Brain plasticity-based therapeutics

Michael M Merzenich, Thomas M Van Vleet, Mor Nahum, Michael M Merzenich, Thomas M Van Vleet, Mor Nahum

Abstract

The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, traditional clinical strategies of professional therapy practitioners, and (b) an even more widely applied pharmaceutical treatment model for neurological and psychiatric treatment domains. With that background, we shall argue that neuroplasticity-based treatments will be an important part of future best-treatment practices in neurological and psychiatric medicine.

Keywords: aging; brain plasticity; computerized training; hemispatial neglect; neuroplasticity; schizophrenia.

Figures

Figure 1
Figure 1
Illustrating positive far-transfer chemical, behavioral, and brain response changes attributable to intensive brain training in patients with chronic schizophrenia (SZ). Tasks targeted the auditory-aural language/perceptual-cognitive system. Training was via computers, over a 40–50 hour-long training period. (A) Brain-Derived Neurotrophin Factor (BDNF) in its “pro” and mature (“m”) forms is down-regulated in schizophrenia and in other chronic neurological and psychiatric illnesses (e.g., healthy aging). As a result of this brain plasticity-based training, serum levels of BDNF were elevated to normal levels; no changes were recorded in subjects who worked with equivalent intensity on progressive control video games. The up-regulated of BDNF to near-normal levels was sustained for more than a year following training program completion. Similar effects have been recorded in aging brains. Data are from Vinogradov et al. (2009). (B) Left: Re-normalization of abilities in a behavioral task in which subjects with SZ identify whether they or an outside agent was the source of an immediate-past action. Again, this is a transfer effect of training; no aspect of this task is represented in the completed training regime. Right: Strengthening of BOLD responses in a medial prefrontal cortical area hypothesized to be the primary cortical site for the assignment of agency in the brain. No measurable task-related activity was recorded in this area in subjects with SZ prior to training, or in computer brain-engaged SZ controls before or after training. From Subramaniam et al. (2012). (C) Brain images showing changes in responses recorded in this task. Abbreviations: CG, computer games control; AT, auditory training; SZ-AT, schizophrenia patients in the auditory training group; SZ-CG, schizophrenia patients in the computer games group; HC, healthy controls.
Figure 2
Figure 2
Hemispatial neglect syndrome patients are slow to identify target stimuli arising in the neglected visual hemifield. Training designed to recover the functionality of intrincsic alertness over a period of 6 h was adequate for achieving recovery when examined within 48 h post-training. Data from 20 neglect patients with a wide panoply of brain-injury etiologies. (e.g., tumor, stroke, TBI). Display time significantly shortened following training. Note that this is a “transfer” effect, as training involving the identification of objects, scenes, or tones was presented at central fixation (i.e., not in the neglected field). Redrawn from DeGutis and Van Vleet (2010) and Van Vleet and DeGutis (2013).
Figure 3
Figure 3
Illustrating the magnitudes of gains for a limited computer delivered epoch of training (about 10 h) in a large (n = 670) cohort of healthy aged participants. Training was conducted “at home” or in a clinical center at the University of Iowa. One population in the clinical center completed a 4-h “booster” training session 6 months after initial training program completion. All patients were behaviorally assessed before, immediately after, and 1 year after training program completion. Here, gains are expressed as an estimate of the number of years before assessment scores would be predicted to fall below pre-training scores; these highly significant gains had an average endurance of 3–4 years. Note that the “UFOV composite” reflects the approximately 1 SD gain in brain speed and visual control within an expanded visual field achieved directly from the training. All other measures represent near and far-transfer effects (i.e., benefits shown in untrained cognitive domains). Adapted from Wolinsky et al. (2013).

