Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice

Mohamad F Aslam, David M Frazer, Nuno Faria, Sylvaine F A Bruggraber, Sarah J Wilkins, Cornel Mirciov, Jonathan J Powell, Greg J Anderson, Dora I A Pereira, Mohamad F Aslam, David M Frazer, Nuno Faria, Sylvaine F A Bruggraber, Sarah J Wilkins, Cornel Mirciov, Jonathan J Powell, Greg J Anderson, Dora I A Pereira

Abstract

The ferritin core is composed of fine nanoparticulate Fe(3+) oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe(3+) polyoxohydroxide (nanoFe(3+)). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe(2+) sulfate (FeSO4), nanoFe(3+), or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe(3+) was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe(3+) are equally bioavailable in WT mice, and at wk 8 the mean ± SEM hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe(3+) group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe(3+) is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.

Keywords: basolateral export; hepcidin; iron homeostasis; knockout mice; nanoiron.

© FASEB.

Figures

Figure 1.
Figure 1.
Hb levels in mice during dietary iron repletion. Hb values for WT (solid trace) and Fpn KO (dashed trace) mice in the control Fe-sufficient (i.e., non-iron-depleted) group (A), the Fe-deficient group (B), the FeSO4-supplemented group (C), and the nanoFe3+-supplemented group (D) after iron depletion (study wk 4), 1 wk into the iron repletion period (study wk 5), 2 wk into the iron repletion period (study wk 6), and at the end of the iron repletion period (study wk 8) as per study outline presented in Supplemental Fig. S2. Arrows (C, D) indicate the start of iron repletion with FeSO4- or nanoFe3+-supplemented diets, respectively. Values are means ± sd. Numbers in each group are as follows: Fe-sufficient, n = 6 WT and n = 8 Fpn KO; Fe-deficient, n = 6 WT and n = 6 Fpn KO; FeSO4, n = 4 WT and n = 9 Fpn KO; nanoFe3+, n = 8 WT and n = 6 Fpn KO. *P ≤ 0.01, **P ≤ 0.007, ***P ≤ 0.0002, ****P < 0.0001 vs. Fpn-KO mice.
Figure 2.
Figure 2.
Tissue Fe distribution. Representative images of Perls' Prussian blue staining of duodenum and spleen of WT and Fpn-KO mice in the Fe-deficient (A), control Fe-sufficient (B), FeSO4-supplemented (C), or nanoFe3+-supplemented (D) groups, defined as per study outline presented in Supplemental Fig. S2. Arrows indicate example locations of iron staining in the tissues. Scale bars = 30 μm.
Figure 3.
Figure 3.
Liver and spleen nonheme iron levels. Hepatic iron (A) and splenic iron (B) levels of WT (solid bars) and Fpn-KO (open bars) mice of the control Fe-sufficient (i.e., non-iron-depleted) group, Fe-deficient group, FeSO4-supplemented group, and nanoFe3+-supplemented group. Data represent means ± sd. Numbers in each group are as follows: Fe-sufficient, n = 6 WT and n = 8 Fpn KO; Fe-deficient, n = 6 WT and n = 6 Fpn KO; FeSO4, n = 4 WT and n = 9 Fpn KO; nanoFe3+, n = 8 WT and n = 6 Fpn KO. *P ≤ 0.04, **P ≤ 0.006, ***P ≤ 0.0009, ****P < 0.0001.
Figure 4.
Figure 4.
Expression of Slc11a2 mRNA (A) in isolated enterocytes and Hamp1 (B) in the liver. Data shown for WT (solid bars) and Fpn-KO (open bars) mice in the control Fe-sufficient (i.e., non-iron-depleted) group, Fe-deficient group, FeSO4-supplemented group, and nanoFe3+-supplemented group. Values are means ± sd of the log2-transformed gene expression in relation to the housekeeping gene HPRT. Numbers in each group are as follows: Fe-sufficient, n = 6 WT and n = 8 Fpn KO; Fe-deficient, n = 6 WT and n = 6 Fpn KO; FeSO4, n = 4 WT and n = 9 Fpn KO; nanoFe3+, n = 8 WT and n = 6 Fpn KO. **P ≤ 0.007, ***P ≤ 0.0006, ****P < 0.0001.
Figure 5.
Figure 5.
Serum iron levels in Fpn-KO (open bars) and WT (solid bars) mice following 30 min exposure of duodenal loops to iron. Duodenal loops in male mice (8–12 wk old) were infused with either saline (control), 500 μM iron as FeNTA2, or 500 μM iron as nanoFe3+. Data represent means ± sd. Numbers in each group are as follows: saline control, n = 6 WT and n = 7 Fpn KO; FeNTA2, n = 7 WT and n = 7 Fpn KO; nanoFe3+, n = 10 WT and n = 9 Fpn KO. *P ≤ 0.04, **P = 0.007.

