenson reports personal fees from AstraZeneca, non-financial support from Genentech, grants from MedImmune, outside the submitted work. Dr. Hansel reports grants and personal fees from AstraZeneca, grants and personal fees from GSK, grants from Boehringer Ingelheim, grants from NIH, grants from COPD Foundation, outside the submitted work. Dr. Bleecker has undertaken clinical trials through his employer, Wake Forest School of Medicine and University of Arizona, for AstraZeneca, MedImmune, Boehringer Ingelheim, Cephalon/Teva, Genentech, Johnson and Johnson (Janssen), Novartis, Regeneron, and Sanofi Genzyme, personal fees from ERB, has also served as a paid consultant for AztraZeneca, MedImmune, Boehringer Ingelheim, Glaxo Smith Kline, Novartis, Regeneron, and Sanofi Genzyme, outside the submitted work. Dr. Martinez reports grants from NHLBI, during the conduct of the study; grants from National Institutes of Health, personal fees from Continuing Education, personal fees from Forest Laboratories, other from Janssen, personal fees from GlaxoSmithKline, personal fees from Nycomed/Takeda, personal fees from AstraZeneca, personal fees from Boehringer Ingelheim, personal fees from Bellerophon (formerly Ikaria), personal fees from Genentech, personal fees from Novartis, personal fees from Pearl, personal fees from Roche, personal fees from Sunovion, personal fees from Theravance, personal fees from CME Incite, personal fees from Annenberg Center for Health Sciences at Eisenhower, personal fees from Integritas, personal fees from InThought, personal fees from National Association for Continuing Education, personal fees from Paradigm Medical Communications, LLC, personal fees from PeerVoice, personal fees from UpToDate, personal fees from Haymarket Communications, personal fees from Western Society of Allergy and Immunology, from Proterixbio (formerly Bioscale), personal fees from Unity Biotechnology, personal fees from ConCert Pharmaceuticals, personal fees from Lucid, personal fees from Methodist Hospital, personal fees from Columbia University, personal fees from Prime Healthcare Ltd., personal fees from WebMD, personal fees from PeerView Network, personal fees from California Society of Allergy and Immunology, personal fees from Chiesi, personal fees from Puerto Rico Thoracic Society, outside the submitted work. Ms. Carretta reports funding from the National Heart, Lung, and Blood Institute, the Foundation for the NIH, Genentech, and the COPD Foundation during the conduct of the study. Dr. Paine reports grants from National Heart Lung and Blood Institute, grants from COPD Foundation, during the conduct of the study; grants from Department of Veterans Affairs, outside the submitted work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Box plots demonstrating percent of predicted forced expiratory volume in 1 s (FEV1%), forced expiratory flow rate between 25 and 75% of forced vital capacity (FEF25–75%), percent emphysema, and functional small airways disease by parametric response mapping (fSAD) in the three groups
Fig. 2
Fig. 2
Percent of patients in each group with emphysema and functional small airways disease (fSAD) present greater than the age-adjusted upper limit of normal (ULN) as measured by parametric response mapping (PRM) on chest CT

References

    1. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187:347–365. doi: 10.1164/rccm.201204-0596PP.
    1. Crapo RO, Morris AH, Gardner RM. Reference spirometric values using techniques and equipment that meet ATS recommendations. Am Rev Respir Dis. 1981;123:659–664.
    1. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, Coates A, van der Grinten CPM, Gustafsson P, Hankinson J, Jensen R, Johnson DC, MacIntyre N, McKay R, Miller MR, Navajas D, Pedersen OF, Wanger J. Interpretative strategies for lung function tests. Eur Respir J. 2005:948–68.
    1. Turkeshi E, Vaes B, Andreeva E, Matheï C, Adriaensen W, Van Pottelbergh G, Degryse J-M. Airflow limitation by the global lungs initiative equations in a cohort of very old adults. Eur Respir J. 2015;46(1):123–132. doi: 10.1183/09031936.00217214.
    1. Vollmer WM, Gíslason T, Burney P, Enright PL, Gulsvik A, Kocabas A, Buist AS. Comparison of spirometry criteria for the diagnosis of COPD: results from the BOLD study. Eur Respir J. 2009;34:588–597. doi: 10.1183/09031936.00164608.
    1. Swanney MP, Ruppel G, Enright PL, Pedersen OF, Crapo RO, Miller MR, Jensen RL, Falaschetti E, Schouten JP, Hankinson JL, Stocks J, Quanjer PH. Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassification of airway obstruction. Thorax. 2008;63:1046–1051. doi: 10.1136/thx.2008.098483.
    1. Vaz Fragoso CA, Concato J, McAvay G. Chronic obstructive pulmonary disease in older persons: a comparison of two spirometric definitions. Respiratory. 2010;104(8):1189–1196. doi: 10.1016/j.rmed.2009.10.030.
    1. Hansen JE, Sun X-G, Wasserman K. Spirometric criteria for airway obstruction: use percentage of FEV1/FVC ratio below the fifth percentile, not. CHEST. 2007;131:349–355. doi: 10.1378/chest.06-1349.
