16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment

Rafael Guerrero-Preston, Filipa Godoy-Vitorino, Anne Jedlicka, Arnold Rodríguez-Hilario, Herminio González, Jessica Bondy, Fahcina Lawson, Oluwasina Folawiyo, Christina Michailidi, Amanda Dziedzic, Rajagowthamee Thangavel, Tal Hadar, Maartje G Noordhuis, William Westra, Wayne Koch, David Sidransky, Rafael Guerrero-Preston, Filipa Godoy-Vitorino, Anne Jedlicka, Arnold Rodríguez-Hilario, Herminio González, Jessica Bondy, Fahcina Lawson, Oluwasina Folawiyo, Christina Michailidi, Amanda Dziedzic, Rajagowthamee Thangavel, Tal Hadar, Maartje G Noordhuis, William Westra, Wayne Koch, David Sidransky

Abstract

Systemic inflammatory events and localized disease, mediated by the microbiome, may be measured in saliva as head and neck squamous cell carcinoma (HNSCC) diagnostic and prognostic biomonitors. We used a 16S rRNA V3-V5 marker gene approach to compare the saliva microbiome in DNA isolated from Oropharyngeal (OPSCC), Oral Cavity Squamous Cell Carcinoma (OCSCC) patients and normal epithelium controls, to characterize the HNSCC saliva microbiota and examine their abundance before and after surgical resection.The analyses identified a predominance of Firmicutes, Proteobacteria and Bacteroidetes, with less frequent presence of Actinobacteria and Fusobacteria before surgery. At lower taxonomic levels, the most abundant genera were Streptococcus, Prevotella, Haemophilus, Lactobacillus and Veillonella, with lower numbers of Citrobacter and Neisseraceae genus Kingella. HNSCC patients had a significant loss in richness and diversity of microbiota species (p<0.05) compared to the controls. Overall, the Operational Taxonomic Units network shows that the relative abundance of OTU's within genus Streptococcus, Dialister, and Veillonella can be used to discriminate tumor from control samples (p<0.05). Tumor samples lost Neisseria, Aggregatibacter (Proteobacteria), Haemophillus (Firmicutes) and Leptotrichia (Fusobacteria). Paired taxa within family Enterobacteriaceae, together with genus Oribacterium, distinguish OCSCC samples from OPSCC and normal samples (p<0.05). Similarly, only HPV positive samples have an abundance of genus Gemellaceae and Leuconostoc (p<0.05). Longitudinal analyses of samples taken before and after surgery, revealed a reduction in the alpha diversity measure after surgery, together with an increase of this measure in patients that recurred (p<0.05). These results suggest that microbiota may be used as HNSCC diagnostic and prognostic biomonitors.

Keywords: 16s rRNA; human papilloma virus (HPV); microbiome; oral cancer; oropharyngeal cancer.

Conflict of interest statement

The authors have no conflicts of interest with the subject matter or materials discussed in this manuscript.