References

    1. World Health Organization (2008) Global Database on Anaemia, World Health Organization, Geneva, Switzerland
    1. World Health Organization (2002) The World Health Report. Reducing Risks, Promoting Healthy Life, World Health Organization, Geneva, Switzerland
    1. Ezzati M., Lopez A. D., Rodgers A., Vander Hoorn S., Murray C. J. (2002) Selected major risk factors and global and regional burden of disease. Lancet 360, 1347–1360
    1. World Health Organization (2008) The Global Burden of Disease: 2004 Update pp. 1–146, World Health Organization, Geneva, Switzerland
    1. Cancelo-Hidalgo M. J., Castelo-Branco C., Palacios S., Haya-Palazuelos J., Ciria-Recasens M., Manasanch J., Pérez-Edo L. (2013) Tolerability of different oral iron supplements: a systematic review. Curr. Med. Res. Opin. 29, 291–303
    1. Peña-Rosas Juan P., De-Regil Luz M., Dowswell T., Viteri Fernando E. (2012) Daily oral iron supplementation during pregnancy. In Cochrane Database of Systematic Reviews, John Wiley & Sons, Ltd., Chichester, UK
    1. Seril D. N., Liao J., Ho K. L., Warsi A., Yang C. S., Yang G. Y. (2002) Dietary iron supplementation enhances DSS-induced colitis and associated colorectal carcinoma development in mice. Dig. Dis. Sci. 47, 1266–1278
    1. Radulescu S., Brookes M. J., Salgueiro P., Ridgway R. A., McGhee E., Anderson K., Ford S. J., Stones D. H., Iqbal T. H., Tselepis C., Sansom O. J. (2012) Luminal iron levels govern intestinal tumorigenesis after apc loss in vivo. Cell Rep. 2, 270–282
    1. Coplin M., Schuette S., Leichtmann G., Lashner B. (1991) Tolerability of iron: a comparison of bis-glycino iron II and ferrous sulfate. Clin. Ther. 13, 606–612
    1. Dostal A., Chassard C., Hilty F. M., Zimmermann M. B., Jaeggi T., Rossi S., Lacroix C. (2012) Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J. Nutr. 142, 271–277
    1. Zimmermann M. B., Chassard C., Rohner F., N′Goran E., K., Nindjin C., Dostal A., Utzinger J., Ghattas H., Lacroix C., Hurrell R. F. (2010) The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire. Am. J. Clin. Nutr. 92, 1406–1415
    1. Werner T., Wagner S. J., Martinez I., Walter J., Chang J. S., Clavel T., Kisling S., Schuemann K., Haller D. (2011) Depletion of luminal iron alters the gut microbiota and prevents Crohn's disease-like ileitis. Gut 60, 325–333
    1. Kortman G. A., Boleij A., Swinkels D. W., Tjalsma H. (2012) Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface. PLoS One 7, e29968.
    1. Powell J. J., Bruggraber S. F., Faria N., Poots L. K., Hondow N., Pennycook T. J., Latunde-Dada G. O., Simpson R. J., Brown A. P., Pereira D. I. (2014) A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity. [E-pub ahead of print] Nanomedicine 10.1016/j.nano.2013.12.011
    1. Pan Y. H., Sader K., Powell J. J., Bleloch A., Gass M., Trinick J., Warley A., Li A., Brydson R., Brown A. (2009) 3D morphology of the human hepatic ferritin mineral core: new evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images. J. Struct. Biol. 166, 22–31
    1. Tosha T., Behera R. K., Ng H. L., Bhattasali O., Alber T., Theil E. C. (2012) Ferritin protein nanocage ion channels: gating by N-terminal extensions. J. Biol. Chem. 287, 13016–13025
    1. Pereira D. I., Mergler B. I., Faria N., Bruggraber S. F., Aslam M. F., Poots L. K., Prassmayer L., Lonnerdal B., Brown A. P., Powell J. J. (2013) Caco-2 cell acquisition of dietary iron(III) invokes a nanoparticulate endocytic pathway. PLoS One 8, e81250.