References

    1. Adcock R. A., Dale C., Fisher M., Aldebot S., Genevsky A., Simpson G. V., et al. (2009). When top-down meets bottom-up: auditory training enhances verbal memory in schizophrenia. Schizophr. Bull. 35, 1132–1141 10.1093/schbul/sbp068
    1. Ahissar E., Vaadia E., Ahissar M., Bergman H., Arieli A., Abeles M. (1992). Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257, 1412–1415 10.1126/science.1529342
    1. Ahissar M., Nahum M., Nelken I., Hockstein S. (2009). Reverse hierarchies and sensory learning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 285–299 10.1098/rstb.2008.0253
    1. Aston-Jones G., Cohen J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 10.1146/annurev.neuro.28.061604.135709
    1. Aston-Jones J., Rajkowski J., Cohen J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biol. Psychiatry 46, 1309–1320 10.1016/S0006-3223(99)00140-7
    1. Backman L., Lindenberger U., Li S. C., Nyberg L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci. Biobehav. Rev. 34, 670–677 10.1016/j.neurobiorev.2009.12.008
    1. Ball K., Edwards J. D., Ross L. A. (2007). The impact of speed of processing training on cognitive and everyday functions. J. Gerontol. B Psychol. Sci. Soc. Sci. 62, 19–31 10.1093/geronb/62.special_issue_1.19
    1. Ball K., Edwards J. D., Ross L. A., McGwin G., Jr. (2010). Cognitive training decreases motor vehicle collision involvement of older draivers. J. Am. Geriatr. Soc. 58, 2107–2113 10.1111/j.1532-5415.2010.03138.x
    1. Bao S., Chan V. T., Merzenich M. M. (2001). Cortical remodeling induced by activity of ventral tegmental dopamine neurons. Nature 412, 79–83 10.1038/35083586
    1. Bao S., Chan V. T., Zhang L. I., Merzenich M. M. (2003). Suppression of cortical representation through backward conditioning. Proc. Natl. Acad. Sci. U.S.A. 100, 1405–1408 10.1073/pnas.0337527100
    1. Barili P., De Carolis G., Zacheo D., Amenta F. (1998). Sensitivity to aging of the limbic dopaminergic system: a review. Mech. Aging Dev. 106, 57–92 10.1016/S0047-6374(98)00104-3
    1. Barrett A. M., Goedert K. M., Basso J. C. (2012). Prism adaptation for spatial neglect after stroke: translational practice gaps. Nat. Rev. Neurol. 8, 567–577 10.1038/nrneurol.2012.170
    1. Becker H. E., Nieman D. H., Wiltink S., Dingemans P. M., van de Fliert J. R., Velthorst E., et al. (2010). Neurocognitive functioning before and after the first psychotic episode: does psychosis result in cognitive deterioration? Psychol. Med. 40, 1599–1606 10.1017/S0033291710000048
    1. Bell M., Tsang H. W., Greig T. C., Bryson G. J. (2009). Neurocognition, social cognition, perceived social discomfort, and vocational outcomes in schizophrenia. Schizophr. Bull. 35, 738–747 10.1093/schbul/sbm169
    1. Berry A. S., Zanto T. P., Clapp W. C., Hardy J. L., Delahunt P. B., Mahncke H. W., et al. (2010). The influence of perceptual training on working memory in older adults. PLoS ONE. 5:e11537 10.1371/journal.pone.0011537
    1. Biagianti B., Vinogradov S. (2013). Computerized cognitive training targeting brain plasticity in schizophrenia. Prog. Brain Res. 207, 301–326 10.1016/B978-0-444-63327-9.00011-4
    1. Billeke P., Aboitiz F. (2013). Social cognition in schizophrenia: from social stimuli processing to social engagement. Front. Psychiatry 4:4 10.3389/fpsyt.2013.00004
    1. Boring E. (1929). A History of Experimental Psychology. New York, NY: Century
    1. Bouret S., Sara S. J. (2005). Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 28, 574–582 10.1016/j.tins.2005.09.002
    1. Brewer W. J., Francey S. M., Wood S. J., Jackson H. J., Pantelis C., Phillips L. J., et al. (2005). Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. Am. J. Psychiatry 162, 71–78 10.1176/appi.ajp.162.1.71
    1. Buxhoeveden D. P., Casanova M. F. (2002). The minicolumn hypothesis in neuroscience. Brain 125, 935–951 10.1093/brain/awf110
    1. Calciano M., Lemarie J. C., Blondiaux E., Einstein R., Fehlbaum-Beurdeley P. (2013). A predictive microarray-based biomarker for early detection of Alzheimer's disease intended for clinical diagnostic application. Biomarkers 13, 264–272 10.3109/1354750X.2013.773083
    1. Carcea I., Froemke R. C. (2013). Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Prog. Brain Res. 207, 65–90 10.1016/B978-0-444-63327-9.00003-5
    1. Chan R. C., Li H., Cheung E. F., Gong Q. Y. (2010). Impaired facial emotion perception in schizophrenia: a meta-analysis. Psychiatry Res. 178, 381–390 10.1016/j.psychres.2009.03.035
