Intra-Articular Injection of Hydrolyzed Collagen to Treat Symptoms of Knee Osteoarthritis. A Functional In Vitro Investigation and a Pilot Retrospective Clinical Study

Paola De Luca, Alessandra Colombini, Giulia Carimati, Michelangelo Beggio, Laura de Girolamo, Piero Volpi, Paola De Luca, Alessandra Colombini, Giulia Carimati, Michelangelo Beggio, Laura de Girolamo, Piero Volpi

Abstract

Among all joints affected, knee osteoarthritis has a prevalence of about 10% in men and 13% in women over 60 years old. Knee osteoarthritis has high economic and social costs and may have a devastating impact on patient quality of life. Treatment of symptomatic knee Osteoarthritis may involve oral or topical administration of non-steroidal anti-inflammatory drugs or intra-articular injection of corticosteroids. Recently, a novel injectable collagen formulation (ChondroGrid) consisting of bovine hydrolyzed <3 kDa type I collagen has been developed and is currently available on the market as an injectable medical device. The primary objective of this study was to investigate the in vitro and in vivo effects of ChondroGrid in treating knee osteoarthritis symptoms to assess its safety and performance. Viability and proliferation of ChondroGrid-exposed human chondrocytes derived from five donors were assessed through the Alamar Blue/CyQuant assays. Their expression of MMP1/MMP3 and TIMP1/TIMP3 was then assessed through RT-PCR and that of TGFβ1, IGF-I, and VEGF using ELISA assays. Shape and ECM deposition were assessed using the Bern score after a 28-day ChondroGrid exposure, and collagen deposition was assessed using immunostaining. Records of 20 patients affected by Kellgren Lawrence grade 1 to 4 knee osteoarthritis who received three 4mg/2mL ChondroGrid injections 2 weeks apart were then retrospectively assessed to compare VAS, Lequesne, and WOMAC scores collected before and 15, 45, and 225 days after the first injection. ChondroGrid had no effects on the markers under consideration, but induced type-II and inhibited type-I collagen deposition; the Bern score was higher when cells were cultured with ChondroGrid. Patients experienced a 44% Lequesne score and a 55% VAS at moving score reduction. All other scores decreased >70%. ChondroGrid may prompt chondrocytes to produce hyaline cartilage, prevent fibrous tissue formation, and be a safe and effective adjuvant to treat symptomatic knee osteoarthritis.

Keywords: hydrolyzed collagen; intra-articular injection; knee; non-pharmacological therapy; osteoarthritis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Human chondrocyte viability (left) and proliferation (right) at different CG concentrations. CG 1.5 mg/mL induces a significant decrease in viability (** p ≤ 0.001) and proliferation (* p ≤ 0.05), with respect to control (no CG) only after 6 days of treatment. No significant differences were observed, at any concentration, between data collected at 3 and 6 days of exposure.
Figure 2
Figure 2
Expression of MMP1, MMP3, TIMP1, and TIMP3. An inflammatory response was induced in chondrocytes by exposure to IL-1β. Consequent exposure to CG 1.0 mg/mL (IL-1β + CG) did not induce a significant change in the expression of MMP1 (a), MMP3 (b), TIMP1 (c), TIMP3 (d). NT: control (Not Treated). * p ≤ 0.05, *** p ≤ 0.001.
Figure 3
Figure 3
Human chondrocytes cultured under different conditions: NT, not treated; NT+CG, CG 1 mg/mL added; C, chondrogenic medium added; C+CG, chondrogenic medium, and CG 1 mg/mL added. Hematoxylin and eosin staining; bars of small pictures = 100 µm; bars of large pictures = 200 µm.
Figure 4
Figure 4
Immunohistochemical analysis of human chondrocytes exposed to a chondrogenic medium (C) or to a chondrogenic medium and CG 1 mg/mL (C + CG). Avidin-biotin detection method. Bar = 100 µm. When chondrocytes were exposed to the chodrogenic medium only, type-I and type-II collagen expression were not significantly different; when they were also exposed to CG 1.0 mg/mL, expression of type-I collagen was inhibited, and that of type-II collagen enhanced. * p ≤ 0.05.
Figure 5
Figure 5
VAS at rest (a), when moving (b) and Lequesne (c) scores. Median VAS at rest did not change significantly after the CG injections. Median VAS when moving decreased significantly after the first injection (T1 vs. baseline, p = 0.01) but did not decrease further after the second one (T2); the median Lequesne decreased significantly after the first injection (T1 vs. baseline, p = 0.03), did not decrease further after the second injection and was stable at the 6-month follow-up.
Figure 6
Figure 6
WOMAC pain (a), stiffness (b), physical function (c) sub scores and total WOMAC score (d). For all scores, median values at T1 are significantly lower than those at baseline (T1 vs baseline: pain, p = 0.03; stiffness, p = 0.04; physical function, p = 0.04; total score, p = 0.03), and median values at T2 are significantly lower than those at T1 (T2 vs T1: pain, p = 0.03; stiffness, p = 0.04; physical function, p = 0.001; total score, p < 0.001). For all scores, median values at the 6-month follow-up were not significantly different than that at T2 and were stable at the 6-month follow-up.