    1. Dorey C., Cooper C., Dickson D. P., Gibson J. F., Simpson R. J., Peters T. J. (1993) Iron speciation at physiological pH in media containing ascorbate and oxygen. Br. J. Nutr. 70, 157–169
    1. Simpson R. J., Peters T. J. (1990) Forms of soluble iron in mouse stomach and duodenal lumen: significance for mucosal uptake. Br. J. Nutr. 63, 79–89
    1. Miret S., Simpson R. J., McKie A. T. (2003) Physiology and molecular biology of dietary iron absorption. Annu. Rev. Nutr. 23, 283–301
    1. McKie A. T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., Miret S., Bomford A., Peters T. J., Farzaneh F. (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299–309
    1. McKie A. T. (2008) The role of Dcytb in iron metabolism: an update. Biochem. Soc. Trans. 36, 1239–1241
    1. Ohgami R. S., Campagna D. R., McDonald A., Fleming M. D. (2006) The Steap proteins are metalloreductases. Blood 108, 1388–1394
    1. Gunshin H., Fujiwara Y., Custodio A. O., Direnzo C., Robine S., Andrews N. C. (2005) Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J. Clin. Invest. 115, 1258–1266
    1. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hediger M. A. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488
    1. Theil E. C. (2004) Iron, ferritin, and nutrition. Annu. Rev. Nutr. 24, 327–343
    1. Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., Paw B. H., Drejer A., Barut B., Zapata A., Law T. C., Brugnara C., Kingsley P. D., Palis J., Fleming M. D., Andrews N. C., Zon L. I. (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781
    1. Abboud S., Haile D. J. (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906–19912
    1. Nemeth E., Ganz T. (2006) Regulation of iron metabolism by hepcidin. Annu. Rev. Nutr. 26, 323–342
    1. Donovan A., Lima C. A., Pinkus J. L., Pinkus G. S., Zon L. I., Robine S., Andrews N. C. (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1, 191–200
    1. Ganz T. (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102, 783–788
    1. Nemeth E., Tuttle M. S., Powelson J., Vaughn M. B., Donovan A., Ward D. M., Ganz T., Kaplan J. (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093
    1. Ganz T., Nemeth E. (2012) Hepcidin and iron homeostasis. Biochim. Biophys. Acta 1823, 1434–1443
    1. Drakesmith H., Prentice A. M. (2012) Hepcidin and the iron-infection axis. Science 338, 768–772
    1. Bregman D. B., Morris D., Koch T. A., He A., Goodnough L. T. (2013) Hepcidin levels predict nonresponsiveness to oral iron therapy in patients with iron deficiency anemia. Am. J. Hematol. 88, 97–101
    1. Prentice A. M., Doherty C. P., Abrams S. A., Cox S. E., Atkinson S. H., Verhoef H., Armitage A. E., Drakesmith H. (2012) Hepcidin is the major predictor of erythrocyte iron incorporation in anemic African children. Blood 119, 1922–1928
    1. Reeves P. G., Nielsen F. H., Fahey G. C., Jr. (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951
    1. Powell J. J., McNaughton S. A., Jugdaohsingh R., Anderson S. H., Dear J., Khot F., Mowatt L., Gleason K. L., Sykes M., Thompson R. P., Bolton-Smith C., Hodson M. J. (2005) A provisional database for the silicon content of foods in the United Kingdom. Br. J. Nutr. 94, 804–812
    1. Frazer D., Wilkins S., Becker E., Murphy T., Vulpe C., McKie A., Anderson G. (2003) A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut 52, 340–346
    1. Bunting H. (1949) The histochemical detection of iron in tissues. Biotech. Histochem. 24, 109–115
