Childhood stunting in relation to the pre- and postnatal environment during the first 2 years of life: The MAL-ED longitudinal birth cohort study

MAL-ED Network Investigators, William Checkley, Samer Mouksassi, J Daniel Carreon, Benjamin J McCormick, Mustafa Mahfuz, Michael Gottlieb, Stacey L Knobler, Dennis R Lang, Mark A Miller, Zulfiqar A Bhutta, Laura Caulfield, Richard L Guerrant, Eric Houpt, Margaret N Kosek, Laura E Murray-Kolb, William A Petri, Jessica C Seidman, Pascal Bessong, Rashidul Haque, Sushil John, Gangandeep Kang, Aldo A M Lima, Estomih R Mduma, Reinaldo Oria, Sanjaya Kumar Shrestha, Erling Svensen, Anita K M Zaidi, Claudia B Abreu, Imran Ahmed, Asad Ali, Ramya Ambikapathi, Elizawa Bayyo, Anuradha Bose, Ram Krishna Chandayo, Rebecca Dillingham, James Platts-Mills, Tahmeed Ahmed, MAL-ED Network Investigators, William Checkley, Samer Mouksassi, J Daniel Carreon, Benjamin J McCormick, Mustafa Mahfuz, Michael Gottlieb, Stacey L Knobler, Dennis R Lang, Mark A Miller, Zulfiqar A Bhutta, Laura Caulfield, Richard L Guerrant, Eric Houpt, Margaret N Kosek, Laura E Murray-Kolb, William A Petri, Jessica C Seidman, Pascal Bessong, Rashidul Haque, Sushil John, Gangandeep Kang, Aldo A M Lima, Estomih R Mduma, Reinaldo Oria, Sanjaya Kumar Shrestha, Erling Svensen, Anita K M Zaidi, Claudia B Abreu, Imran Ahmed, Asad Ali, Ramya Ambikapathi, Elizawa Bayyo, Anuradha Bose, Ram Krishna Chandayo, Rebecca Dillingham, James Platts-Mills, Tahmeed Ahmed

Abstract

Background: Stunting is the most prevalent manifestation of childhood malnutrition. To characterize factors that contribute to stunting in resource-poor settings, we studied a priori selected biological and social factors collected longitudinally in a cohort of newborns.

Methods and findings: We enrolled 1,868 children across 7 resource-poor settings in Bangladesh, Brazil, India, Nepal, Peru, South Africa, and Tanzania shortly after birth and followed them for 24 months between 2 November 2009 and 28 February 2014. We collected longitudinal anthropometry, sociodemographic factors, maternal-reported illnesses, and antibiotic use; child feeding practices; dietary intake starting at 9 months; and longitudinal blood, urine, and stool samples to investigate non-diarrheal enteropathogens, micronutrients, gut inflammation and permeability, and systemic inflammation. We categorized length-for-age Z-scores into 3 groups (not stunted, ≥-1; at risk, <-1 to -2; and stunted, <-2), and used multivariable ordinal logistic regression to model the cumulative odds of being in a lower length-for-age category (at risk or stunted). A total of 1,197 children with complete longitudinal data were available for analysis. The prevalence of having a length-for-age Z-score below -1 increased from 43% (range 37%-47% across sites) shortly after birth (mean 7.7 days post-delivery, range 0 to 17 days) to 74% (16%-96%) at 24 months. The prevalence of stunting increased 3-fold during this same time period. Factors that contributed to the odds of being in a lower length-for-age category at 24 months were lower enrollment weight-for-age (interquartile cumulative odds ratio = 1.82, 95% CI 1.49-2.23), shorter maternal height (2.38, 1.89-3.01), higher number of enteropathogens in non-diarrheal stools (1.36, 1.07-1.73), lower socioeconomic status (1.75, 1.20-2.55), and lower percent of energy from protein (1.39, 1.13-1.72). Site-specific analyses suggest that reported associations were similar across settings. While loss to follow-up and missing data are inevitable, some study sites had greater loss to follow-up and more missing data than others, which may limit the generalizability of the findings.