References

    1. Loeser R.F., Collins J.A., Diekman B.O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2016;12:412–420. doi: 10.1038/nrrheum.2016.65.
    1. Martel-Pelletier J., Barr A.J., Cicuttini F.M., Conaghan P.G., Cooper C., Goldring M.B., Goldring S.R., Jones G., Teichtahl A.J., Pelletier J.P. Osteoarthritis. Nat. Rev. Dis. Primers. 2016;2:16072. doi: 10.1038/nrdp.2016.72.
    1. Kim H., Kang D., Cho Y., Kim J.H. Epigenetic regulation of chondrocyte catabolism and anabolism in osteoarthritis. Mol. Cells. 2015;38:677–684. doi: 10.14348/molcells.2015.0200.
    1. Zhang Y., Jordan J.M. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 2010;26:355–369. doi: 10.1016/j.cger.2010.03.001.
    1. Xie F., Kovic B., Jin X., He X., Wang M., Silvestre C. Economic and Humanistic Burden of Osteoarthritis: A Systematic Review of Large Sample Studies. Pharmacoeconomics. 2016;34:1087–1100. doi: 10.1007/s40273-016-0424-x.
    1. Cross M., Smith E., Hoy D., Nolte S., Ackerman I., Fransen M., Bridgett L., Williams S., Guillemin F., Hill C.L., et al. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 2014;73:1323–1330. doi: 10.1136/annrheumdis-2013-204763.
    1. Richette P., Latourte A., Frazier A. Safety and efficacy of paracetamol and NSAIDs in osteoarthritis: Which drug to recommend? Expert Opin. Drug Saf. 2015;14:1259–1268. doi: 10.1517/14740338.2015.1056776.
    1. Freire V., Bureau N.J. Injectable Corticosteroids: Take Precautions and Use Caution. Semin. Musculoskelet Radiol. 2016;20:401–408. doi: 10.1055/s-0036-1594286.
    1. Da Costa B.R., Reichenbach S., Keller N., Nartey L., Wandel S., Jüni P., Trelle S. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: A network meta-analysis. Lancet. 2017;390:E21–E33. doi: 10.1016/S0140-6736(17)31744-0.
    1. Taylor N. Nonsurgical Management of Osteoarthritis Knee Pain in the Older Adult. Clin. Geriatr. Med. 2017;33:41–51. doi: 10.1016/j.cger.2016.08.004.
    1. Xu Q., Chen B., Wang Y., Wang X., Han D., Ding D., Zheng Y., Cao Y., Zhan H., Zhou Y. The Effectiveness of Manual Therapy for Relieving Pain, Stiffness, and Dysfunction in Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Pain Physician. 2017;20:229–243. doi: 10.1016/j.joca.2015.02.715.
    1. Bellamy N., Campbell J., Robinson V., Gee T., Bourne R., Wells G. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst. Rev. 2006;19:CD005321. doi: 10.1002/14651858.CD005321.pub2.
    1. Trojian T.H., Concoff A.L., Joy S.M., Hatzenbuehler J.R., Saulsberry W.J., Coleman C.I. AMSSM Scientific Statement Concerning Viscosupplementation Injections for Knee Osteoarthritis: Importance for Individual Patient Outcomes. Clin. J. Sport Med. 2016;26:1–11. doi: 10.1097/JSM.0000000000000274.
    1. Kapoor M., Martel-Pelletier J., Lajeunesse D., Pelletier J.P., Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011;7:33–42. doi: 10.1038/nrrheum.2010.196.