    1. Rebouche C. J., Wilcox C. L., Widness J. A. (2004) Microanalysis of non-heme iron in animal tissues. J. Biochem. Biophys. Meth. 58, 239–251
    1. Darshan D., Wilkins S. J., Frazer D. M., Anderson G. J. (2011) Reduced expression of ferroportin-1 mediates hyporesponsiveness of suckling rats to stimuli that reduce iron absorption. Gastroenterology 141, 300–309
    1. Frazer D. M., Wilkins S. J., Becker E. M., Vulpe C. D., Mckie A. T., Trinder D., Anderson G. J. (2002) Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 123, 835–844
    1. Barrand M. A., Hider R. C., Callingham B. A. (1990) The importance of reductive mechanisms for intestinal uptake of iron from ferric maltol and ferric nitrilotriacetic acid (NTA). J. Pharm. Pharmacol. 42, 279–282
    1. Zimmermann M. B., Biebinger R., Egli I., Zeder C., Hurrell R. F. (2011) Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals. Br. J. Nutr. 105, 1245–1250
    1. Wollenberg P., Rummel W. (1987) Dependence of intestinal iron absorption on the valency state of iron. Naunyn Schmiedebergs Arch. Pharmacol. 336, 578–582
    1. Antileo E., Garri C., Tapia V., Munoz J. P., Chiong M., Nualart F., Lavandero S., Fernandez J., Nunez M. T. (2013) Endocytic pathway of exogenous iron-loaded ferritin in intestinal epithelial (Caco-2) cells. Am. J. Physiol. Gastrointest. Liver. Physiol. 304, G655–G661
    1. Kalgaonkar S., Lonnerdal B. (2009) Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells. J. Nutr. Biochem. 20, 304–311
    1. San Martin C. D., Garri C., Pizarro F., Walter T., Theil E. C., Nunez M. T. (2008) Caco-2 intestinal epithelial cells absorb soybean ferritin by mu2 (AP2)-dependent endocytosis. J. Nutr. 138, 659–666
    1. Theil E. C., Chen H., Miranda C., Janser H., Elsenhans B., Núñez M. T., Pizarro F., Schümann K. (2012) Absorption of iron from ferritin is independent of heme iron and ferrous salts in women and rat intestinal segments. J. Nutr. 142, 478–483
    1. LaVaute T., Smith S., Cooperman S., Iwai K., Land W., Meyron-Holtz E., Drake S. K., Miller G., Abu-Asab M., Tsokos M. (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat. Genet. 27, 209–214
    1. Chen H., Su T., Attieh Z. K., Fox T. C., McKie A. T., Anderson G. J., Vulpe C. D. (2003) Systemic regulation of Hephaestin and Ireg1 revealed in studies of genetic and nutritional iron deficiency. Blood 102, 1893–1899
    1. Dresow B., Petersen D., Fischer R., Nielsen P. (2008) Non-transferrin-bound iron in plasma following administration of oral iron drugs. Biometals 21, 273–276
    1. Hurrell R. F. (2011) Safety and efficacy of iron supplements in malaria-endemic areas. Ann. Nutr. Metab. 59, 64–66
    1. Lomer M. C., Cook W. B., Jan-Mohamed H. J., Hutchinson C., Liu D. Y., Hider R. C., Powell J. J. (2012) Iron requirements based upon iron absorption tests are poorly predicted by haematological indices in patients with inactive inflammatory bowel disease. Br. J. Nutr. 107, 1806–1811
    1. Schumann K., Solomons N. W., Romero-Abal M. E., Orozco M., Weiss G., Marx J. (2012) Oral administration of ferrous sulfate, but not of iron polymaltose or sodium iron ethylenediaminetetraacetic acid (NaFeEDTA), results in a substantial increase of non-transferrin-bound iron in healthy iron-adequate men. Food. Nutr. Bull. 33, 128–136
    1. Powell J., Bruggraber S., Faria N., Pereira D., inventors (2008, August 14) Ligand modified poly oxo-hydroxy metal ion materials, their uses and processes for their preparation. UK patent WO/2008/096130

Source: PubMed

3
Suscribir