Gene Therapy in Retinal Dystrophies

Lucia Ziccardi, Viviana Cordeddu, Lucia Gaddini, Andrea Matteucci, Mariacristina Parravano, Fiorella Malchiodi-Albedi, Monica Varano, Lucia Ziccardi, Viviana Cordeddu, Lucia Gaddini, Andrea Matteucci, Mariacristina Parravano, Fiorella Malchiodi-Albedi, Monica Varano

Abstract

Inherited retinal dystrophies (IRDs) are a group of clinically and genetically heterogeneous degenerative disorders. To date, mutations have been associated with IRDs in over 270 disease genes, but molecular diagnosis still remains elusive in about a third of cases. The methodologic developments in genome sequencing techniques that we have witnessed in this last decade have represented a turning point not only in diagnosis and prognosis but, above all, in the identification of new therapeutic perspectives. The discovery of new disease genes and pathogenetic mechanisms underlying IRDs has laid the groundwork for gene therapy approaches. Several clinical trials are ongoing, and the recent approval of Luxturna, the first gene therapy product for Leber congenital amaurosis, marks the beginning of a new era. Due to its anatomical and functional characteristics, the retina is the organ of choice for gene therapy, although there are quite a few difficulties in the translational approaches from preclinical models to humans. In the first part of this review, an overview of the current knowledge on methodological issues and future perspectives of gene therapy applied to IRDs is discussed; in the second part, the state of the art of clinical trials on the gene therapy approach in IRDs is illustrated.

Keywords: animal models for retinal dystrophy; editing; hereditary retinal disease; human iPSC-derived retina and retinal pigment epithelium; optogenetics and splice modulation therapy; pre- and clinical gene therapy; retinal gene augmentation; retinal imaging; retinal pathology.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Retinal structure under light microscopy. The photographs highlight its histological complexity and evidence the connections between the different cell populations. (A) A section of rat retinal tissue, photographed using a differential interference contrast microscope, highlighting retinal layers. (B) Synaptophysin (Syn)-positive dots decorate the IPL, indicating the presence of synapses. In red, cellular retinaldehyde-binding protein (CRALBP)-positive Müller glia, spanning through all the retinal layers. (C) GABAergic neurons (GABA) in the inner layers of the retina. (D) A diagonal cross section reveals the rich connections between vimentin-positive Müller glia and GABAergic neuronal components. Nuclei are stained in blue with DAPI. PR OS = photoreceptors, outer segment; PR IS = photoreceptors, inner segment; GCL = ganglion cell layer; OPL = outer plexiform layer; ONL = outer nuclear layer; IPL = inner plexiform layer; INL = inner nuclear layer. Scale bar = 20 μm.

References

    1. Tsang S.H., Gouras P. Molecular physiology and pathology of the retina. In: Duane T.D., Tasman W., Jaeger A.E., editors. Duane’s Clinical Opthalmology. Lippincott-Raven; Philadelphia, PA, USA: 1996.
    1. Bringmann A., Syrbe S., Gorner K., Kacza J., Francke M., Wiedemann P., Reichenbach A. The Primate Fovea: Structure, Function and Development. Prog. Retin. Eye Res. 2018;66:49–84. doi: 10.1016/j.preteyeres.2018.03.006.
    1. Tsui I., Song B.J., Lin C.S., Tsang S.H. A Practical Approach to Retinal Dystrophies. Adv. Exp. Med. Biol. 2018;1085:245–259.
    1. Cunha-Vaz J., Bernardes R., Lobo C. Blood-Retinal Barrier. Eur. J. Ophthalmol. 2011;21:3–9. doi: 10.5301/EJO.2010.6049.
    1. Grüntzig J., Hollmann F. Lymphatic vessels of the eye-old questions—New insights. Ann. Anat. 2019;221:1–16. doi: 10.1016/j.aanat.2018.08.004.
    1. Benhar I., London A., Schwartz M. The Privileged Immunity of Immune Privileged Organs: The Case of the Eye. Front. Immunol. 2012;3:296. doi: 10.3389/fimmu.2012.00296.
    1. Slijkerman R.W., Song F., Astuti G.D., Huynen M.A., van Wijk E., Stieger K., Collin R.W. The Pros and Cons of Vertebrate Animal Models for Functional and Therapeutic Research on Inherited Retinal Dystrophies. Prog. Retin. Eye Res. 2015;48:137–159. doi: 10.1016/j.preteyeres.2015.04.004.
    1. Moore N.A., Morral N., Ciulla T.A., Bracha P. Gene Therapy for Inherited Retinal and Optic Nerve Degenerations. Expert Opin. Biol. Ther. 2018;18:37–49. doi: 10.1080/14712598.2018.1389886.
    1. Ochakovski G.A., Bartz-Schmidt K.U., Fischer M.D. Retinal Gene Therapy: Surgical Vector Delivery in the Translation to Clinical Trials. Front. Neurosci. 2017;11:174. doi: 10.3389/fnins.2017.00174.
    1. DeAngelis M.M., Owen L.A., Morrison M.A., Morgan D.J., Li M., Shakoor A., Vitale A., Iyengar S., Stambolian D., Kim I.K. Genetics of Age-Related Macular Degeneration (AMD) Hum. Mol. Genet. 2017;26:R45–R50. doi: 10.1093/hmg/ddx228.
    1. Thompson D.A., Ali R.R., Banin E., Branham K.E., Flannery J.G., Gamm D.M., Hauswirth W.W., Heckenlively J.R., Iannaccone A., Jayasundera K.T., et al. Advancing Therapeutic Strategies for Inherited Retinal Degeneration: Recommendations from the Monaciano Symposium. Investig. Ophthalmol. Vis. Sci. 2015;56:918–931. doi: 10.1167/iovs.14-16049.
    1. Cursiefen C., Cordeiro F., Cunha-Vaz J., Wheeler-Schilling T., Scholl H.P.N. EVI Steering Board. Unmet Needs in Ophthalmology: A European Vision Institute-Consensus Roadmap 2019–2025. Ophthalmic Res. 2019;62:123–133. doi: 10.1159/000501374.
    1. Sorrentino F.S., Gallenga C.E., Bonifazzi C., Perri P. A Challenge to the Striking Genotypic Heterogeneity of Retinitis Pigmentosa: A Better Understanding of the Pathophysiology using the Newest Genetic Strategies. Eye. 2016;30:1542–1548. doi: 10.1038/eye.2016.197.
    1. Broadgate S., Yu J., Downes S.M., Halford S. Unravelling the Genetics of Inherited Retinal Dystrophies: Past, Present and Future. Prog. Retin. Eye Res. 2017;59:53–96. doi: 10.1016/j.preteyeres.2017.03.003.
    1. Bainbridge J.W., Tan M.H., Ali R.R. Gene Therapy Progress and Prospects: The Eye. Gene Ther. 2006;13:1191–1197. doi: 10.1038/sj.gt.3302812.
    1. Chaum E., Hatton M.P. Gene Therapy for Genetic and Acquired Retinal Diseases. Surv. Ophthalmol. 2002;47:449–469. doi: 10.1016/S0039-6257(02)00336-3.
    1. Zeng Y., Takada Y., Kjellstrom S., Hiriyanna K., Tanikawa A., Wawrousek E., Smaoui N., Caruso R., Bush R.A., Sieving P.A. RS-1 Gene Delivery to an Adult Rs1h Knockout Mouse Model Restores ERG b-Wave with Reversal of the Electronegative Waveform of X-Linked Retinoschisis. Investig. Ophthalmol. Vis. Sci. 2004;45:3279–3285. doi: 10.1167/iovs.04-0576.
    1. Han Z., Conley S.M., Naash M.I. Gene Therapy for Stargardt Disease Associated with ABCA4 Gene. Adv. Exp. Med. Biol. 2014;801:719–724.