    1. Cirillo M. A., Seidman L. J. (2003). Verbal declarative memory dysfunction in schizophrenia: from clinical assessment to genetics and brain mechanisms. Neuropsychol. Rev. 13, 43–77 10.1023/A:1023870821631
    1. Compte A. (2006). Computational and in vitro studies of persistent activity: edging towards cellular and synaptic mechanisms of working memory. Neuroscience 139, 135–151 10.1016/j.neuroscience.2005.06.011
    1. Cooper L. N., Bear M. F. (2012). The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798–810 10.1038/nrn3353
    1. Corbetta M., Shulman G. L. (2011). Spatial neglect and attention networks. Annu. Rev. Neurosci. 34, 569–599 10.1146/annurev-neuro-061010-113731
    1. Couture S. M., Penn D. L., Roberts D. L. (2006). The functional significance of social cognition in schizophrenia: a review. Schizophr. Bull. 32, S44–S63 10.1093/schbul/sbl029
    1. Dale C. L., Findlay A. M., Adcock R. A., Vertinski M., Fisher M., Genevsky A., et al. (2010). Timing is everything: neural response dynamics during syllable processing and its relation to higher-order cognition in schizophrenia and healthy comparison subjects. Int. J. Psychophysiol. 75, 183–193 10.1016/j.ijpsycho.2009.10.009
    1. Dan Y., Poo M. M. (2006). Spike timing-dependent plasticity: from synapse to perception. Physiol. Rev. 86, 1033–1048 10.1152/physrev.00030.2005
    1. DeGutis J., Van Vleet T. M. (2010). Tonic and phasic alertness training: a novel behavioral therapy to improve spatial and non-spatial attention in patients with hemispatial neglect. Front. Hum. Neurosci. 4:60 10.3389/fnhum.2010.00060
    1. de Villers-Sidani E., Alzghoul L., Zhou X., Simpson K. L., Lin R. C., Merzenich M. M. (2010). Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proc. Natl. Acad. Sci. U.S.A. 107, 13900–13905 10.1073/pnas.1007885107
    1. de Villers-Sidani E., Merzenich M. M. (2011). Lifelong plasticity in the rat auditory cortex: basic mechanisms and role of sensory experience. Prog. Brain Res. 191, 119–131 10.1016/B978-0-444-53752-2.00009-6
    1. Duncan J., Bundesen C., Olson A., Humphreys G., Chavda S., Shibuya H. (1999). Systematic analysis of deficits in visual attention. J. Exp. Psychol. Gen. 128, 450–478 10.1037/0096-3445.128.4.450
    1. Eastvold A. D., Heaton R. K., Cadenhead K. S. (2007). Neurocognitive deficits in the (putative) prodrome and first episode of psychosis. Schizophr. Res. 93, 266–277 10.1016/j.schres.2007.03.013
    1. Edelman G. (1987). Neural Darwinism: The Theory of Neuronal Group Selection. New York, NY: Basic Books
    1. Edwards J., Pattison P. E., Jackson H. J., Wales R. J. (2001). Facial affect and affective prosody recognition in first-episode schizophrenia. Schizophr Res. 48, 235–253 10.1016/S0920-9964(00)00099-2
    1. Edwards J. D., Myers C., Ross L. A., Roenker D. L., Cissell G. M., McLaughlin A. M., et al. (2009). The longitudinal impact of cognitive speed of processing training on driving mobility. Gerontologist 49, 485–494 10.1093/geront/gnp042
    1. Fass D. M., Schroeder F. A., Perlis R. H., Haggarty S. J. (2014). Epigenetic mechanisms in mood disorders: targeting neuroplasticity. Neuroscience 264, 112–130 10.1016/j.neuroscience.2013.01.041
    1. Feldman D. E. (2012). The spike-timing dependence of plasticity. Neuron 75, 55–71 10.1016/neuron.2012.08.001
    1. Fernandez A. (2011). The business and ethics of the brain fitness boom. Generations 35, 63–69
    1. Fett A. K., Viechtbauer W., Dominguez M. D., Penn D. L., van Os. J., Krabbendam L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci. Biobehav. Rev. 35, 573–588 10.1016/j.neubiorev.2010.07.001
    1. Fisher M., Holland C., Merzenich M. M., Vinogradov S. (2009b). Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. Am. J. Psychiatry 166, 805–811 10.1176/appi.ajp.2009.08050757
    1. Fisher M., Holland C., Subramaniam K., Vinogradov S. (2009a). Neuroplasticity-based cognitive training in schizophrenia: an interim report on the effects 6 months later. Schizophr. Bull. 36, 869–879 10.1093/schbul/sbn170
    1. Fisher M., Loewy R., Hardy K., Schlosser D., Vinogradov S. (2013). Cognitive interventions targeting brain plasticity in the prodromal and early phases of schizophrenia. Annu. Rev. Clin. Psychol. 9, 435–463 10.1146/annurev-clinpsy-032511-143134
    1. Fleet W. S., Valenstein E., Watson R. T., Heilman K. M. (1987). Dopamine agonist therapy for neglect in humans. Neurology 37, 1765–1765 10.1212/WNL.37.11.1765
    1. Froemke R. C., Merzenich M. M., Schreiner C. E. (2007). A synaptic memory trace for cortical receptive field plasticity. Nature 450, 425–429 10.1038/nature06289