Figures

Figure 1. Beta diversity comparisons by Principal…
Figure 1. Beta diversity comparisons by Principal Component Analysis (PCA) using Non-metric multidimensional scaling (NMDS), with Euclidean distances, discriminated HNSCC (n=17) from Control samples (n=25)
A. PCA reveals that the microbial communities in HNSCC patients are significantly different to those seen in Control samples. B.NMDS shows that the microbial communities in HPV negative (HPV-) oropharyngeal samples are significantly different from the ones seen in HPV-oral cavity patients.
Figure 2. Taxonomic profiles at the phyla…
Figure 2. Taxonomic profiles at the phyla and genus levels, of 59 saliva samples according to tumor histology, HPV status and sampling site
There were a total of 13 microbial communities identified at the phyla-level in our patient population A. The top 5 (>1% relative abundance) communities were, Firmicutes, Bacteroidetes, Proteobacteria, Actinoabcteria and FusobacteriaB. At the genus-level, Streptococcus spp. prevail across all samples, followed by Veillonella, Prevotella, Lactobacillus and Haemophilus spp C-D.
Figure 3. Nodes in Operational Taxonomic Units…
Figure 3. Nodes in Operational Taxonomic Units (OTUs) network significantly discriminate between head and neck squamous cell carcinoma (HNSCC) and normal samples in saliva
The figure was created using QIIME and imported to Cytoscape. Significant OTUs pA. represents taxa that differed significantly in relative abundance (p<0.05) when comparing saliva from normal patients with patients with HNSCC, as well as HPV negative and HPV positive patients. The OTU network shows that the total abundance of genus Streptococcus, Dialister, and Veillonella can be used to discriminate tumor samples from control samples B. Paired taxa within family Enterobacteriaceae together with genus Oribacterium, clearly distinguish OCSCC samples C. Paired taxa within family Enterobacteriaceae together with genus Oribacterium, clearly distinguish OCSCC samples (from OPSCC and normal samples D. and E.. Similarly, only HPV positive samples have an abundance of genus Gemellaceae and Leuconostoc.
Figure 4. Rarefaction curves of species richness…
Figure 4. Rarefaction curves of species richness and diversity between Controls and HNSCC samples based on chao1 richness estimator and Faith's diversity measure (PD)
Next-generation sequencing (NGS) has revealed a large microbial diversity that was previously concealed with culture-dependent methods. Although the true microbial diversity is limited to the number of samples, species richness and sample diversity can be estimated using diversity indices and species richness estimators. The chao1 index estimates total species richness based on all species actually discovered, including species not present in any sample. This approach uses the numbers of singletons (single appearance) and doubletons (that appeared twice) to estimate the number of missing species due to undetected species information is mostly concentrated on low frequency counts. Faith's phylogenetic diversity (PD) measure estimates the relative feature diversity of any nominated set of species by the sum of the lengths of all phylogenetic branches required to span a given set of taxa on the phylogenetic tree. A. shows the chao1 index estimates when comparing tumor versus control. B. shows the PD estimates when comparing tumor versus control. C. shows the chao1 index estimates when comparing tumor site and HPV status. D. shows the PD estimates when comparing tumor site and HPV status. Microbial communities of samples obtained from Control patients display significant higher richness (p=0.001, ANOVA) and significant higher diversity (p=0.001, ANOVA) than HNSCC samples. When considering HPV status and both sampling sites we found that the diversity from the oral cavity (HPV negative) HNSCC samples was higher than in both HPV positive (p=0.003, ANOVA) and negative (p=0.006, ANOVA) HNSCC samples from the oropharynx.
Figure 5. Differentially enriched microbiota OTUs in…
Figure 5. Differentially enriched microbiota OTUs in HNSCC when compared to control samples
A. Histograms of the 42 statistically significant differences between OTUs abundance show a significant abundance of Streptococcus spp. in HNSCC samples according to G-tests results (p<0.05) By default, OTUs unclassified at the genus level are plotted as N/A by Phyloseq. B. Taxonomic Heatmap using Spearman's distance, combined with Ward clustering for 30 most statistically significant OTUs between Control and HNSCC samples (p<0.05, ANOVA). Heatmap color pallete used was “RdBu” with red and blue representing respectively low and high abundance. Ward's clustering method involves an agglomerative clustering algorithm that treats a cluster analysis as an analysis of variance, used to analyze the differences among group means and their associated classes. Streptococcus and Lactobacillus spp. are significantly associated with HNSCC samples according to G-tests and ANOVA results.
Figure 6. LDA Effect Size (LEfSe) algorithm…
Figure 6. LDA Effect Size (LEfSe) algorithm was used on genus level OTU tables to determine taxa that best characterize each biological class: A. Comparison of HNSCC with normal samples found that Streptococcus and Lactobacillus spp
are significantly associated with HNSCC samples. Haemophilus and Neisseria spp. are related to Control samples. B. Comparison of HPV positive and HPV negative HNSCC found that Lactobacillus spp. is significantly associated with HPV positive samples in the oropharynx. Similarly, Eikenella and Neisseria spp. are associated with HPV negative samples. Patients treated with surgery had significant enrichment for Haemopilus, Neisseria, Aggregatibacter and Leptotrichia, while patients treated with CRT/Surgery had significant enrichment for Lactobacillus and LactobacillaceaeC.
Figure 7. Time-series analyses of HNSCC patients…
Figure 7. Time-series analyses of HNSCC patients (n=11) for whom we had repeated saliva samples, according to both sampling sites, HPV status and TNM staging
Bacterial communities were noticeably different between T1-2N2AM0 and T3N2BM0 TNM stage. Lactobacillus spp. were significantly more abundant in patients with T3-2N2BM0 staging (p<0.01, G-test). Legend indicates genus that show a relative abundance higher than 1%.