    1. Cashman S.M., Gracias J., Adhi M., Kumar-Singh R. Adenovirus-Mediated Delivery of Factor H Attenuates Complement C3 Induced Pathology in the Murine Retina: A Potential Gene Therapy for Age-Related Macular Degeneration. J. Gene Med. 2015;17:229–243. doi: 10.1002/jgm.2865.
    1. Matet A., Kostic C., Bemelmans A.P., Moulin A., Rosolen S.G., Martin S., Mavilio F., Amirjanians V., Stieger K., Lorenz B., et al. Evaluation of Tolerance to Lentiviral LV-RPE65 Gene Therapy Vector After Subretinal Delivery in Non-Human Primates. Transl. Res. 2017;188:40–57. doi: 10.1016/j.trsl.2017.06.012.
    1. Li T., Adamian M., Roof D.J., Berson E.L., Dryja T.P., Roessler B.J., Davidson B.L. In Vivo Transfer of a Reporter Gene to the Retina Mediated by an Adenoviral Vector. Investig. Ophthalmol. Vis. Sci. 1994;35:2543–2549.
    1. Vollrath D., Feng W., Duncan J.L., Yasumura D., D’Cruz P.M., Chappelow A., Matthes M.T., Kay M.A., LaVail M.M. Correction of the Retinal Dystrophy Phenotype of the RCS Rat by Viral Gene Transfer of Mertk. Proc. Natl. Acad. Sci. USA. 2001;98:12584–12589. doi: 10.1073/pnas.221364198.
    1. Kafri T., Morgan D., Krahl T., Sarvetnick N., Sherman L., Verma I. Cellular Immune Response to Adenoviral Vector Infected Cells does Not Require De Novo Viral Gene Expression: Implications for Gene Therapy. Proc. Natl. Acad. Sci. USA. 1998;95:11377–11382. doi: 10.1073/pnas.95.19.11377.
    1. O’Neal W.K., Zhou H., Morral N., Aguilar-Cordova E., Pestaner J., Langston C., Mull B., Wang Y., Beaudet A.L., Lee B. Toxicological Comparison of E2a-Deleted and First-Generation Adenoviral Vectors Expressing alpha1-Antitrypsin After Systemic Delivery. Hum. Gene Ther. 1998;9:1587–1598. doi: 10.1089/hum.1998.9.11-1587.
    1. Verma I.M., Weitzman M.D. Gene Therapy: Twenty-First Century Medicine. Annu. Rev. Biochem. 2005;74:711–738. doi: 10.1146/annurev.biochem.74.050304.091637.
    1. Graham F.L., Prevec L. Adenovirus-Based Expression Vectors and Recombinant Vaccines. Biotechnology. 1992;20:363–390.
    1. Prevec L., Christie B.S., Laurie K.E., Bailey M.M., Graham F.L., Rosenthal K.L. Immune Response to HIV-1 Gag Antigens Induced by Recombinant Adenovirus Vectors in Mice and Rhesus Macaque Monkeys. J. Acquir. Immune Defic. Syndr. 1991;4:568–576.
    1. Amalfitano A., Begy C.R., Chamberlain J.S. Improved Adenovirus Packaging Cell Lines to Support the Growth of Replication-Defective Gene-Delivery Vectors. Proc. Natl. Acad. Sci. USA. 1996;93:3352–3356. doi: 10.1073/pnas.93.8.3352.
    1. Wang Q., Finer M.H. Second-Generation Adenovirus Vectors. Nat. Med. 1996;2:714–716. doi: 10.1038/nm0696-714.
    1. Kochanek S., Schiedner G., Volpers C. High-Capacity ‘Gutless’ Adenoviral Vectors. Curr. Opin. Mol. Ther. 2001;3:454–463.
    1. O’Neal W.K., Zhou H., Morral N., Langston C., Parks R.J., Graham F.L., Kochanek S., Beaudet A.L. Toxicity Associated with Repeated Administration of First-Generation Adenovirus Vectors does Not Occur with a Helper-Dependent Vector. Mol. Med. 2000;6:179–195. doi: 10.1007/BF03402113.
    1. Dudley R.W., Lu Y., Gilbert R., Matecki S., Nalbantoglu J., Petrof B.J., Karpati G. Sustained Improvement of Muscle Function One Year After Full-Length Dystrophin Gene Transfer into Mdx Mice by a Gutted Helper-Dependent Adenoviral Vector. Hum. Gene Ther. 2004;15:145–156. doi: 10.1089/104303404772679959.
    1. Nomura S., Merched A., Nour E., Dieker C., Oka K., Chan L. Low-Density Lipoprotein Receptor Gene Therapy using Helper-Dependent Adenovirus Produces Long-Term Protection Against Atherosclerosis in a Mouse Model of Familial Hypercholesterolemia. Gene Ther. 2004;11:1540–1548. doi: 10.1038/sj.gt.3302310.
    1. Wen S., Graf S., Massey P.G., Dichek D.A. Improved Vascular Gene Transfer with a Helper-Dependent Adenoviral Vector. Circulation. 2004;110:1484–1491. doi: 10.1161/01.CIR.0000141574.78032.A9.
    1. Steinwaerder D.S., Carlson C.A., Lieber A. Generation of Adenovirus Vectors Devoid of all Viral Genes by Recombination between Inverted Repeats. J. Virol. 1999;73:9303–9313.
    1. Greenberg K.P., Lee E.S., Schaffer D.V., Flannery J.G. Gene Delivery to the Retina using Lentiviral Vectors. Adv. Exp. Med. Biol. 2006;572:255–266.
    1. Lu J., Sista P., Giguel F., Greenberg M., Kuritzkes D.R. Relative Replicative Fitness of Human Immunodeficiency Virus Type 1 Mutants Resistant to Enfuvirtide (T-20) J. Virol. 2004;78:4628–4637. doi: 10.1128/JVI.78.9.4628-4637.2004.
    1. Saenz D.T., Loewen N., Peretz M., Whitwam T., Barraza R., Howell K.G., Holmes J.M., Good M., Poeschla E.M. Unintegrated Lentivirus DNA Persistence and Accessibility to Expression in Nondividing Cells: Analysis with Class I Integrase Mutants. J. Virol. 2004;78:2906–2920. doi: 10.1128/JVI.78.6.2906-2920.2004.
    1. Vargas J., Jr., Gusella G.L., Najfeld V., Klotman M.E., Cara A. Novel Integrase-Defective Lentiviral Episomal Vectors for Gene Transfer. Hum. Gene Ther. 2004;15:361–372. doi: 10.1089/104303404322959515.
    1. Yanez-Munoz R.J., Balaggan K.S., MacNeil A., Howe S.J., Schmidt M., Smith A.J., Buch P., MacLaren R.E., Anderson P.N., Barker S.E., et al. Effective Gene Therapy with Nonintegrating Lentiviral Vectors. Nat. Med. 2006;12:348–353. doi: 10.1038/nm1365.
    1. Cashman S.M., Sadowski S.L., Morris D.J., Frederick J., Kumar-Singh R. Intercellular Trafficking of Adenovirus-Delivered HSV VP22 from the Retinal Pigment Epithelium to the Photoreceptors—Implications for Gene Therapy. Mol. Ther. 2002;6:813–823. doi: 10.1006/mthe.2002.0806.
    1. Van Adel B.A., Kostic C., Deglon N., Ball A.K., Arsenijevic Y. Delivery of Ciliary Neurotrophic Factor Via Lentiviral-Mediated Transfer Protects Axotomized Retinal Ganglion Cells for an Extended Period of Time. Hum. Gene Ther. 2003;14:103–115. doi: 10.1089/104303403321070801.
    1. Bennicelli J., Wright J.F., Komaromy A., Jacobs J.B., Hauck B., Zelenaia O., Mingozzi F., Hui D., Chung D., Rex T.S., et al. Reversal of Blindness in Animal Models of Leber Congenital Amaurosis using Optimized AAV2-Mediated Gene Transfer. Mol. Ther. 2008;16:458–465. doi: 10.1038/sj.mt.6300389.