    1. Fuster J. (2008). The Prefrontal Cortex, 4th Edn. London: Academic Press
    1. Geminiani G., Bottini G., Sterzi R. (1998). Dopaminergic stimulation in unilateral neglect. J. Neurol. Neurosurg. Psychiatry 65, 344–347 10.1136/jnnp.65.3.344
    1. Gilbert C. D., Li W., Piech V. (2009). Perceptual learning and adult cortical plasticity. J. Physiol. 587, 2743–2751 10.1113/jphysiol.2009.171488
    1. Gilman S. R., Chang J., Xu B., Bawa T. S., Gogos J. A., Karayiorgou M., et al. (2012). Diverse types of genetic variation converge on functional gene networks involved in schizophrenia. Nat. Neurosci. 15, 1723–1728 10.1038/nn.3261
    1. Goff D. C., Hill M., Barch D. (2011). The treatment of cognitive impairment in schizophrenia. Pharmacol. Biochem. Behav. 99, 245–253 10.1016/j.pbb.2010.11.009
    1. Goldberg T. E., Goldman R. S., Burdick K. E., Malhotra A. K., Lencz T., Patel R. C., et al. (2007). Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Arch. Gen. Psychiatry 64, 1115–1122 10.1001/archpsyc.64.10.1115
    1. Goldman-Rakic P. S. (1995). Cellular basis of working memory. Neuron 14, 477–485 10.1016/0896-6273(95)90304-6
    1. Green M. F. (2007). Stimulating the development of drug treatments to improve cognition in schizophrenia. Annu. Rev. Clin. Psychol. 3, 159–80 10.1146/annurev.clinpsy.3.022806.091529
    1. Green M. F., Bearden C. E., Cannon T. D., Fiske A. P., Hellemann G. S., Horan W. P., et al. (2012). Social cognition in schizophrenia, Part 1: performance across phase of illness. Schizophr. Bull. 38, 854–864 10.1093/schbul/sbq171
    1. Green M. F., Kern R. S., Braff D. L., Mintz J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophr. Bull. 26, 119–136 10.1093/oxfordjournals.schbul.a033430
    1. Grossberg S. (2013). Recurrent neural networks. Scholarpedia 8:1888 10.4249/scholarpedia.1888
    1. Hahn K., Myers N., Prigarin S., Rodenacker K., Kurz A., Forstl H., et al. (2013). Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's Disease revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence. Neuroimage 81, 96–109 10.1016/j.neuroimage.2013.05.011
    1. Hebb D. O. (1949). The Organization of Behavior. New York, NY: J Wiley
    1. Heckers S. (2001). Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11, 520–528 10.1002/hipo.1068
    1. Heilman K. M., Bowers D., Valenstein E., Watson R. T. (1993). Disorders of visual attention. Baillieres Clin. Neurol. 2, 389–413
    1. Hinkley L. B., Vinogradov S., Guggisberg A. G., Fisher M., Findlay A. M., Nagarajan S. S. (2011). Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: implications for novel approaches to treatment. Biol. Psychiatry 70, 1134–1142 10.1016/j.biopsych.2011.06.029
    1. Hjaltason H., Tegner R., Tham K., Levander M., Ericson K. (1996). Sustained attention and awareness of disability in chronic neglect. Neuropsychologia 34, 1229–1233 10.1016/0028-3932(96)00044-9
    1. Hochstein S., Ahissar M. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36, 791–805 10.1016/S0896-6273(02)01091-7
    1. Hooker C. I., Bruce L., Fisher M., Verosky S. C., Miyakawa A., D'Esposito M., et al. (2013). The influence of combined cognitive plus social-cognitive training on amygdala response during face emotion recognition in schizophrenia. Psychiatry Res. 213, 99–107 10.1016/j.pscychresns.2013.04.001
    1. Hooker C. I., Bruce L., Fisher M., Verosky S. C., Miyakawa A., Vinogradov S. (2012). Neural activity during emotion recognition after combined cognitive plus social cognitive training in schizophrenia. Schizophr. Res. 139, 53–59 10.1016/j.schres.2012.05.009
    1. Horng S. H., Sur M. (2006). Visual activity and cortical rewiring: activity-dependent plasticity of cortical neurons. Prog. Brain Res. 157, 3–11 10.1016/S0079-6123(06)57001-3
    1. Husain M., Rorden C. (2003). Non-spatially lateralized mechanisms in hemispatial neglect. Nat. Rev. Neurosci. 4, 26–36 10.1038/nrn1005
    1. Husain M., Shapiro K., Martin J., Kennard C. (1997). Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature 385, 154–156 10.1038/385154a0
    1. Jagust W. (2013). Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 77, 219–234 10.1016/j.neuron.2013.01.002
    1. Jardanhazi-Kurutz D., Kummer M. P., Terwel D., Vogel K., Dyrks T., Thiele A., et al. (2010). Induced LC degeneration in APP/PS1 transgenic mice accelerates early cerebral amyloidosis and cognitive deficits. Neurochem. Int. 57, 375–382 10.1016/j.neuint.2010.02.001
    1. Jardanhazi-Kurutz D., Kummer M. P., Terwel D., Vogel K., Thiele A., Heneka M. T. (2011). Distinct adrenergic system changes and neuroinflammation in response to induced locus ceruleus degeneration in APP/PS1 transgenic mice. Neuroscience 176, 396–407 10.1016/j.neuroscience.2010.11.052