Conclusions: Neonatal and maternal factors were early determinants of lower length-for-age, and their contribution remained important throughout the first 24 months of life, whereas the average number of enteropathogens in non-diarrheal stools, socioeconomic status, and dietary intake became increasingly important contributors by 24 months relative to neonatal and maternal factors.

Conflict of interest statement

SM was a paid consultant for the Bill and Melinda Gates Foundation, but had complete scientific independence regarding the data analysis and interpretation.

Figures

Fig 1. Modified version of the UNICEF…
Fig 1. Modified version of the UNICEF malnutrition conceptual hierarchical framework and the maternal and household factors and childhood environmental exposures included in our analyses.
AAT, alpha-1 antitrypsin; AGP, alpha-1-acid glycoprotein; ALRI, acute lower respiratory infection; MPO, myeloperoxidase; NEO, neopterin.
Fig 2. Length-for-age stratified by age and…
Fig 2. Length-for-age stratified by age and site.
Site-specific length-for-age trajectories with age were smoothed using a smoothing spline. Sites include BGD, Dhaka, Bangladesh; BRF, Fortaleza, Brazil; INV, Vellore, India; NEB, Bhaktapur, Nepal; PEL, Loreto, Peru; SAV, Venda, South Africa; TZH, Haydom, Tanzania.
Fig 3. Categories of length-for-age stratified by…
Fig 3. Categories of length-for-age stratified by exact month of age and site.
In this figure, not stunted (length-for-age Z-score [LAZ] ≥ −1) is represented in green, at risk of being stunted (−2 ≤ LAZ < −1) is represented in yellow, and stunted (LAZ < −2) is represented in orange. Sites include BGD, Dhaka, Bangladesh; BRF, Fortaleza, Brazil; INV, Vellore, India; NEB, Bhaktapur, Nepal; PEL, Loreto, Peru; SAV, Venda, South Africa; TZH, Haydom, Tanzania. The vertical broken line represents 6 months of age.
Fig 4. Interquartile cumulative odds ratios of…
Fig 4. Interquartile cumulative odds ratios of being in a lower length-for-age category (at risk or stunted) at enrollment, 12 months, and 24 months for 5 risk factors, as obtained from the multivariable ordinal logistic regression model.
In (A), we show adjusted interquartile cumulative odds ratios and corresponding 95% CIs. The interquartile cumulative odds ratio is calculated for the 75% and 25% percentiles of the risk factor. In (B), we show site-specific estimates represented by triangles.
Fig 5. Site-specific estimates of the interquartile…
Fig 5. Site-specific estimates of the interquartile cumulative odds ratios of being in a lower length-for-age category (at risk or stunted) at enrollment, 12 months, and 24 months for 5 risk factors, as obtained from the multivariable ordinal logistic regression model.
We contrast site-specific adjusted interquartile cumulative odds ratios and corresponding 95% CIs to the overall population interquartile cumulative odds ratios and 95% CIs. Overall interquartile cumulative odds ratios and corresponding 95% CIs at enrollment, 12 months, and 24 months are represented by black lines and grey (enrollment), blue (12 months), and red (24 months) shading. Site-specific interquartile cumulative odds ratios and corresponding 95% CIs are represented by triangles and horizontal bars. Overlap between the 95% CIs of site-specific and overall population interquartile cumulative odds ratios suggests that the associations were relatively similar across settings. BGD, Dhaka, Bangladesh; BRF, Fortaleza, Brazil; INV, Vellore, India; LAZ, length-for-age Z-score; NEB, Bhaktapur, Nepal; PEL, Loreto, Peru; SAV, Venda, South Africa; TZH, Haydom, Tanzania.
Fig 6. Age-specific cumulative odds ratios of…
Fig 6. Age-specific cumulative odds ratios of being in a lower length-for-age category (at risk or stunted) for gut inflammation and permeability biomarkers.
Stool AAT concentration (A), lactulose:mannitol Z-score (B), and AGP concentration (C). In all panels, we show the interquartile cumulative odds ratio (75th percentile versus 25th percentile) for each risk factor as a function of age. The black line represents the mean estimate, and the grey shading represents the 95% pointwise confidence interval. AAT, alpha-1 antitrypsin; AGP, alpha-1-acid glycoprotein; OR, odds ratio.