    1. Mobasheri A., Bay-Jensen A.C., van Spil W.E., Larkin J., Levesque M.C. Osteoarthritis Year in Review 2016: Biomarkers (biochemical markers) Osteoarthr. Cartil. 2017;25:199–208. doi: 10.1016/j.joca.2016.12.016.
    1. Ohara H., Iida H., Ito K., Takeuchi Y., Nomura Y. Effects of Pro-Hyp, a collagen hydrolysate-derived peptide, on hyaluronic acid synthesis using in vitro cultured synovium cells and oral ingestion of collagen hydrolysates in a guinea pig model of osteoarthritis. Biosci. Biotechnol. Biochem. 2010;74:2096–2099. doi: 10.1271/bbb.100193.
    1. Furuzawa-Carballeda J., Muñoz-Chablé O.A., Barrios-Payán J., Hernández-Pando R. Effect of polymerized-type I collagen in knee osteoarthritis. I. In vitro study. Eur. J. Clin. Investig. 2009;39:591–597. doi: 10.1111/j.1365-2362.2009.02154.x.
    1. Comblain F., Dubuc J.E., Lambert C., Sanchez C., Lesponne I., Serisier S., Henrotin Y. Identification of Targets of a New Nutritional Mixture for Osteoarthritis Management Composed by Curcuminoids Extract, Hydrolyzed Collagen and Green Tea Extract. PLoS ONE. 2016;11:e0156902. doi: 10.1371/journal.pone.0156902.
    1. Naraoka T., Ishibashi Y., Tsuda E., Yamamoto Y., Kusumi T., Toh S. Periodic knee injections of collagen tripeptide delay cartilage degeneration in rabbit experimental osteoarthritis. Arthritis Res. Ther. 2013;15:R32. doi: 10.1186/ar4181.
    1. Furuzawa-Carballeda J., Muñoz-Chablé O.A., Macías-Hernández S.I., Agualimpia-Janning A. Effect of polymerized-type I collagen in knee osteoarthritis. II. In vivo study. Eur. J. Clin. Investig. 2009;39:598–606. doi: 10.1111/j.1365-2362.2009.02144.x.
    1. Furuzawa-Carballeda J., Lima G., Llorente L., Nuñez-Álvarez C., Ruiz-Ordaz B.H., Echevarría-Zuno S., Hernández-Cuevas V. Polymerized-type I collagen downregulates inflammation and improves clinical outcomes in patients with symptomatic knee osteoarthritis following arthroscopic lavage: A randomized, double-blind, and placebo-controlled clinical trial. Sci. World J. 2012;2012:342854. doi: 10.1100/2012/342854.
    1. Martin Martin L.S., Massafra U., Bizzi E., Migliore A. A double blind randomized active-controlled clinical trial on the intra-articular use of Md-Knee versus sodium hyaluronate in patients with knee osteoarthritis (Joint) BMC Musculoskelet Disord. 2016;17:94. doi: 10.1186/s12891-016-0948-4.
    1. De Luca P., Kouroupis D., Viganò M., Perucca-Orfei C., Kaplan L., Zagra L., de Girolamo L., Correa D., Colombini A. Human Diseased Articular Cartilage Contains a Mesenchymal Stem Cell-Like Population of Chondroprogenitors with Strong Immunomodulatory Responses. J. Clin. Med. 2019;8:423. doi: 10.3390/jcm8040423.
    1. Daheshia M., Yao J.Q. The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J. Rheumatol. 2008;35:2306–2312. doi: 10.3899/jrheum.080346.