    1. Kalinin S., Polak P. E., Lin S. X., Sakharkar A. J., Pandey S. C., Feinstein D. L. (2012). The noradrenaline precursor L-DOPS reduces pathology in a mouse model of Alzheimer's disease. Neurobiol. Aging 33, 1651–1663 10.1016/j.neurobiolaging.2011.04.012
    1. Kamal B., Holman C., de Villers-Sidani E. (2013). Shaping the aging brain: role of auditory input patterns in the emergence of auditory cortical impairments. Front. Syst. Neurosci. 7:52 10.3389/fnsys.2013.00052
    1. Keefe R. S., Bilder R. M., Davis S. M., Harvey P. D., Palmer B. W., Gold J. M., et al. (2007). Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch. Gen. Psychiatry 64, 633–647 10.1001/archpsyc.64.6.633
    1. Keefe R. S., Perkins D. O., Gu H., Zipursky R. B., Christensen B. K., Lieberman J. A. (2006). A longitudinal study of neurocognitive function in individuals at-risk for psychosis. Schizophr. Res. 88, 26–35 10.1016/j.schres.2006.06.041
    1. Keefe R. S., Vinogradov S., Medalia A., Buckley P. F., Caroff S. N., D'Souza D. C., et al. (2012). Feasibility and pilot efficacy results from the multisite Cognitive Remediation in the Schizophrenia Trials Network (CRSTN) randomized controlled trial. J. Clin. Psychiatry 73, 1016–1022 10.4088/JCP.11m07100
    1. Kim H. S., Shin N. Y., Jang J. H., Kim E., Shim G., Park H. Y., et al. (2011). Social cognition and neurocognition as predictors of conversion to psychosis in individuals at ultra-high risk. Schizophr. Res. 130, 170–175 10.1016/j.schres.2011.04.023
    1. Kleim J. A., Barbay S., Cooper N. R., Hogg T. M., Reidel C. N., Remple M. S., et al. (2002). Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn. Mem. 77, 63–77 10.1006/nlme.2000.4004
    1. Klingberg T. (2010). Training and plasticity of working memory. Trends Cogn. Sci. 14, 317–324 10.1016/j.ics.2010.05.002
    1. Koffie R. M., Hyman B. T., Spires-Jones T. L. (2011). Alzheimer's disease: synapses gone cold. Mol. Neurodegener. 6:63 10.1186/1750-1326-6-63
    1. Kohler C. G., Walker J. B., Martin E. A., Healey K. M., Moberg P. J. (2010). Facial emotion perception in schizophrenia: a meta-analytic review. Schizophr. Bull. 36, 1009–1019 10.1093/schbul/sbn192
    1. Kong Y., Ruan L., Qian L., Liu X., Le Y. (2010). Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J. Neurosci. 30, 11848–11857 10.1523/JNEUROSCI.2985-10.2010
    1. Lencz T., Smith C. W., McLaughlin D., Auther A., Nakayama E., Hovey L., et al. (2006). Generalized and specific neurocognitive deficits in prodromal schizophrenia. Biol. Psychiatry 59, 863–871 10.1016/j.biopsych.2005.09.005
    1. Lisman J., Grace A. A., Duzel E. (2011). A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends Neursci. 34, 536–547 10.1016/j.tins.2011.07.006
    1. Lo R. Y., Hubbard A. E., Shaw L. M., Trojanowski J. Q., Petersen R. C., Aisen P. S., et al. (2011). Longitudinal change of biomarkers in cognitive decline. Arch. Neurol. 68, 1257–1266 10.1001/archneurol.2011.123
    1. López-Muñoz F., Alamo C. (2009). Monaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr. Pharm. Des. 15, 1563–1586 10.2174/138161209788168001
    1. Mahncke H. W., Bronstone A., Merzenich M. M. (2006). Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog. Brain Res. 157, 81–109 10.1016/S0079-6123(06)57006-2
    1. Marien M. R., Colpaert F. C., Rosenquist A. C. (2004). Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res. Brain Res. Rev. 45, 38–78 10.1016/j.brainresrev.2004.02.002
    1. McMinn M. R., Buchanan T., Ellens B. M., Ryan M. K. (1999). Technology, professional practice, and ethics: survey findings and implications. Prof. Psychol. Res. Pract. 30:165 10.1037/0735-7028.30.2.165
    1. McNamee E. N., Ryan K. M., Kilroy D., Connor T. J. (2010). Noradrenaline induces IL-1ra and IL-1 type II receptor expression in primary glial cells and protects against IL-1beta-induced neurotoxicity. Eur. J. Pharmacol. 626, 219–228 10.1016/j.ejphar.2009.09.054
    1. Melby-Lervåg M., Hulme C. (2013). Is working memory training effective? A meta-analytic review. Dev. Psychol. 49, 270–291 10.1037/a0028228
    1. Merzenich M. M. (2001). Cortical plasticity contributing to child development, in Mechanisms in Cognitive Development, eds McClelland J., Siegler R. (Mahwah, NJ: Ehrlbaum; ), 67–96
    1. Merzenich M. M. (2013). Soft-Wired: How the New Science of Brain Plasticity Can Change Your Life. San Francisco: Parnassus Publishing