    1. Quanjer PH. Correctly defining criteria for diagnosing chronic obstructive pulmonary disease matters. Am J Respir Crit Care Med. 2014;189:230.
    1. Vaz Fragoso CA, McAvay G, Van Ness PH, Casaburi R, Jensen RL, MacIntyre N, Gill TM, Yaggi HK, Concato J. Phenotype of Normal spirometry in an aging population. Am J Respir Crit Care Med. 2015;192:817–825. doi: 10.1164/rccm.201503-0463OC.
    1. van Dijk W, Tan W, Li P, Guo B, Li S, Benedetti A, Bourbeau J, CanCOLD study group Clinical relevance of fixed ratio vs lower limit of normal of FEV1/FVC in COPD: patient-reported outcomes from the CanCOLD cohort. Ann Fam Med. 2015;13:41–48. doi: 10.1370/afm.1714.
    1. Bhatt SP, Sieren JC, Dransfield MT, Washko GR, Newell JD, Stinson DS, Zamba GKD, Hoffman EA, COPDGene Investigators Comparison of spirometric thresholds in diagnosing smoking-related airflow obstruction. Thorax. 2014;69:409–414.
    1. Mannino DM, Sonia Buist A, Vollmer WM. Chronic obstructive pulmonary disease in the older adult: what defines abnormal lung function? Thorax. 2007;62:237–241. doi: 10.1136/thx.2006.068379.
    1. Mohamed Hoesein FAA, Zanen P, Lammers J-WJ. Lower limit of normal or FEV1/FVC. Respir Med. 2011;105:907–915. doi: 10.1016/j.rmed.2011.01.008.
    1. Izquierdo Alonso JL, De Lucas Ramos P, Rodríguez Glez-Moro JM. The use of the lower limit of Normal as a criterion for COPD excludes patients with increased morbidity and high consumption of health-care resources. Archivos de Bronconeumología (English Edition) 2012;48:223–228. doi: 10.1016/j.arbr.2012.05.002.
    1. Hoesein FAAM, de Jong PA, Lammers J-WJ, Mali WP, Schmidt M, de Koning HJ, van der Aalst C, Oudkerk M, Vliegenthart R, van Ginneken B, van Rikxoort EM, Zanen P. Computed tomography structural lung changes in discordant airflow limitation. PLoS One. 2013;8:e65177. doi: 10.1371/journal.pone.0065177.
    1. Woodruff PG, Barr RG, Bleecker E, Christenson SA, Couper D, Curtis JL, Gouskova NA, Hansel NN, Hoffman EA, Kanner RE, Kleerup E, Lazarus SC, Martinez FJ, Paine R, Rennard S, Tashkin DP, Han MK, SPIROMICS research group Clinical significance of symptoms in smokers with preserved pulmonary function. N Engl J Med. 2016;374:1811–1821. doi: 10.1056/NEJMoa1505971.
    1. Regan EA, Lynch DA, Curran-Everett D, Curtis JL, Austin JHM, Grenier PA, Kauczor H-U, Bailey WC, DeMeo DL, Casaburi RH, Friedman P, Van Beek EJR, Hokanson JE, Bowler RP, Beaty TH, Washko GR, Han MK, Kim V, Kim SS, Yagihashi K, Washington L, McEvoy CE, Tanner C, Mannino DM, Make BJ, Silverman EK, Crapo JD. Clinical and radiologic disease in smokers with Normal spirometry. JAMA Intern Med. 2015;175:1539. doi: 10.1001/jamainternmed.2015.2735.
    1. Couper D, LaVange LM, Han M, Barr RG, Bleecker E, Hoffman EA, Kanner R, Kleerup E, Martinez FJ, Woodruff PG, Rennard S, SPIROMICS research group Design of the Subpopulations and Intermediate Outcomes in COPD study (SPIROMICS) Thorax. 2014;69:491–494. doi: 10.1136/thoraxjnl-2013-203897.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CPM, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J. ATS/ERS task force: standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.
    1. Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, van der Grinten CPM, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J. ATS/ERS task force: general considerations for lung function testing. Eur Respir J. 2005;26:153–161. doi: 10.1183/09031936.05.00034505.
    1. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159:179–187. doi: 10.1164/ajrccm.159.1.9712108.
    1. Bestall JC, Paul EA, Garrod R, Garnham R, Jones PW, Wedzicha JA. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax. 1999;54:581–586. doi: 10.1136/thx.54.7.581.
    1. Jones PW, Harding G, Berry P, Wiklund I, Chen W-H, Kline Leidy N. Development and first validation of the COPD assessment test. Eur Respir J. 2009;34:648–654. doi: 10.1183/09031936.00102509.
    1. Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George's respiratory questionnaire. Am Rev Respir Dis. 1992;145:1321–1327. doi: 10.1164/ajrccm/145.6.1321.
    1. Nakano Y, Wong JC, de Jong PA, Buzatu L, Nagao T, Coxson HO, Elliott WM, Hogg JC, Paré PD. The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med. 2005;171:142–146. doi: 10.1164/rccm.200407-874OC.