    1. Li X., Li W., Dai X., Kong F., Zheng Q., Zhou X., Lü F., Chang B., Rohrer B., Hauswirth W.W., et al. Gene therapy rescues cone structure and function in the 3-month-old rd12 mouse: a model for midcourse RPE65 leber congenital amaurosis. Investig. Ophthalmol. Vis. Sci. 2011;52:7–15. doi: 10.1167/iovs.10-6138.
    1. Pang J.J., Chang B., Kumar A., Nusinowitz S., Noorwez S.M., Li J., Rani A., Foster T.C., Chiodo V.A., Doyle T., et al. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol. Ther. 2006;13:565–572. doi: 10.1016/j.ymthe.2005.09.001.
    1. Albright C. Discovery of EDIT-101 for the Treatment of Leber’s Congenital Amaurosis Type 10. [(accessed on 25 September 2019)]; Available online: .
    1. Maeder M.L., Stefanidakis M., Wilson C.J., Baral R., Barrera L.A., Bounoutas G.S., Bumcrot D., Chao H., Ciulla D.M., DaSilva J.A., et al. Development of a Gene-Editing Approach to Restore Vision Loss in Leber Congenital Amaurosis Type 10. Nat. Med. 2019;25:229–233. doi: 10.1038/s41591-018-0327-9.
    1. Dulla K., Aguila M., Lane A., Jovanovic K., Parfitt D.A., Schulkens I., Chan H.L., Schmidt I., Beumer W., Vorthoren L., et al. Splice-Modulating Oligonucleotide QR-110 Restores CEP290 mRNA and Function in Human c. 2991 + 1655A > G LCA10 Models. Mol. Ther. Nucleic Acids. 2018;12:730–740. doi: 10.1016/j.omtn.2018.07.010.
    1. Vasireddy V., Mills J.A., Gaddameedi R., Basner-Tschakarjan E., Kohnke M., Black A.D., Alexandrov K., Zhou S., Maguire A.M., Chung D.C., et al. AAV-Mediated Gene Therapy for Choroideremia: Preclinical Studies in Personalized Models. PLoS ONE. 2013;8:e61396. doi: 10.1371/journal.pone.0061396.
    1. Moosajee M., Tracey-White D., Smart M., Weetall M., Torriano S., Kalatzis V., da Cruz L., Coffey P., Webster A.R., Welch E. Functional Rescue of REP1 Following Treatment with PTC124 and Novel Derivative PTC-414 in Human Choroideremia Fibroblasts and the Nonsense-Mediated Zebrafish Model. Hum. Mol. Genet. 2016;25:3416–3431. doi: 10.1093/hmg/ddw184.
    1. Moosajee M., Tulloch M., Baron R.A., Gregory-Evans C.Y., Pereira-Leal J.B., Seabra M.C. Single Choroideremia Gene in Nonmammalian Vertebrates Explains Early Embryonic Lethality of the Zebrafish Model of Choroideremia. Investig. Ophthalmol. Vis. Sci. 2009;50:3009–3016. doi: 10.1167/iovs.08-2755.
    1. Bitoque D.B., Silva G.A. Molecular Biology Tools for the Study and Therapy of PDE6beta Mutations. J. Biotechnol. 2018;284:1–5. doi: 10.1016/j.jbiotec.2018.07.030.
    1. Beltran W.A., Cideciyan A.V., Lewin A.S., Iwabe S., Khanna H., Sumaroka A., Chiodo V.A., Fajardo D.S., Roman A.J., Deng W.T., et al. Gene Therapy Rescues Photoreceptor Blindness in Dogs and Paves the Way for Treating Human X-Linked Retinitis Pigmentosa. Proc. Natl. Acad. Sci. USA. 2012;109:2132–2137. doi: 10.1073/pnas.1118847109.
    1. Smith A.J., Schlichtenbrede F.C., Tschernutter M., Bainbridge J.W., Thrasher A.J., Ali R.R. AAV-Mediated Gene Transfer Slows Photoreceptor Loss in the RCS Rat Model of Retinitis Pigmentosa. Mol. Ther. 2003;8:188–195. doi: 10.1016/S1525-0016(03)00144-8.
    1. Deng W.T., Dinculescu A., Li Q., Boye S.L., Li J., Gorbatyuk M.S., Pang J., Chiodo V.A., Matthes M.T., Yasumura D., et al. Tyrosine-Mutant AAV8 Delivery of Human MERTK Provides Long-Term Retinal Preservation in RCS Rats. Investig. Ophthalmol. Vis. Sci. 2012;53:1895–1904. doi: 10.1167/iovs.11-8831.
    1. Zallocchi M., Binley K., Lad Y., Ellis S., Widdowson P., Iqball S., Scripps V., Kelleher M., Loader J., Miskin J., et al. EIAV-Based Retinal Gene Therapy in the shaker1 Mouse Model for Usher Syndrome Type 1B: Development of UshStat. PLoS ONE. 2014;9:e94272. doi: 10.1371/journal.pone.0094272.
    1. Kong J., Kim S.R., Binley K., Pata I., Doi K., Mannik J., Zernant-Rajang J., Kan O., Iqball S., Naylor S., et al. Correction of the Disease Phenotype in the Mouse Model of Stargardt Disease by Lentiviral Gene Therapy. Gene Ther. 2008;15:1311–1320. doi: 10.1038/gt.2008.78.
    1. Hassall M.M., Barnard A.R., MacLaren R.E. Gene Therapy for Color Blindness. Yale J. Biol. Med. 2017;90:543–551.
    1. Bush R.A., Zeng Y., Colosi P., Kjellstrom S., Hiriyanna S., Vijayasarathy C., Santos M., Li J., Wu Z., Sieving P.A. Preclinical Dose-Escalation Study of Intravitreal AAV-RS1 Gene Therapy in a Mouse Model of X-Linked Retinoschisis: Dose-Dependent Expression and Improved Retinal Structure and Function. Hum. Gene Ther. 2016;27:376–389. doi: 10.1089/hum.2015.142.
    1. Janssen A., Min S.H., Molday L.L., Tanimoto N., Seeliger M.W., Hauswirth W.W., Molday R.S., Weber B.H. Effect of Late-Stage Therapy on Disease Progression in AAV-Mediated Rescue of Photoreceptor Cells in the Retinoschisin-Deficient Mouse. Mol. Ther. 2008;16:1010–1017. doi: 10.1038/mt.2008.57.
    1. Marangoni D., Bush R.A., Zeng Y., Wei L.L., Ziccardi L., Vijayasarathy C., Bartoe J.T., Palyada K., Santos M., Hiriyanna S., et al. Ocular and Systemic Safety of a Recombinant AAV8 Vector for X-Linked Retinoschisis Gene Therapy: GLP Studies in Rabbits and Rs1-KO Mice. Mol. Ther. Methods Clin. Dev. 2016;5:16011. doi: 10.1038/mtm.2016.11.
    1. Trapani I. Adeno-Associated Viral Vectors as a Tool for Large Gene Delivery to the Retina. Genes. 2019;10 doi: 10.3390/genes10040287.
    1. Surace E.M., Auricchio A. Versatility of AAV Vectors for Retinal Gene Transfer. Vis. Res. 2008;48:353–359. doi: 10.1016/j.visres.2007.07.027.
    1. Wu Z., Asokan A., Samulski R.J. Adeno-Associated Virus Serotypes: Vector Toolkit for Human Gene Therapy. Mol. Ther. 2006;14:316–327. doi: 10.1016/j.ymthe.2006.05.009.
    1. Gao G., Vandenberghe L.H., Alvira M.R., Lu Y., Calcedo R., Zhou X., Wilson J.M. Clades of Adeno-Associated Viruses are Widely Disseminated in Human Tissues. J. Virol. 2004;78:6381–6388. doi: 10.1128/JVI.78.12.6381-6388.2004.