    1. Merzenich M. M., de Charms C. (1996). Neural representations, experience and change, in The Mind-Brain Continuum, eds Llinas R., Churchland P. (Boston, MA: MIT Press; ), 61–81
    1. Merzenich M. M., Jenkins W. M. (1993). Cortical representation of learned behaviors, in Memory Concepts, ed. Andersen P. (Amsterdam, NL: Elsevier; ), 437–453
    1. Merzenich M. M., Miller S., Jenkins W. M., Saunders G., Protopapas A., Peterson B., et al. (1998). Amelioration of the acoustic reception and speech reception deficits underlying language-based learning impairments, in Basic Neural Mechanisms in Cognition and Language, ed Euler C.V. (Amsterdam, NL: Elsevier; ), 143–172
    1. Mesulam M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28, 597–613 10.1002/ana.410280502
    1. Minzenberg M. J., Laird A. R., Thelen S., Carter C. S., Glahn D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch. Gen. Psychiatry 66, 811–822 10.1001/archgenpsychiatry.2009.91
    1. Modinos G., Costafreda S. G., van Tol M. J., McGuire P. K., Aleman A., Allen P. (2013). Neuroanatomy of and verbal hallucinations in schizopohrenia: a quantitative meta-analysis of vxel based mprphometry studies. Cortex 49, 1046–1055 10.1016/cortex.2012.01.009
    1. Mufson E. J., Ma S. Y., Dills J., Cochran E. J., Leurgans S., Wuu J., et al. (2002). Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease. J. Comp. Neurol. 443, 136–153 10.1002/cne.10122
    1. Nahum M., Fisher M., Loewy R., Poelke G., Ventura J., Nuechterlein K. H., et al. (2014). A novel, online social cognitive training program for young adults with schizophrenia: a pilot study. Schizophr. Res. Cogn. 1, e11–e19 10.1016/j.scog.2014.01.003
    1. Nahum M., Garrett C., Powell B., Poelke G., Fisher M., Mayott L., et al. (2013a). Testing the feasibility of a novel computerized neuro-plasticity based training program to remediate social cognition deficits in schizophrenia (‘SocialVille’), in Poster Presented at the International Congress on Schizophrenia Research (ICOSR) (Grande Lakes, FL: ).
    1. Nahum M., Garrett C., Powell B., Poelke G., Fisher M., Mayott L., et al. (2013b). SocialVille: a pilot feasibility study of a neuroplasticity-based computerized training program for social cognition deficits in schizophrenia, in Poster presented at the 2nd Conference of the Entertainment Software and Neurotherapeutics Society (ESCoNS 2) (Los Angeles, CA: ).
    1. Nahum M., Lee H., Merzenich M. M. (2013c). Principles of Neuroplasticity-Based Rehabilitation, in Changing Brains – Applying Brain Plasticity to Advance and Recover Human Ability, eds. Merzenich M. M., Nahum M., Van Vleet T. (Amsterdam, NL: Elsevier; ). Prog Brain Res 207, 141–171 10.1016/B978-0-444-63327-9.00009-6
    1. Nakamura S., Sakaguchi T. (1990). Development and plasticity of the locus coeruleus: a review of recent physiological and pharmaceutical experimentation. Prog. Neurbiol. 34, 505–526 10.1016/0301-0082(90)90018-C
    1. Niendam T. A., Beatden C. E., Johnson J. K., McKinley M., Loewy R., O'Brien M., et al. (2006). Neurocognitive performance and functional disability in the psychosis prodrome. Schizophr. Res. 84, 100–111 10.1016/j.schres.2006.02.005
    1. Opler L. A., Medalia A., Opler M. G., Stahl S. M. (2014). Pharmacotherapy of cognitive deficits in schizophrenia. CNS Spectr. 19, 142–156 10.1017/S1092852913000771
    1. Peers P. V., Cusack R., Duncan J. (2006). Modulation of spatial bias in the dual task paradigm: evidence from patients with unilateral parietal lesions and controls. Neuropsychologia 44, 1325–1335 10.1016/j.neuropsychologia.2006.01.033
    1. Perrine D. M. (1996). The Chemistry of Mind-Altering Drugs: History, Pharmacology, and Cultural Context. Washington, DC: American Chemical Society
    1. Popov T., Jordanov T., Rockstroh B., Elbert T., Merzenich M. M., Miller G. A. (2011). Specific cognitive training normalizes auditory sensory gating in schizophrenia: a randomized trial. Biol. Psychiatry 69, 465–471 10.1016/j.biopsych.2010.09.028
    1. Popov T., Rockstroh B., Weisz N., Elbert T., Miller G. A. (2012). Adjusting brain dynamics in schizophrenia by means of perceptual and cognitive training. PLoS ONE 7:e39051 10.1371/journal.pone.0039051
    1. Rapport M. D., Orban S. A., Kofler M. J., Friedman L. M. (2013). Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta-analytic review of cognitive, academic, and behavioral outcomes. Clin. Psychol. Rev. 33, 1237–1252 10.1016/j.cpr.2013.08.005
    1. Reisman J. M. (1991). A History of Clinical Psychology, 2nd Edn. New York, NY: Taylor and Francis