References

    1. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382:427–51. doi:
    1. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371:340–57. doi:
    1. Black RE, Allen LE, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371:243–60. doi:
    1. Kuklina EV, Ramakrishnan U, Stein AD, Barnhart HH, Martorell R. Early childhood growth and development in rural Guatemala. Early Hum Dev. 2006;82:425–33. doi:
    1. Dewey KG, Begum K. Long-term consequences of stunting in early life. Matern Child Nutr. 2011;7:S5–18.
    1. Shrimpton R, Victora CG, de Onis M, Lima RC, Blössner M, Clugston G. Worldwide timing of growth faltering: implications for nutritional interventions. Pediatrics. 2001;107:E75
    1. Victora CG, de Onis M, Hallal PC, Blössner M, Shrimpton R. Worldwide timing of growth faltering: revisiting implications for interventions. Pediatrics. 2010;125:e473–80. doi:
    1. United Nations Children’s Fund. Strategy for improved nutrition of children and women in developing countries New York: United Nations Children’s Fund; 1990.
    1. The Malnutrition and Enteric Disease Study (MAL-ED): understanding the consequences for child health and development. Clin Infect Dis. 2014;59(Suppl 4):S193–330. Available from: , Accessed 6/15/17.
    1. MAL-ED Network Investigators. The MAL-ED study: a multinational and multidisciplinary approach to understand the relationship between enteric pathogens, malnutrition, gut physiology, physical growth, cognitive development, and immune responses in infants and children up to 2 years of age in resource-poor environments. Clin Infect Dis. 2014;59:S193–206. doi:
    1. Platts-Mills JA, McCormick BJ, Kosek M, Pan WK, Checkley W, Houpt ER. Methods of analysis of enteropathogen infection in the MAL-ED cohort study. Clin Infect Dis. 2014;59:S233–8. doi:
    1. Houpt E, Gratz J, Kosek M, Zaidi AK, Qureshi S, Kang G, et al. Microbiologic methods utilized in the MAL-ED cohort study. Clin Infect Dis. 2014;59:S225–32. doi:
    1. Richard SA, Barrett LJ, Guerrant RL, Checkley W, Miller MA, MAL-ED Network Investigators. Disease surveillance methods used in the 8-site MAL-ED cohort study. Clin Infect Dis. 2014;59:S220–4. doi:
    1. World Health Organization. WHO child growth standards: methods and development. Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age Geneva: World Health Organization; 2006.
    1. Addo OY, Stein AD, Fall CH, Gigante DP, Guntupalli AM, Horta BL, et al. Maternal height and child growth patterns. J Pediatr. 2013;163:549–54. doi:
    1. Psaki SR, Seidman JC, Miller M, Gottlieb M, Bhutta ZA, Ahmed T, et al. Measuring socioeconomic status in multicountry studies: results from the eight-country MAL-ED study. Popul Health Metr. 2014;12:8 doi:
    1. Psaki S, Bhutta ZA, Ahmed T, Ahmed S, Bessong P, Islam M, et al. Household food access and child malnutrition: results from the eight-country MAL-ED study. Popul Health Metr. 2012;10:24 doi:
    1. Ambikapathi R, Kosek MN, Lee GO, Mahopo C, Patil CL, Maciel BL, et al. How multiple episodes of exclusive breastfeeding impact estimates of exclusive breastfeeding duration: report from the eight-site MAL-ED birth cohort study. Matern Child Nutr. 2016;12:740–56. doi:
    1. Kosek M, Guerrant RL, Kang G, Bhutta Z, Yori PP, Gratz J, et al. Assessment of environmental enteropathy in the MAL-ED cohort study: theoretical and analytic framework. Clin Infect Dis. 2014;59:S239–47. doi:
    1. Harrell FE Jr. Regression modeling strategies New York Springer-Verlag; 2001.