References

    1. Preza D, Olsen I, Willumsen T, Grinde B, Paster BJ. Diversity and site-specificity of the oral microflora in the elderly. European journal of clinical microbiology & infectious. 2009;28:1033–1040.
    1. Preza D, Thiede B, Olsen I, Grinde B. The proteome of the human parotid gland secretion in elderly with and without root caries. Acta odontologica Scandinavica. 2009;67:161–169.
    1. Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, Socransky SS, Hasturk H, Van Dyke TE, Dewhirst F, Paster BJ. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. Journal of periodontology. 2009;80:1421–1432.
    1. Fujinaka H, Takeshita T, Sato H, Yamamoto T, Nakamura J, Hase T, Yamashita Y. Relationship of periodontal clinical parameters with bacterial composition in human dental plaque. Archives of microbiology. 2013;195:371–383.
    1. Abiko Y, Sato T, Mayanagi G, Takahashi N. Profiling of subgingival plaque biofilm microflora from periodontally healthy subjects and from subjects with periodontitis using quantitative real-time PCR. Journal of periodontal research. 2010;45:389–395.
    1. Meurman JH. Oral microbiota and cancer. Journal of oral microbiology. 2010:2.
    1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.
    1. Zini A, Czerninski R, Sgan-Cohen HD. Oral cancer over four decades: epidemiology, trends, histology, and survival by anatomical sites. J Oral Pathol Med. 39:299–305.
    1. Hashibe M, Brennan P, Chuang SC, Boccia S, Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova E, Fernandez L, Wunsch-Filho V, Franceschi S, Hayes RB, Herrero R, Kelsey K, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev. 2009;18:541–550.
    1. Kerr AR. The oral microbiome and cancer. Journal of dental hygiene. 2015;89:20–23.
    1. Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR, Goodson JM. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. Journal of translational medicine. 2005;3:27.
    1. Nagy KN, Sonkodi I, Szoke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral oncology. 1998;34:304–308.
    1. Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM, Queiroz EL, Nightingale K, Kerr AR, DeLacure MD, Veeramachaneni R, Olshen AB, Albertson DG, Muy-Teck T. Changes in abundance of oral microbiota associated with oral cancer. PloS one. 2014;9:e98741.
    1. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, Li X, Saxena D. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC microbiology. 2012;12:144.
    1. Pushalkar S, Mane SP, Ji X, Li Y, Evans C, Crasta OR, Morse D, Meagher R, Singh A, Saxena D. Microbial diversity in saliva of oral squamous cell carcinoma. FEMS immunology and medical microbiology. 2011;61:269–277.
    1. Human Microbiome Project C A framework for human microbiome research. Nature. 2012;486:215–221.
    1. Hamady M, Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome research. 2009;19:1141–1152.
    1. Wang L, Ganly I. The oral microbiome and oral cancer. Clinics in laboratory medicine. 2014;34:711–719.
    1. Jumpstart Consortium Human Microbiome Project Data Generation Working G Evaluation of 16S rDNA-based community profiling for human microbiome research. PloS one. 2012;7:e39315.
    1. Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, Goedert JJ, Hayes RB, Yang L. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013;105:1907–1911.
    1. Ahn J, Yang L, Paster BJ, Ganly I, Morris L, Pei Z, Hayes RB. Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison. PLoS One. 2011;6:e22788.
    1. Atanasova KR, Yilmaz O. Looking in the Porphyromonas gingivalis cabinet of curiosities: the microbium, the host and cancer association. Molecular oral microbiology. 2014;29:55–66.
    1. Schwabe RF, Jobin C. The microbiome and cancer. Nature reviews Cancer. 2013;13:800–812.
    1. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science. 2003;299:2074–2076.
    1. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920.