    1. Reitz C., Brayne C., Mayeux R. (2011). Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 7, 137–152 10.1038/nrneurol.2011.2
    1. Richardson R. T., DeLong M. R. (1990). Context-dependent responses of primate nucleus basalis neurons in a go/no-go task. J. Neurosci. 10, 2528–2540
    1. Robertson I. H., Manly T., Beschin N., Daini R., Haeske-Dewick H., Hömberg V., et al. (1997). Auditory sustained attention is a marker of unilateral spatial neglect. Neuropsychologia 35, 1527–1532 10.1016/S0028-3932(97)00084-5
    1. Ryan M., Martin R., Denckla M. B., Mostofsky S. H., Mahone E. (2010). Interstimulus jitter facilitates response control in children with ADHD. J. Int. Neuropsychol. Soc. 16, 388–393 10.1017/S1355617709991305
    1. Sacks S., Fisher M., Garrett C., Alexander P., Holland C., Rose D., et al. (2013). Combining computerized social cognitive training with neuroplasticity-based auditory training in schizophrenia. Clin. Schizophr. Relat. Psychoses 7, 78A–86A 10.3371/CSRP.SAFI.012513
    1. Salthouse T. (2012). Consequencs of age-related cognitive declines. Annu. Rev. Psychol. 63:201–206 10.1146/annurev-psych-120710-100328
    1. Salthouse T. A. (2000). Aging and measures of processing speed. Biol. Psychol. 54, 35–54 10.1016/S0301-0511(00)00052-1
    1. Sara S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 10.1038/nrn2573
    1. Sara S. J., Bouret S. (2012). Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron 76, 130–141 10.1016/j.neuron.2012.09.011
    1. Sara S. J., Segal M. (1991). Plasticity of sensory responses of locus coeruleus neurons in the behaving rat. Implications for cognition. Prog. Brain Res. 88, 561–585 10.1016/S0079-6123(08)63835-2
    1. Sarter M., Gehring W. J., Kozak R. (2006). More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 51, 145–160 10.1016/j.brainresrev.2005.11.002
    1. Sarter M., Givens B., Bruno J. P. (2001). The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res. Brain Res. Rev. 35, 146–160 10.1016/S0165-017(01)00044-3
    1. Schultz W. (2007). Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 10.1146/annurev.neuro.28.061604.135722
    1. Seidman L. J., Giuliano A. J., Smith C. W., Stone W. S., Glatt S. J., Meyer E., et al. (2006). Neuropsychological functioning in adolescents and young adults at genetic risk for schizophrenia and affective psychoses: results from the Harvard and Hillside adolescent high risk studies. Schizophr. Bull. 32, 507–524 10.1093/schbul/sbj078
    1. Simon A. E., Cattapan-Ludewig K., Zmilacher S., Arbach D., Gruber K., Dvorsky D. N., et al. (2007). Cognitive functioning in the schizophrenia prodrome. Schizophr. Bull. 33, 761–771 10.1093/schbul/sbm018
    1. Smith B. A., Goldberg N. R., Meshul C. K. (2011). Effects of treatmill exercise on behavioral recovery and changes in the substantia nigra and striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse. Brain Res. 1386, 60–80 10.1016/j.brainres.2011.02.003
    1. Smith G. E., Housen P., Yaffe K., Ruff R., Kennison R. F., Mahncke H. W., et al. (2009). A cognitive training program based on principles of brain plasticity: results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. J. Am. Geriatr. Soc. 57, 594–603 10.1111/j.1532-5415.2008.02167.x
    1. Steiner B., Winter C., Hosman K., Siebert E., Kemperman G., Petrus D. S., et al. (2006). Enriched environment induces cellular plasaticity in the adult substantia nigra and improves motor function in the 6-OHDA rat model of Parkinson's Disease. Exp. Neurol. 199, 291–300 10.1016/j.expneurol.2005.11.004
    1. Strenziok M., Parasuraman R., Clarke E., Cisler D. S., Thompson J. C., Greenwood P. M. (2014). Neurocognitive enhancement in older adults: comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. Neuroimage 85, 1027–1039 10.1016/j.neuroimage.2013.07.069
    1. Sturm W., de Simone A., Krause B. J., Specht K., Hesselmann V., Radermacher I., et al. (1999). Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia. 37, 797–805 10.1006/S0028-3932(98)00141-9
    1. Sturm W., Willmes K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 14(1 pt 2), S76–S84 10.1006/nimg.2001.0839
    1. Subramaniam K., Luks T. L., Fisher M., Simpson G. V., Nagarajan S., Vinogradov S. (2012). Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia. Neuron 73, 842–853 10.1016/j.neuron.2011.12.024
    1. Swain R. A., Thompson R. F. (1993). In search of engrams. Ann. N.Y. Acad. Sci. 702, 27–39 10.1111/j.1749-6632.1993.tb17240.x
    1. Thiel C. M., Zilles K., Fink G. R. (2004). Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study. Neuroimage 21, 318–328 10.1016/j.neuroimage.2003.08.044