    1. Gao G.P., Alvira M.R., Wang L., Calcedo R., Johnston J., Wilson J.M. Novel Adeno-Associated Viruses from Rhesus Monkeys as Vectors for Human Gene Therapy. Proc. Natl. Acad. Sci. USA. 2002;99:11854–11859. doi: 10.1073/pnas.182412299.
    1. Mori S., Wang L., Takeuchi T., Kanda T. Two Novel Adeno-Associated Viruses from Cynomolgus Monkey: Pseudotyping Characterization of Capsid Protein. Virology. 2004;330:375–383. doi: 10.1016/j.virol.2004.10.012.
    1. Schmidt M., Grot E., Cervenka P., Wainer S., Buck C., Chiorini J.A. Identification and Characterization of Novel Adeno-Associated Virus Isolates in ATCC Virus Stocks. J. Virol. 2006;80:5082–5085. doi: 10.1128/JVI.80.10.5082-5085.2006.
    1. Ferrari F.K., Samulski T., Shenk T., Samulski R.J. Second-Strand Synthesis is a Rate-Limiting Step for Efficient Transduction by Recombinant Adeno-Associated Virus Vectors. J. Virol. 1996;70:3227–3234.
    1. Fisher K.J., Gao G.P., Weitzman M.D., DeMatteo R., Burda J.F., Wilson J.M. Transduction with Recombinant Adeno-Associated Virus for Gene Therapy is Limited by Leading-Strand Synthesis. J. Virol. 1996;70:520–532.
    1. Thomas C.E., Storm T.A., Huang Z., Kay M.A. Rapid Uncoating of Vector Genomes is the Key to Efficient Liver Transduction with Pseudotyped Adeno-Associated Virus Vectors. J. Virol. 2004;78:3110–3122. doi: 10.1128/JVI.78.6.3110-3122.2004.
    1. Bowles D.E., Rabinowitz J.E., Samulski R.J. Marker Rescue of Adeno-Associated Virus (AAV) Capsid Mutants: A Novel Approach for Chimeric AAV Production. J. Virol. 2003;77:423–432. doi: 10.1128/JVI.77.1.423-432.2003.
    1. Gigout L., Rebollo P., Clement N., Warrington K.H., Jr., Muzyczka N., Linden R.M., Weber T. Altering AAV Tropism with Mosaic Viral Capsids. Mol. Ther. 2005;11:856–865. doi: 10.1016/j.ymthe.2005.03.005.
    1. Hauck B., Chen L., Xiao W. Generation and Characterization of Chimeric Recombinant AAV Vectors. Mol. Ther. 2003;7:419–425. doi: 10.1016/S1525-0016(03)00012-1.
    1. Maheshri N., Koerber J.T., Kaspar B.K., Schaffer D.V. Directed Evolution of Adeno-Associated Virus Yields Enhanced Gene Delivery Vectors. Nat. Biotechnol. 2006;24:198–204. doi: 10.1038/nbt1182.
    1. Muller O.J., Kaul F., Weitzman M.D., Pasqualini R., Arap W., Kleinschmidt J.A., Trepel M. Random Peptide Libraries Displayed on Adeno-Associated Virus to Select for Targeted Gene Therapy Vectors. Nat. Biotechnol. 2003;21:1040–1046. doi: 10.1038/nbt856.
    1. Muzyczka N., Warrington K.H., Jr. Custom Adeno-Associated Virus Capsids: The Next Generation of Recombinant Vectors with Novel Tropism. Hum. Gene Ther. 2005;16:408–416. doi: 10.1089/hum.2005.16.408.
    1. Perabo L., Endell J., King S., Lux K., Goldnau D., Hallek M., Buning H. Combinatorial Engineering of a Gene Therapy Vector: Directed Evolution of Adeno-Associated Virus. J. Gene Med. 2006;8:155–162. doi: 10.1002/jgm.849.
    1. Rabinowitz J.E., Bowles D.E., Faust S.M., Ledford J.G., Cunningham S.E., Samulski R.J. Cross-Dressing the Virion: The Transcapsidation of Adeno-Associated Virus Serotypes Functionally Defines Subgroups. J. Virol. 2004;78:4421–4432. doi: 10.1128/JVI.78.9.4421-4432.2004.
    1. Ali R.R., Sarra G.M., Stephens C., Alwis M.D., Bainbridge J.W., Munro P.M., Fauser S., Reichel M.B., Kinnon C., Hunt D.M., et al. Restoration of Photoreceptor Ultrastructure and Function in Retinal Degeneration Slow Mice by Gene Therapy. Nat. Genet. 2000;25:306–310. doi: 10.1038/77068.
    1. Auricchio A., Behling K.C., Maguire A.M., O’Connor E.M., Bennett J., Wilson J.M., Tolentino M.J. Inhibition of Retinal Neovascularization by Intraocular Viral-Mediated Delivery of Anti-Angiogenic Agents. Mol. Ther. 2002;6:490–494. doi: 10.1006/mthe.2002.0702.
    1. Bainbridge J.W., Mistry A., De Alwis M., Paleolog E., Baker A., Thrasher A.J., Ali R.R. Inhibition of Retinal Neovascularisation by Gene Transfer of Soluble VEGF Receptor sFlt-1. Gene Ther. 2002;9:320–326. doi: 10.1038/sj.gt.3301680.
    1. Bainbridge J.W., Smith A.J., Barker S.S., Robbie S., Henderson R., Balaggan K., Viswanathan A., Holder G.E., Stockman A., Tyler N., et al. Effect of Gene Therapy on Visual Function in Leber’s Congenital Amaurosis. N. Engl. J. Med. 2008;358:2231–2239. doi: 10.1056/NEJMoa0802268.
    1. Broderick C.A., Smith A.J., Balaggan K.S., Georgiadis A., Buch P.K., Trittibach P.C., Barker S.E., Sarra G.M., Thrasher A.J., Dick A.D., et al. Local Administration of an Adeno-Associated Viral Vector Expressing IL-10 Reduces Monocyte Infiltration and Subsequent Photoreceptor Damage during Experimental Autoimmune Uveitis. Mol. Ther. 2005;12:369–373. doi: 10.1016/j.ymthe.2005.03.018.
    1. Lai L., Lin K., Foulks G., Ma L., Xiao X., Chen K. Highly Efficient Ex Vivo Gene Delivery into Human Corneal Endothelial Cells by Recombinant Adeno-Associated Virus. Curr. Eye Res. 2005;30:213–219. doi: 10.1080/02713680590927515.
    1. Lai L.J., Xiao X., Wu J.H. Inhibition of Corneal Neovascularization with Endostatin Delivered by Adeno-Associated Viral (AAV) Vector in a Mouse Corneal Injury Model. J. Biomed. Sci. 2007;14:313–322. doi: 10.1007/s11373-007-9153-7.
    1. Mori K., Gehlbach P., Yamamoto S., Duh E., Zack D.J., Li Q., Berns K.I., Raisler B.J., Hauswirth W.W., Campochiaro P.A. AAV-Mediated Gene Transfer of Pigment Epithelium-Derived Factor Inhibits Choroidal Neovascularization. Investig. Ophthalmol. Vis. Sci. 2002;43:1994–2000.
    1. Pawlyk B.S., Smith A.J., Buch P.K., Adamian M., Hong D.H., Sandberg M.A., Ali R.R., Li T. Gene Replacement Therapy Rescues Photoreceptor Degeneration in a Murine Model of Leber Congenital Amaurosis Lacking RPGRIP. Investig. Ophthalmol. Vis. Sci. 2005;46:3039–3045. doi: 10.1167/iovs.05-0371.