    1. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–1359.
    1. Xu Y, Teng F, Huang S, Lin Z, Yuan X, Zeng X, Yang F. Changes of saliva microbiota in nasopharyngeal carcinoma patients under chemoradiation therapy. Archives of oral biology. 2014;59:176–186.
    1. Sakamoto H, Sasaki J, Nord CE. Association between bacterial colonization on the tumor, bacterial translocation to the cervical lymph nodes and subsequent postoperative infection in patients with oral cancer. Clinical microbiology and infection. 1999;5:612–616.
    1. Sakamoto H, Naito H, Ohta Y, Tanakna R, Maeda N, Sasaki J, Nord CE. Isolation of bacteria from cervical lymph nodes in patients with oral cancer. Archives of oral biology. 1999;44:789–793.
    1. Sakamoto M, Koseki T, Umeda M, Ishikawa I, Benno Y, Nakase T. Phylogenetic analysis of saccharolytic oral treponemes isolated from human subgingival plaque. Microbiology and immunology. 1999;43:711–716.
    1. Shiga K, Tateda M, Saijo S, Hori T, Sato I, Tateno H, Matsuura K, Takasaka T, Miyagi T. Presence of Streptococcus infection in extra-oropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncology reports. 2001;8:245–248.
    1. Hooper SJ, Crean SJ, Fardy MJ, Lewis MA, Spratt DA, Wade WG, Wilson MJ. A molecular analysis of the bacteria present within oral squamous cell carcinoma. Journal of medical microbiology. 2007;56:1651–1659.
    1. Hooper SJ, Crean SJ, Lewis MA, Spratt DA, Wade WG, Wilson MJ. Viable bacteria present within oral squamous cell carcinoma tissue. Journal of clinical microbiology. 2006;44:1719–1725.
    1. Badet C, Thebaud NB. Ecology of lactobacilli in the oral cavity: a review of literature. The open microbiology journal. 2008;2:38–48.
    1. Vaughan TE, Skipp PJ, O'Connor CD, Hudson MJ, Vipond R, Elmore MJ, Gorringe AR. Proteomic analysis of Neisseria lactamica and Neisseria meningitidis outer membrane vesicle vaccine antigens. Vaccine. 2006;24:5277–5293.
    1. Gorringe AR, Taylor S, Brookes C, Matheson M, Finney M, Kerr M, Hudson M, Findlow J, Borrow R, Andrews N, Kafatos G, Evans CM, Read RC. Phase I safety and immunogenicity study of a candidate meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Clinical and vaccine immunology. 2009;16:1113–1120.
    1. Chocolatewala N, Chaturvedi P, Desale R. The role of bacteria in oral cancer. Indian journal of medical and paediatric oncology. 2010;31:126–131.
    1. Wu J, Peters BA, Dominianni C, Zhang Y, Pei Z, Yang L, Ma Y, Purdue MP, Jacobs EJ, Gapstur SM, Li H, Alekseyenko AV, Hayes RB, Ahn J. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016
    1. Hu J, Han S, Chen Y, Ji Z. Variations of Tongue Coating Microbiota in Patients with Gastric Cancer. Biomed Res Int. 2015;2015:173729.
    1. Blaser MJ. Understanding microbe-induced cancers. Cancer Prev Res (Phila) 2008;1:15–20.
    1. Ohtani N. Microbiome and cancer. Seminars in immunopathology. 2015;37:65–72.
    1. Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F, Karaoz U, Contreras M, Blaser MJ, Brodie EL, Dominguez-Bello MG. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. The ISME journal. 2011;5:574–579.
    1. Lee IO, Kim JH, Choi YJ, Pillinger MH, Kim SY, Blaser MJ, Lee YC. Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem. 2010;285:16042–16050.
    1. Brawner KM, Morrow CD, Smith PD. Gastric microbiome and gastric cancer. Cancer journal. 2014;20:211–216.
    1. Michaud DS, Izard J. Microbiota, oral microbiome, and pancreatic cancer. Cancer journal. 2014;20:203–206.
    1. Narayanan V, Peppelenbosch MP, Konstantinov SR. Human fecal microbiome-based biomarkers for colorectal cancer. Cancer Prev Res (Phila) 2014;7:1108–1111.
    1. Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One. 2013;8:e70803.
    1. Geng J, Fan H, Tang X, Zhai H, Zhang Z. Diversified pattern of the human colorectal cancer microbiome. Gut pathogens. 2013;5:2.
    1. Zambirinis CP, Pushalkar S, Saxena D, Miller G. Pancreatic cancer, inflammation, and microbiome. Cancer journal. 2014;20:195–202.