    1. Lin DY, Wei LJ. The robust inference for the Cox proportional hazards model. J Amer Stat Assoc. 1989;84:1074–8.
    1. Checkley W, Buckley G, Gilman RH, Assis AM, Guerrant RL, Morris SS, et al. Childhood malnutrition and infection network. multi-country analysis of the effects of diarrhea on childhood stunting. Int J Epidemiol. 2008;37:816–30. doi:
    1. Christian P, Lee SE, Donahue Angel M, Adair LS, Arifeen SE, Ashorn P, et al. Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low- and middle-income countries. Int J Epidemiol. 2013;42:1340–55. doi:
    1. Lee AC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Global Health. 2013;1:e26–36. doi:
    1. Han Z, Lutsiv O, Mulla S, McDonald SD. Maternal height and the risk of preterm birth and low birth weight: a systematic review and meta-analyses. J Obstet Gynaecol Can. 2012;34:721–46. doi:
    1. World Health Organization. Global nutrition targets 2025: policy brief series Geneva: World Health Organization; 2014.
    1. Garza C, Borghi E, Onyango AW, de Onis M, WHO Multicentre Growth Reference Study Group. Parental height and child growth from birth to 2 years in the WHO Multicentre Growth Reference Study. Matern Child Nutr. 2013;9:58–68. doi:
    1. Puentes E, Wang F, Behrman JR, Cunha F, Hoddinott J, Maluccio JA, et al. Early life height and weight production functions with endogenous energy and protein inputs. Econ Hum Biol. 2016;22:65–81. doi:
    1. Weemaes C, Klasen I, Göertz J, Beldhuis-Valkis M, Olafsson O, Haraldsson A. Development of immunoglobulin A in infancy and childhood. Scand J Immunol. 2003;58(6):642–8.
    1. Steiner TS, Lima AA, Nataro JP, Guerrant RL. Enteroaggregative escherichia coli produce intestinal inflammation and growth impairment and cause interleukin-8 release from intestinal epithelial cells. J Infect Dis. 1998;177:88–96.
    1. Checkley W, Gilman RH, Epstein LD, Suarez M, Diaz JF, Cabrera L, et al. Asymptomatic and symptomatic cryptosporidiosis: their acute effect on weight gain in Peruvian children. Am J Epidemiol. 1997;145:156–63.
    1. Korpe PS, Petri WA. Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol Med. 2012;18:328–36. doi:
    1. The MAL-ED Network Investigators. Causal pathways from enteropathogens to environmental enteropathy: findings from the MAL-ED birth cohort study. EBioMedicine. 2017;18:109–17. doi:
    1. Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB, Mills DA, et al. A microbial perspective of human developmental biology. Nature. 2016;535:48–55. doi:
    1. Cole TJ, Parkin JM. Infection and its effect on the growth of young children: a comparison of The Gambia and Uganda. Trans R Soc Trop Med Hyg. 1977;71:196–8.
    1. Guerrant RL, Kirchhoff LV, Shields DS, Nations MK, Leslie J, de Sousa MA, et al. Prospective study of diarrheal illnesses in northeastern Brazil: patterns of disease, nutritional impact, etiologies, and risk factors. J Infect Dis. 1983;148:986–97.
    1. Black RE, Brown KH, Becker S. Effects of diarrhea associated with specific enteropathogens on the growth of children in rural Bangladesh. Pediatrics. 1984;73:799–805.
    1. Bairagi R, Chowdhury MK, Kim YJ, Curlin GT, Gray RH. The association between malnutrition and diarrhoea in rural Bangladesh. Int J Epidemiol. 1987;16:477–81.
    1. Borghol N, Suderman M, McArdle W, Racine A, Hallett M, Pembrey M, et al. Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol. 2012;41:62–74. doi:

Source: PubMed

3
Suscribir