    1. Raisler B.J., Berns K.I., Grant M.B., Beliaev D., Hauswirth W.W. Adeno-Associated Virus Type-2 Expression of Pigmented Epithelium-Derived Factor Or Kringles 1–3 of Angiostatin Reduce Retinal Neovascularization. Proc. Natl. Acad. Sci. USA. 2002;99:8909–8914. doi: 10.1073/pnas.122247299.
    1. Renwick J., Narang M.A., Coupland S.G., Xuan J.Y., Baker A.N., Brousseau J., Petrin D., Munger R., Leonard B.C., Hauswirth W.W., et al. XIAP-Mediated Neuroprotection in Retinal Ischemia. Gene Ther. 2006;13:339–347. doi: 10.1038/sj.gt.3302683.
    1. Tan M.H., Smith A.J., Pawlyk B., Xu X., Liu X., Bainbridge J.B., Basche M., McIntosh J., Tran H.V., Nathwani A., et al. Gene Therapy for Retinitis Pigmentosa and Leber Congenital Amaurosis Caused by Defects in AIPL1: Effective Rescue of Mouse Models of Partial and Complete Aipl1 Deficiency using AAV2/2 and AAV2/8 Vectors. Hum. Mol. Genet. 2009;18:2099–2114. doi: 10.1093/hmg/ddp133.
    1. Zhou Y., Pernet V., Hauswirth W.W., Di Polo A. Activation of the Extracellular Signal-Regulated Kinase 1/2 Pathway by AAV Gene Transfer Protects Retinal Ganglion Cells in Glaucoma. Mol. Ther. 2005;12:402–412. doi: 10.1016/j.ymthe.2005.04.004.
    1. Cai X., Conley S.M., Naash M.I. RPE65: Role in the Visual Cycle, Human Retinal Disease, and Gene Therapy. Ophthalmic Genet. 2009;30:57–62. doi: 10.1080/13816810802626399.
    1. Conley S.M., Cai X., Naash M.I. Nonviral Ocular Gene Therapy: Assessment and Future Directions. Curr. Opin. Mol. Ther. 2008;10:456–463.
    1. Prud’homme G.J., Glinka Y., Khan A.S., Draghia-Akli R. Electroporation-Enhanced Nonviral Gene Transfer for the Prevention Or Treatment of Immunological, Endocrine and Neoplastic Diseases. Curr. Gene Ther. 2006;6:243–273. doi: 10.2174/156652306776359504.
    1. Dezawa M., Takano M., Negishi H., Mo X., Oshitari T., Sawada H. Gene Transfer into Retinal Ganglion Cells by in Vivo Electroporation: A New Approach. Micron. 2002;33:1–6. doi: 10.1016/S0968-4328(01)00002-6.
    1. Matsuda T., Cepko C.L. Electroporation and RNA Interference in the Rodent Retina in Vivo and in Vitro. Proc. Natl. Acad. Sci. USA. 2004;101:16–22. doi: 10.1073/pnas.2235688100.
    1. Foroozandeh P., Aziz A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018;13:339. doi: 10.1186/s11671-018-2728-6.
    1. Trigueros S., Domenech E.B., Toulis V., Marfany G. In Vitro Gene Delivery in Retinal Pigment Epithelium Cells by Plasmid DNA-Wrapped Gold Nanoparticles. Genes. 2019;10 doi: 10.3390/genes10040289.
    1. Zhang X. Gold Nanoparticles: Recent Advances in the Biomedical Applications. Cell Biochem. Biophys. 2015;72:771–775. doi: 10.1007/s12013-015-0529-4.
    1. Azzam T., Domb A.J. Current Developments in Gene Transfection Agents. Curr. Drug Deliv. 2004;1:165–193. doi: 10.2174/1567201043479902.
    1. Glover D.J., Lipps H.J., Jans D.A. Towards Safe, Non-Viral Therapeutic Gene Expression in Humans. Nat. Rev. Genet. 2005;6:299–310. doi: 10.1038/nrg1577.
    1. Peeters L., Sanders N.N., Braeckmans K., Boussery K., Van de Voorde J., De Smedt S.C., Demeester J. Vitreous: A Barrier to Nonviral Ocular Gene Therapy. Investig. Ophthalmol. Vis. Sci. 2005;46:3553–3561. doi: 10.1167/iovs.05-0165.
    1. D’Cruz P.M., Yasumura D., Weir J., Matthes M.T., Abderrahim H., LaVail M.M., Vollrath D. Mutation of the Receptor Tyrosine Kinase Gene Mertk in the Retinal Dystrophic RCS Rat. Hum. Mol. Genet. 2000;9:645–651. doi: 10.1093/hmg/9.4.645.
    1. Tschernutter M., Schlichtenbrede F.C., Howe S., Balaggan K.S., Munro P.M., Bainbridge J.W., Thrasher A.J., Smith A.J., Ali R.R. Long-Term Preservation of Retinal Function in the RCS Rat Model of Retinitis Pigmentosa Following Lentivirus-Mediated Gene Therapy. Gene Ther. 2005;12:694–701. doi: 10.1038/sj.gt.3302460.
    1. Batten M.L., Imanishi Y., Tu D.C., Doan T., Zhu L., Pang J., Glushakova L., Moise A.R., Baehr W., Van Gelder R.N., et al. Pharmacological and rAAV Gene Therapy Rescue of Visual Functions in a Blind Mouse Model of Leber Congenital Amaurosis. PLoS Med. 2005;2:e333. doi: 10.1371/journal.pmed.0020333.
    1. Lai C.M., Yu M.J., Brankov M., Barnett N.L., Zhou X., Redmond T.M., Narfstrom K., Rakoczy P.E. Recombinant Adeno-Associated Virus Type 2-Mediated Gene Delivery into the Rpe65 (-/-) Knockout Mouse Eye Results in Limited Rescue. Genet. Vaccines Ther. 2004;2:3. doi: 10.1186/1479-0556-2-3.
    1. Koenekoop R.K. The Gene for Stargardt Disease, ABCA4, is a Major Retinal Gene: A Mini-Review. Ophthalmic Genet. 2003;24:75–80. doi: 10.1076/opge.24.2.75.13996.
    1. Allocca M., Doria M., Petrillo M., Colella P., Garcia-Hoyos M., Gibbs D., Kim S.R., Maguire A., Rex T.S., Di Vicino U., et al. Serotype-Dependent Packaging of Large Genes in Adeno-Associated Viral Vectors Results in Effective Gene Delivery in Mice. J. Clin. Investig. 2008;118:1955–1964. doi: 10.1172/JCI34316.
    1. Liang Y., Fotiadis D., Maeda T., Maeda A., Modzelewska A., Filipek S., Saperstein D.A., Engel A., Palczewski K. Rhodopsin Signaling and Organization in Heterozygote Rhodopsin Knockout Mice. J. Biol. Chem. 2004;279:48189–48196. doi: 10.1074/jbc.M408362200.
    1. Farrar G.J., Kenna P.F., Humphries P. On the Genetics of Retinitis Pigmentosa and on Mutation-Independent Approaches to Therapeutic Intervention. EMBO J. 2002;21:857–864. doi: 10.1093/emboj/21.5.857.
    1. Birikh K.R., Heaton P.A., Eckstein F. The Structure, Function and Application of the Hammerhead Ribozyme. Eur. J. Biochem. 1997;245:1–16. doi: 10.1111/j.1432-1033.1997.t01-3-00001.x.
    1. Lilley D.M. Folding and Catalysis by the Hairpin Ribozyme. FEBS Lett. 1999;452:26–30. doi: 10.1016/S0014-5793(99)00544-X.
    1. Drenser K.A., Timmers A.M., Hauswirth W.W., Lewin A.S. Ribozyme-Targeted Destruction of RNA Associated with Autosomal-Dominant Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 1998;39:681–689.
    1. Lewin A.S., Drenser K.A., Hauswirth W.W., Nishikawa S., Yasumura D., Flannery J.G., LaVail M.M. Ribozyme Rescue of Photoreceptor Cells in a Transgenic Rat Model of Autosomal Dominant Retinitis Pigmentosa. Nat. Med. 1998;4:967–971. doi: 10.1038/nm0898-967.