    1. Lopa S., Ceriani C., Cecchinato R., Zagra L., Moretti M., Colombini A. Stability of housekeeping genes in human intervertebral disc, endplate and articular cartilage cells in multiple conditions for reliable transcriptional analysis. Eur. Cell. Mater. 2016;31:395–406. doi: 10.22203/eCM.v031a25.
    1. Grogan S.P., Barbero A., Winkelmann V., Rieser F., Fitzsimmons J.S., O’Driscoll S., Martin I., Mainil-Varlet P. Visual histological grading system for the evaluation of in vitro-generated neocartilage. Tissue Eng. 2006;12:2141–2149. doi: 10.1089/ten.2006.12.2141.
    1. Colombini A., Lanteri P., Lombardi G., Grasso D., Recordati C., Lovi A., Banfi G., Bassani R., Brayda-Bruno M. Metabolic effects of vitamin D active metabolites in monolayer and micromass cultures of nucleus pulposus and annulus fibrosus cells isolated from human intervertebral disc. Int. J. Biochem. Cell. Biol. 2012;44:1019–1030. doi: 10.1016/j.biocel.2012.03.012.
    1. Kellgren J., Lawrence J. Atlas of Standard Radiographs: The Epidemiology of Chronic Rheumatism. Volume 2 Blackwell Scientific Publications; Oxford, UK: 1963.
    1. Lequesne M.G., Mery C., Samson M., Gerard P. Indexes of severity for osteoarthritis of the hip and knee. Validation--value in comparison with other assessment tests. Scand. J. Rheumatol. Suppl. 1987;65:85–89. doi: 10.3109/03009748709102182.
    1. Bellamy N. WOMAC Osteoarthritis Index User Guide IX. Brisbane Queensland, Australia: 2008.
    1. Lopa S., Colombini A., Sansone V., Preis F.W., Moretti M. Influence on chondrogenesis of human osteoarthritic chondrocytes in co-culture with donor-matched mesenchymal stem cells from infrapatellar fat pad and subcutaneous adipose tissue. Int. J. Immunopathol. Pharmacol. 2013;26(Suppl. 1):23–31. doi: 10.1177/03946320130260S104.
    1. Lovati A.B., Colombini A., Recordati C., Ceriani C., Zagra L., Berzero G., Moretti M. Chondrogenic capability of osteoarthritic chondrocytes from the trapeziometacarpal and hip joints. Cell Tissue Bank. 2016;17:171–177. doi: 10.1007/s10561-015-9519-4.
    1. Heilmann H.H., Lindenhayn K., Walther H.U. Synovial volume of healthy and arthrotic human knee joints. Z. Orthop. Ihre Grenzgeb. 1996;134:144–148. doi: 10.1055/s-2008-1039786.
    1. Kraus V.B., Stabler T.V., Kong S.Y., Varju G., McDaniel G. Measurement of synovial fluid volume using urea. Osteoarthr. Cartil. 2007;15:1217–1220. doi: 10.1016/j.joca.2007.03.017.
    1. Nakatani S., Mano H., Sampei C., Shimizu J., Wada M. Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo. Osteoarthr. Cartil. 2009;17:1620–1627. doi: 10.1016/j.joca.2009.07.001.
    1. Boonmaleerat K., Wanachewin O., Phitak T., Pothacharoen P., Kongtawelert P. Fish Collagen Hydrolysates Modulate Cartilage Metabolism. Cell Biochem. Biophys. 2017;76:279–392. doi: 10.1007/s12013-017-0817-2.

Source: PubMed

3
Suscribir