    1. Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, Galbán S, Rehemtulla A, Kazerooni EA, Martinez FJ, Ross BD. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18:1711–1715. doi: 10.1038/nm.2971.
    1. Welch BL. The generalization of `student“s” problem when several different population variances are involved. Biometrika. 1947;34:28.
    1. Koenker R (2012). Package ‘quantreg’. , accessed 15 Aug 2018.
    1. Hoffman EA, Ahmed FS, Baumhauer H, Budoff M, Carr JJ, Kronmal R, Reddy S, Barr RG. Variation in the percent of emphysema-like lung in a healthy, nonsmoking multiethnic sample. The MESA lung study. Ann Am Thorac Soc. 2014;11:898–907. doi: 10.1513/AnnalsATS.201310-364OC.
    1. Martinez CH, Diaz AA, Meldrum C, Curtis JL, Cooper CB, Pirozzi C, Kanner RE, Paine R, Woodruff PG, Bleecker ER, Hansel NN, Barr RG, Marchetti N, Criner GJ, Kazerooni EA, Hoffman EA, Ross BD, Galbán CJ, Cigolle CT, Martinez FJ, Han MK, SPIROMICS Investigators Age and small airway imaging abnormalities in subjects with and without airflow obstruction in SPIROMICS. Am J Respir Crit Care Med. 2017;195:464–472. doi: 10.1164/rccm.201604-0871OC.
    1. McFadden E.R., Linden David A. A reduction in maximum mid-expiratory flow rate. The American Journal of Medicine. 1972;52(6):725–737. doi: 10.1016/0002-9343(72)90078-2.
    1. Gelb AF, Zamel N. Simplified diagnosis of small-airway obstruction. N Engl J Med. 1973;288:395–398. doi: 10.1056/NEJM197302222880805.
    1. van den Berge M, ten NHT H, Cohen J, Douma WR, Postma DS. Small airway disease in asthma and COPD: clinical implications. CHEST. 2011;139:412–423. doi: 10.1378/chest.10-1210.
    1. Smith BM, Hoffman EA, Rabinowitz D, Bleecker E, Christenson S, Couper D, Donohue KM, Han MK, Hansel NN, Kanner RE, Kleerup E, Rennard S, Barr RG. Comparison of spatially matched airways reveals thinner airway walls in COPD. The multi-ethnic study of atherosclerosis (MESA) COPD study and the Subpopulations and intermediate outcomes in COPD study (SPIROMICS) Thorax. 2014;69:987–996. doi: 10.1136/thoraxjnl-2014-205160.
    1. Mets OM, de Jong PA, van Ginneken B, Kruitwagen CLJJ, Prokop M, Oudkerk M, Lammers J-WJ, Zanen P. CT air trapping is independently associated with lung function reduction over time. PLoS One. 2013;8:e61783. doi: 10.1371/journal.pone.0061783.
    1. Bommart S, Marin G, Bourdin A, Molinari N, Klein F, Hayot M, Vachier I, Chanez P, Mercier J, Vernhet-Kovacsik H. Relationship between CT air trapping criteria and lung function in small airway impairment quantification. BMC Pulm Med. 2014;14:29. doi: 10.1186/1471-2466-14-29.
    1. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, Wright AC, Gefter WB, Litzky L, Coxson HO, Paré PD, Sin DD, Pierce RA, Woods JC, McWilliams AM, Mayo JR, Lam SC, Cooper JD, Hogg JC. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365:1567–1575. doi: 10.1056/NEJMoa1106955.
    1. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Paré PD. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–2653. doi: 10.1056/NEJMoa032158.
    1. Verbanck S, Schuermans D, Meysman M, Paiva M, Vincken W. Noninvasive assessment of airway alterations in smokers. Am J Respir Crit Care Med. 2004;170:414–419. doi: 10.1164/rccm.200401-037OC.
    1. Pirozzi CS, Paine R, Tashkin DP, Kleerup EC, Woodruff PG, Han MK, Quibrera PM, Carretta E, Kanner R: Evidence of Clinical COPD in Smokers with Airway Obstruction Diagnosed with FEV1/FVC Ratio of Less than 0.70 but Not Less than Predicted Lower Limit of Normal. In American Thoracic Society International Conference Abstracts. American Thoracic Society; 2015:A4473–A4473.
    1. Pirozzi CS, Gu T, Quibrera P, Carretta E, Han MK, Murray S, Cooper CB, Tashkin DP, Kleerup EC, Hoffman EA, Martinez C, Christenson S, Hansel NN, Barr RG, Bleecker ER, Ortega VE, Martinez FJ, Kanner RE, Paine R: Heterogeneous Burden of Emphysema and Functional Small Airway Abnormalities in Smokers with FEV1/FVC Ratio Above Lower Limit of Normal but Below 0.7. In American Thoracic Society International Conference Abstracts. Am J Respir Crit Care Med 2018;197:A6397

Source: PubMed

3
Suscribir