    1. O’Neill B., Millington-Ward S., O’Reilly M., Tuohy G., Kiang A.S., Kenna P.F., Humphries P., Farrar G.J. Ribozyme-Based Therapeutic Approaches for Autosomal Dominant Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2000;41:2863–2869.
    1. Sullivan J.M., Pietras K.M., Shin B.J., Misasi J.N. Hammerhead Ribozymes Designed to Cleave all Human Rod Opsin mRNAs which Cause Autosomal Dominant Retinitis Pigmentosa. Mol. Vis. 2002;8:102–113.
    1. Gorbatyuk M.S., Pang J.J., Thomas J., Jr., Hauswirth W.W., Lewin A.S. Knockdown of Wild-Type Mouse Rhodopsin using an AAV Vectored Ribozyme as Part of an RNA Replacement Approach. Mol. Vis. 2005;11:648–656.
    1. Gorbatyuk M., Justilien V., Liu J., Hauswirth W.W., Lewin A.S. Preservation of Photoreceptor Morphology and Function in P23H Rats using an Allele Independent Ribozyme. Exp. Eye Res. 2007;84:44–52. doi: 10.1016/j.exer.2006.08.014.
    1. O’Reilly M., Palfi A., Chadderton N., Millington-Ward S., Ader M., Cronin T., Tuohy T., Auricchio A., Hildinger M., Tivnan A., et al. RNA Interference-Mediated Suppression and Replacement of Human Rhodopsin in Vivo. Am. J. Hum. Genet. 2007;81:127–135. doi: 10.1086/519025.
    1. Ketting R.F., Fischer S.E., Bernstein E., Sijen T., Hannon G.J., Plasterk R.H. Dicer Functions in RNA Interference and in Synthesis of Small RNA Involved in Developmental Timing in C. Elegans. Genes Dev. 2001;15:2654–2659. doi: 10.1101/gad.927801.
    1. Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mammalian Cells. Nature. 2001;411:494–498. doi: 10.1038/35078107.
    1. Elbashir S.M., Lendeckel W., Tuschl T. RNA Interference is Mediated by 21- and 22-Nucleotide RNAs. Genes Dev. 2001;15:188–200. doi: 10.1101/gad.862301.
    1. Tolentino M.J., Brucker A.J., Fosnot J., Ying G.S., Wu I.H., Malik G., Wan S., Reich S.J. Intravitreal Injection of Vascular Endothelial Growth Factor Small Interfering RNA Inhibits Growth and Leakage in a Nonhuman Primate, Laser-Induced Model of Choroidal Neovascularization. Retina. 2004;24:660. doi: 10.1097/00006982-200408000-00039.
    1. Beverly M., Hartsough K., Machemer L., Pavco P., Lockridge J. Liquid Chromatography Electrospray Ionization Mass Spectrometry Analysis of the Ocular Metabolites from a Short Interfering RNA Duplex. J. Chromatogr. B. 2006;835:62–70. doi: 10.1016/j.jchromb.2006.03.008.
    1. Kurz D., Ciulla T.A. Novel Approaches for Retinal Drug Delivery. Ophthalmol. Clin. North. Am. 2002;15:405–410. doi: 10.1016/S0896-1549(02)00034-2.
    1. Pitkanen L., Ruponen M., Nieminen J., Urtti A. Vitreous is a Barrier in Nonviral Gene Transfer by Cationic Lipids and Polymers. Pharm. Res. 2003;20:576–583. doi: 10.1023/A:1023238530504.
    1. Peeters L., Sanders N.N., Demeester J., De Smedt S.C. Challenges in Non-Viral Ocular Gene Transfer. Biochem. Soc. Trans. 2007;35:47–49. doi: 10.1042/BST0350047.
    1. Deshpande M.C., Davies M.C., Garnett M.C., Williams P.M., Armitage D., Bailey L., Vamvakaki M., Armes S.P., Stolnik S. The Effect of Poly (Ethylene Glycol) Molecular Architecture on Cellular Interaction and Uptake of DNA Complexes. J. Control. Release. 2004;97:143–156. doi: 10.1016/j.jconrel.2004.02.019.
    1. Shi F., Wasungu L., Nomden A., Stuart M.C., Polushkin E., Engberts J.B., Hoekstra D. Interference of Poly(Ethylene Glycol)-Lipid Analogues with Cationic-Lipid-Mediated Delivery of Oligonucleotides; Role of Lipid Exchangeability and Non-Lamellar Transitions. Biochem. J. 2002;366:333–341. doi: 10.1042/bj20020590.
    1. Song L.Y., Ahkong Q.F., Rong Q., Wang Z., Ansell S., Hope M.J., Mui B. Characterization of the Inhibitory Effect of PEG-Lipid Conjugates on the Intracellular Delivery of Plasmid and Antisense DNA Mediated by Cationic Lipid Liposomes. Biochim. Biophys. Acta. 2002;1558:1–13. doi: 10.1016/S0005-2736(01)00399-6.
    1. Turchinovich A., Zoidl G., Dermietzel R. Non-Viral siRNA Delivery into the Mouse Retina in Vivo. BMC Ophthalmol. 2010;10:25. doi: 10.1186/1471-2415-10-25.
    1. Hernan I., Gamundi M.J., Planas E., Borras E., Maseras M., Carballo M. Cellular Expression and siRNA-Mediated Interference of Rhodopsin Cis-Acting Splicing Mutants Associated with Autosomal Dominant Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2011;52:3723–3729. doi: 10.1167/iovs.10-6933.
    1. Tessitore A., Parisi F., Denti M.A., Allocca M., Di Vicino U., Domenici L., Bozzoni I., Auricchio A. Preferential Silencing of a Common Dominant Rhodopsin Mutation does Not Inhibit Retinal Degeneration in a Transgenic Model. Mol. Ther. 2006;14:692–699. doi: 10.1016/j.ymthe.2006.07.008.
    1. Cashman S.M., Binkley E.A., Kumar-Singh R. Towards Mutation-Independent Silencing of Genes Involved in Retinal Degeneration by RNA Interference. Gene Ther. 2005;12:1223–1228. doi: 10.1038/sj.gt.3302512.
    1. Kiang A.S., Palfi A., Ader M., Kenna P.F., Millington-Ward S., Clark G., Kennan A., O’reilly M., Tam L.C., Aherne A., et al. Toward a Gene Therapy for Dominant Disease: Validation of an RNA Interference-Based Mutation-Independent Approach. Mol. Ther. 2005;12:555–561. doi: 10.1016/j.ymthe.2005.03.028.
    1. Mao H., Gorbatyuk M.S., Rossmiller B., Hauswirth W.W., Lewin A.S. Long-Term Rescue of Retinal Structure and Function by Rhodopsin RNA Replacement with a Single Adeno-Associated Viral Vector in P23H RHO Transgenic Mice. Hum. Gene Ther. 2012;23:356–366. doi: 10.1089/hum.2011.213.
    1. Palfi A., Ader M., Kiang A.S., Millington-Ward S., Clark G., O’Reilly M., McMahon H.P., Kenna P.F., Humphries P., Farrar G.J. RNAi-Based Suppression and Replacement of Rds-Peripherin in Retinal Organotypic Culture. Hum. Mutat. 2006;27:260–268. doi: 10.1002/humu.20287.
    1. Petrs-Silva H., Yasumura D., Matthes M.T., LaVail M.M., Lewin A.S., Hauswirth W.W. Suppression of Rds Expression by siRNA and Gene Replacement Strategies for Gene Therapy using rAAV Vector. Adv. Exp. Med. Biol. 2012;723:215–223.