    1. Seki E. Microbiome-obesity-liver cancer interaction: senescence of hepatic stellate cells and bile acids play new roles. Gastroenterology. 2014;146:860–861.
    1. Cook MB, Dawsey SM, Diaw L, Blaser MJ, Perez-Perez GI, Abnet CC, Taylor PR, Albanes D, Virtamo J, Kamangar F. Serum pepsinogens and Helicobacter pylori in relation to the risk of esophageal squamous cell carcinoma in the alpha-tocopherol, beta-carotene cancer prevention study. Cancer Epidemiol Biomarkers Prev. 2010;19:1966–1975.
    1. Blaser MJ. Helicobacter pylori and esophageal disease: wake-up call? Gastroenterology. 2010;139:1819–1822.
    1. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell host & microbe. 2011;10:324–335.
    1. Wynendaele E, Verbeke F, D'Hondt M, Hendrix A, Van De Wiele C, Burvenich C, Peremans K, De Wever O, Bracke M, De Spiegeleer B. Crosstalk between the microbiome and cancer cells by quorum sensing peptides. Peptides. 2015;64:40–48.
    1. Vande Voorde J, Balzarini J, Liekens S. An emerging understanding of the Janus face of the human microbiome: enhancement versus impairment of cancer therapy. The Journal of antimicrobial chemotherapy. 2014;69:2878–2880.
    1. Plottel CS. From the guest editor: beyond symbiosis: a cancer-centric view of the microbiome. Cancer journal. 2014;20:167–169.
    1. Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis. 2014;35:249–255.
    1. Francescone R, Hou V, Grivennikov SI. Microbiome, inflammation, and cancer. Cancer journal. 2014;20:181–189.
    1. Shiryaev SA, Remacle AG, Chernov AV, Golubkov VS, Motamedchaboki K, Muranaka N, Dambacher CM, Capek P, Kukreja M, Kozlov IA, Perucho M, Cieplak P, Strongin AY. Substrate cleavage profiling suggests a distinct function of Bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammation-cancer interface. J Biol Chem. 2013;288:34956–34967.
    1. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–1089.
    1. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–1084.
    1. Shahanavaj K, Gil-Bazo I, Castiglia M, Bronte G, Passiglia F, Carreca AP, del Pozo JL, Russo A, Peeters M, Rolfo C. Cancer and the microbiome: potential applications as new tumor biomarker. Expert review of anticancer therapy. 2015;15:317–330.
    1. West NR, Powrie F. Immunotherapy Not Working? Check Your Microbiota. Cancer cell. 2015;28:687–689.
    1. Chuang AY, Chuang TC, Chang S, Zhou S, Begum S, Westra WH, Ha PK, Koch WM, Califano JA. Presence of HPV DNA in convalescent salivary rinses is an adverse prognostic marker in head and neck squamous cell carcinoma. Oral oncology. 2008;44:915–919.
    1. Begum S, Gillison ML, Nicol TL, Westra WH. Detection of human papillomavirus-16 in fine-needle aspirates to determine tumor origin in patients with metastatic squamous cell carcinoma of the head and neck. Clinical cancer research. 2007;13:1186–1191.
    1. Hoque MO, Lee CC, Cairns P, Schoenberg M, Sidransky D. Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer research. 2003;63:2216–2222.
    1. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Baxevanis Andreas D, et al., editors. Current protocols in bioinformatics. :2011. Chapter 10:Unit 10 17.
    1. Navas-Molina JA, Peralta-Sanchez JM, Gonzalez A, McMurdie PJ, Vazquez-Baeza Y, Xu Z, Ursell LK, Lauber C, Zhou H, Song SJ, Huntley J, Ackermann GL, Berg-Lyons D, Holmes S, Caporaso JG, Knight R. Advancing our understanding of the human microbiome using QIIME. Methods in enzymology. 2013;531:371–444.
    1. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research. 2003;13:2498–2504.
    1. Oksanen J, Kindt r, Legendre p, O'Hara B, Simpson GL, Stevens MHH, vegan Wagner H. Community Ecology Package. R package version 1.17-2. 2008 available in: .
    1. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one. 2013;8:e61217.
    1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.

Source: PubMed

3
Suscribir