    1. Tost H., Alam T., Meyer-Lindenberg A. (2010). Dopamine and psychosis: theory, pathomechanisms and intermediate phenotypes. Neurosci. Biobehav. Rev. 34, 689–700 10.1016/jneurobiorev2009.06.005
    1. Van Vleet T. M., DeGutis J. M. (2013). Cross-training in hemispatial neglect: auditory sustained attention training ameliorates visual attention deficits. Cortex 49, 679–690 10.1016/j.cortex.2012.03.020
    1. Van Vleet T. M., Degutis J. M. (2014). The nonspatial side of spatial neglect and related approaches to treatment. Prog. Brain Res. 207, 327–349 10.1016/B978-0-444-63327-9.00012-6
    1. Vinogradov S., Fisher M., Holland C., Shelly W., Wolkowitz O., Mellon S. H. (2009). Is serum brain-derived neurotrophic factor a biomarker for cognitive enhancement in schizophrenia? Biol. Psychiatry 66, 549–553 10.1016/j.biopsych.2009.02.017
    1. Wang X. J., Tegner J., Constantinidis C., Goldman-Rakic P. S. (2004). Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc. Natl. Acad. Sci. U.S.A. 101, 1368–1378 10.1073/pnas.0305337101
    1. Weinberg J., Diller L., Gordon W. A., Gerstman L. J., Lieberman A., Lakin P., et al. (1977). Visual scanning training effect on reading-related tasks in acquired right brain damage. Arch. Phys. Med. Rehabil. 58, 479–486
    1. Weinberger N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nat. Rev. Neurosci. 5, 279–290 10.1038/nrn1366
    1. Weinberger N. M. (2007). Associative representational plasticity in the auditory cortex: a synthesis of two disciplines. Learn. Mem. 14, 1–16 10.1101/lm.421807
    1. Winder D. G., Egli R. E., Schramm N. L., Matthews R. T. (2002). Synaptic plasticity in drug reward circuitry. Curr. Mol. Med. 2, 667–676 10.2174/1566524023361961
    1. Wodka E. L., Simmonds D. J., Mahone E. M., Mostofsky S. H. (2009). Moderate variability in stimulus presentation improves motor response control. J. Clin. Exp. Neuropsychol. 31, 483–488 10.1080/13803390802272036
    1. Wolinsky F. D., Mahncke H., Vander Weg M. W., Martin R., Unverzagt F. W., Ball K. K., et al. (2010b). Speed of processing training protects self-rated health in older adults: enduring effects observed in the multi-site ACTIVE randomized controlled trial. Int. Psychogeriatr. 22, 470–478 10.1017/S1041610209991281
    1. Wolinsky F. D., Mahncke H. W., Weg M. W., Martin R., Unverzagt F. W., Ball K. K., et al. (2009). The ACTIVE cognitive training interventions and the onset of and recovery from suspected clinical depression. J. Gerontol. B Psychol. Sci. Soc. Sci. 64, 577–585 10.1093/geronb/gbp061
    1. Wolinsky F. D., Unverzagt F. W., Smith D. M., Jones R., Stoddard A., Tenstedt S. L. (2006). The ACTIVE cognitive training trial and health-related quality of life: protection that lasts for 5 years. J. Gerontol. A Biol. Sci. Med. Sci. 61:1324 10.1093/gerona/61.12.1324
    1. Wolinsky F. D., Vander Weg M. W., Howren M. B., Jones M. P., Dotson M. M. (2013). A randomized controlled trial of cognitive training using a visual speed of processing intervention in middle aged and older adults. PLoS ONE. 8:e61624 10.1371/journal.pone.0061624
    1. Wolinsky F. D., Vander Weg M. W., Martin R., Unverzagt F. W., Willis S. L., Marsiske M., et al. (2010a). Does cognitive training improve internal locus of control among older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 65, 591–598 10.1093/geronb/gbp117
    1. Zelinski E. M., Spina L. M., Yaffe K., Ruff R., Kennison R. F., Mahncke H.W., et al. (2011). Improvement in memory with plasticity-based adaptive cognitive training: results of the 3-month follow-up. J. Am. Geriatr. Soc. 59, 258–265 10.1111/j.1532-5415.2010.03277.x
    1. Zhang H., Ozbay F., Lappalainen J., Kranzler H. R., van Dyck C. H., Charney D. S., et al. (2006). Brain derived neurotrophic factor (BDNF) gene variants and Alzheimer's disease, affective disorders, posttraumatic stress disorder, schizophrenia, and substance dependence. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141B, 387–393 10.1002/ajmg.b.30332
    1. Zhou J., Gennatas E. D., Kramer J. H., Miller B. L., Seeley W. W. (2012). Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 10.1016/j.neuron.2012.03.004
    1. Zhou X., de Villers-Sidani E., Panizzutti R., Merzenich M. M. (2010). Successive-signal biasing for a learned sound sequence. Proc. Natl. Acad. Sci. U.S.A. 107, 14839–14844 10.1073/pnas.1009433107
    1. Zhou X., Panizzutti R., de Villers-Sidani E., Madeira C., Merzenich M. M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. J. Neurosci. 31, 5625–5634 10.1523/JNEUROSCI.6470-10.2011

Source: PubMed

3
Suscribir