    1. Rowe-Rendleman C.L., Durazo S.A., Kompella U.B., Rittenhouse K.D., Di Polo A., Weiner A.L., Grossniklaus H.E., Naash M.I., Lewin A.S., Horsager A., et al. Drug and Gene Delivery to the Back of the Eye: From Bench to Bedside. Investig. Ophthalmol. Vis. Sci. 2014;55:2714–2730. doi: 10.1167/iovs.13-13707.
    1. Gerard X., Perrault I., Munnich A., Kaplan J., Rozet J.M. Intravitreal Injection of Splice-Switching Oligonucleotides to Manipulate Splicing in Retinal Cells. Mol. Ther. Nucleic Acids. 2015;4:e250. doi: 10.1038/mtna.2015.24.
    1. Murray S.F., Jazayeri A., Matthes M.T., Yasumura D., Yang H., Peralta R., Watt A., Freier S., Hung G., Adamson P.S., et al. Allele-Specific Inhibition of Rhodopsin with an Antisense Oligonucleotide Slows Photoreceptor Cell Degeneration. Investig. Ophthalmol. Vis. Sci. 2015;56:6362–6375. doi: 10.1167/iovs.15-16400.
    1. Garanto A., Chung D.C., Duijkers L., Corral-Serrano J.C., Messchaert M., Xiao R., Bennett J., Vandenberghe L.H., Collin R.W. In Vitro and in Vivo Rescue of Aberrant Splicing in CEP290-Associated LCA by Antisense Oligonucleotide Delivery. Hum. Mol. Genet. 2016;25:2552–2563.
    1. Ran F.A., Hsu P.D., Lin C.Y., Gootenberg J.S., Konermann S., Trevino A.E., Scott D.A., Inoue A., Matoba S., Zhang Y., et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell. 2013;154:1380–1389. doi: 10.1016/j.cell.2013.08.021.
    1. Komor A.C., Badran A.H., Liu D.R. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. 2017;169:559. doi: 10.1016/j.cell.2017.04.005.
    1. Nelson C.E., Hakim C.H., Ousterout D.G., Thakore P.I., Moreb E.A., Castellanos Rivera R.M., Madhavan S., Pan X., Ran F.A., Yan W.X., et al. In Vivo Genome Editing Improves Muscle Function in a Mouse Model of Duchenne Muscular Dystrophy. Science. 2016;351:403–407. doi: 10.1126/science.aad5143.
    1. Yin H., Xue W., Chen S., Bogorad R.L., Benedetti E., Grompe M., Koteliansky V., Sharp P.A., Jacks T., Anderson D.G. Genome Editing with Cas9 in Adult Mice Corrects a Disease Mutation and Phenotype. Nat. Biotechnol. 2014;32:551–553. doi: 10.1038/nbt.2884.
    1. Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R. One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell. 2013;153:910–918. doi: 10.1016/j.cell.2013.04.025.
    1. Ousterout D.G., Perez-Pinera P., Thakore P.I., Kabadi A.M., Brown M.T., Qin X., Fedrigo O., Mouly V., Tremblay J.P., Gersbach C.A. Reading Frame Correction by Targeted Genome Editing Restores Dystrophin Expression in Cells from Duchenne Muscular Dystrophy Patients. Mol. Ther. 2013;21:1718–1726. doi: 10.1038/mt.2013.111.
    1. Suzuki K., Tsunekawa Y., Hernandez-Benitez R., Wu J., Zhu J., Kim E.J., Hatanaka F., Yamamoto M., Araoka T., Li Z., et al. In Vivo Genome Editing Via CRISPR/Cas9 Mediated Homology-Independent Targeted Integration. Nature. 2016;540:144–149. doi: 10.1038/nature20565.
    1. Wu W.H., Tsai Y.T., Justus S., Lee T.T., Zhang L., Lin C.S., Bassuk A.G., Mahajan V.B., Tsang S.H. CRISPR Repair Reveals Causative Mutation in a Preclinical Model of Retinitis Pigmentosa. Mol. Ther. 2016;24:1388–1394. doi: 10.1038/mt.2016.107.
    1. Yang H., Wang H., Shivalila C.S., Cheng A.W., Shi L., Jaenisch R. One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering. Cell. 2013;154:1370–1379. doi: 10.1016/j.cell.2013.08.022.
    1. Wu Y., Liang D., Wang Y., Bai M., Tang W., Bao S., Yan Z., Li D., Li J. Correction of a Genetic Disease in Mouse Via use of CRISPR-Cas9. Cell Stem Cell. 2013;13:659–662. doi: 10.1016/j.stem.2013.10.016.
    1. Cai Y., Cheng T., Yao Y., Li X., Ma Y., Li L., Zhao H., Bao J., Zhang M., Qiu Z., et al. In Vivo Genome Editing Rescues Photoreceptor Degeneration Via a Cas9/RecA-Mediated Homology-Directed Repair Pathway. Sci. Adv. 2019;5:eaav3335. doi: 10.1126/sciadv.aav3335.
    1. Maresca M., Lin V.G., Guo N., Yang Y. Obligate Ligation-Gated Recombination (ObLiGaRe): Custom-Designed Nuclease-Mediated Targeted Integration through Nonhomologous End Joining. Genome Res. 2013;23:539–546. doi: 10.1101/gr.145441.112.
    1. Redmond T.M., Yu S., Lee E., Bok D., Hamasaki D., Chen N., Goletz P., Ma J.X., Crouch R.K., Pfeifer K. Rpe65 is Necessary for Production of 11-Cis-Vitamin A in the Retinal Visual Cycle. Nat. Genet. 1998;20:344–351. doi: 10.1038/3813.
    1. Nilsson S.E., Wrigstad A., Narfstrom K. Changes in the DC Electroretinogram in Briard Dogs with Hereditary Congenital Night Blindness and Partial Day Blindness. Exp. Eye Res. 1992;54:291–296. doi: 10.1016/S0014-4835(05)80218-0.
    1. Pang J.J., Chang B., Hawes N.L., Hurd R.E., Davisson M.T., Li J., Noorwez S.M., Malhotra R., McDowell J.H., Kaushal S., et al. Retinal Degeneration 12 (rd12): A New, Spontaneously Arising Mouse Model for Human Leber Congenital Amaurosis (LCA) Mol. Vis. 2005;11:152–162.
    1. Rohrer B., Goletz P., Znoiko S., Ablonczy Z., Ma J.X., Redmond T.M., Crouch R.K. Correlation of Regenerable Opsin with Rod ERG Signal in Rpe65−/− Mice during Development and Aging. Investig. Ophthalmol. Vis. Sci. 2003;44:310–315. doi: 10.1167/iovs.02-0567.
    1. Hauswirth W.W., Aleman T.S., Kaushal S., Cideciyan A.V., Schwartz S.B., Wang L., Conlon T.J., Boye S.L., Flotte T.R., Byrne B.J., et al. Treatment of Leber Congenital Amaurosis due to RPE65 Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Short-Term Results of a Phase I Trial. Hum. Gene Ther. 2008;19:979–990. doi: 10.1089/hum.2008.107.
    1. Maguire A.M., Simonelli F., Pierce E.A., Pugh E.N., Jr., Mingozzi F., Bennicelli J., Banfi S., Marshall K.A., Testa F., Surace E.M., et al. Safety and Efficacy of Gene Transfer for Leber’s Congenital Amaurosis. N. Engl. J. Med. 2008;358:2240–2248. doi: 10.1056/NEJMoa0802315.
    1. Patel U., Boucher M., de Leseleuc L., Visintini S. CADTH Issues in Emerging Health Technologies. CADTH; Ottawa ON, Canada: 2016. Voretigene Neparvovec: An Emerging Gene Therapy for the Treatment of Inherited Blindness; pp. 1–11.
    1. Testa F., Maguire A.M., Rossi S., Pierce E.A., Melillo P., Marshall K., Banfi S., Surace E.M., Sun J., Acerra C., et al. Three-Year Follow-Up After Unilateral Subretinal Delivery of Adeno-Associated Virus in Patients with Leber Congenital Amaurosis Type 2. Ophthalmology. 2013;120:1283–1291. doi: 10.1016/j.ophtha.2012.11.048.
    1. Bainbridge J.W., Mehat M.S., Sundaram V., Robbie S.J., Barker S.E., Ripamonti C., Georgiadis A., Mowat F.M., Beattie S.G., Gardner P.J., et al. Long-Term Effect of Gene Therapy on Leber’s Congenital Amaurosis. N. Engl. J. Med. 2015;372:1887–1897. doi: 10.1056/NEJMoa1414221.
    1. Maeder M.L., Gersbach C.A. Genome-Editing Technologies for Gene and Cell Therapy. Mol. Ther. 2016;24:430–446. doi: 10.1038/mt.2016.10.
    1. Cideciyan A.V., Jacobson S.G., Drack A.V., Ho A.C., Charng J., Garafalo A.V., Roman A.J., Sumaroka A., Han I.C., Hochstedler M.D., et al. Effect of an Intravitreal Antisense Oligonucleotide on Vision in Leber Congenital Amaurosis due to a Photoreceptor Cilium Defect. Nat. Med. 2019;25:225–228. doi: 10.1038/s41591-018-0295-0.
    1. Sankila E.M., Tolvanen R., van den Hurk J.A., Cremers F.P., de la Chapelle A. Aberrant Splicing of the CHM Gene is a Significant Cause of Choroideremia. Nat. Genet. 1992;1:109–113. doi: 10.1038/ng0592-109.
    1. Khan K.N., Islam F., Moore A.T., Michaelides M. Clinical and Genetic Features of Choroideremia in Childhood. Ophthalmology. 2016;123:2158–2165. doi: 10.1016/j.ophtha.2016.06.051.
    1. MacDonald I.M., Sereda C., McTaggart K., Mah D. Choroideremia Gene Testing. Expert Rev. Mol. Diagn. 2004;4:478–484. doi: 10.1586/14737159.4.4.478.
    1. MacLaren R.E., Groppe M., Barnard A.R., Cottriall C.L., Tolmachova T., Seymour L., Clark K.R., During M.J., Cremers F.P., Black G.C., et al. Retinal Gene Therapy in Patients with Choroideremia: Initial Findings from a Phase 1/2 Clinical Trial. Lancet. 2014;383:1129–1137. doi: 10.1016/S0140-6736(13)62117-0.
    1. Edwards T.L., Jolly J.K., Groppe M., Barnard A.R., Cottriall C.L., Tolmachova T., Black G.C., Webster A.R., Lotery A.J., Holder G.E., et al. Visual Acuity After Retinal Gene Therapy for Choroideremia. N. Engl. J. Med. 2016;374:1996–1998. doi: 10.1056/NEJMc1509501.
    1. Simunovic M.P., Jolly J.K., Xue K., Edwards T.L., Groppe M., Downes S.M., MacLaren R.E. The Spectrum of CHM Gene Mutations in Choroideremia and their Relationship to Clinical Phenotype. Investig. Ophthalmol. Vis. Sci. 2016;57:6033–6039.
    1. Hamel C. Retinitis Pigmentosa. Orphanet J. Rare Dis. 2006;1:40. doi: 10.1186/1750-1172-1-40.
    1. Mackay D.S., Henderson R.H., Sergouniotis P.I., Li Z., Moradi P., Holder G.E., Waseem N., Bhattacharya S.S., Aldahmesh M.A., Alkuraya F.S., et al. Novel Mutations in MERTK Associated with Childhood Onset Rod-Cone Dystrophy. Mol. Vis. 2010;16:369–377.
    1. Ksantini M., Lafont E., Bocquet B., Meunier I., Hamel C.P. Homozygous Mutation in MERTK Causes Severe Autosomal Recessive Retinitis Pigmentosa. Eur. J. Ophthalmol. 2012;22:647–653. doi: 10.5301/ejo.5000096.
    1. LaVail M.M., Yasumura D., Matthes M.T., Yang H., Hauswirth W.W., Deng W.T., Vollrath D. Gene Therapy for MERTK-Associated Retinal Degenerations. Adv. Exp. Med. Biol. 2016;854:487–493.
    1. Lentz J., Keats B.J.B. Usher Syndrome Type I. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., Amemiya A., editors. GeneReviews®. University of Washington; Seattle, WA, USA: 1999.
    1. Sengillo J.D., Justus S., Cabral T., Tsang S.H. Correction of Monogenic and Common Retinal Disorders with Gene Therapy. Genes. 2017;8 doi: 10.3390/genes8020053.
    1. Allikmets R., Singh N., Sun H., Shroyer N.F., Hutchinson A., Chidambaram A., Gerrard B., Baird L., Stauffer D., Peiffer A., et al. A Photoreceptor Cell-Specific ATP-Binding Transporter Gene (ABCR) is Mutated in Recessive Stargardt Macular Dystrophy. Nat. Genet. 1997;15:236–246. doi: 10.1038/ng0397-236.
    1. Tanna P., Strauss R.W., Fujinami K., Michaelides M. Stargardt Disease: Clinical Features, Molecular Genetics, Animal Models and Therapeutic Options. Br. J. Ophthalmol. 2017;101:25–30. doi: 10.1136/bjophthalmol-2016-308823.
    1. Davis J.L. The Blunt End: Surgical Challenges of Gene Therapy for Inherited Retinal Diseases. Am. J. Ophthalmol. 2018;196:xxv–xxix. doi: 10.1016/j.ajo.2018.08.038.
    1. Schwartz S.D., Regillo C.D., Lam B.L., Eliott D., Rosenfeld P.J., Gregori N.Z., Hubschman J.P., Davis J.L., Heilwell G., Spirn M., et al. Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium in Patients with Age-Related Macular Degeneration and Stargardt’s Macular Dystrophy: Follow-Up of Two Open-Label Phase 1/2 Studies. Lancet. 2015;385:509–516. doi: 10.1016/S0140-6736(14)61376-3.
    1. Remmer M.H., Rastogi N., Ranka M.P., Ceisler E.J. Achromatopsia: A Review. Curr. Opin. Ophthalmol. 2015;26:333–340. doi: 10.1097/ICU.0000000000000189.
    1. Grayson C., Reid S.N., Ellis J.A., Rutherford A., Sowden J.C., Yates J.R., Farber D.B., Trump D. Retinoschisin, the X-Linked Retinoschisis Protein, is a Secreted Photoreceptor Protein, and is Expressed and Released by Weri-Rb1 Cells. Hum. Mol. Genet. 2000;9:1873–1879. doi: 10.1093/hmg/9.12.1873.
    1. Molday R.S., Kellner U., Weber B.H. X-Linked Juvenile Retinoschisis: Clinical Diagnosis, Genetic Analysis, and Molecular Mechanisms. Prog. Retin. Eye Res. 2012;31:195–212. doi: 10.1016/j.preteyeres.2011.12.002.
    1. Min S.H., Molday L.L., Seeliger M.W., Dinculescu A., Timmers A.M., Janssen A., Tonagel F., Tanimoto N., Weber B.H., Molday R.S., et al. Prolonged Recovery of Retinal structure/function After Gene Therapy in an Rs1h-Deficient Mouse Model of x-Linked Juvenile Retinoschisis. Mol. Ther. 2005;12:644–651. doi: 10.1016/j.ymthe.2005.06.002.
    1. Cukras C., Wiley H.E., Jeffrey B.G., Sen H.N., Turriff A., Zeng Y., Vijayasarathy C., Marangoni D., Ziccardi L., Kjellstrom S., et al. Retinal AAV8-RS1 Gene Therapy for X-Linked Retinoschisis: Initial Findings from a Phase I/IIa Trial by Intravitreal Delivery. Mol. Ther. 2018;26:2282–2294. doi: 10.1016/j.ymthe.2018.05.025.

Source: PubMed

3
Suscribir