Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study

Joaquin J Jimenez, Tongyu C Wikramanayake, Wilma Bergfeld, Maria Hordinsky, Janet G Hickman, Michael R Hamblin, Lawrence A Schachner, Joaquin J Jimenez, Tongyu C Wikramanayake, Wilma Bergfeld, Maria Hordinsky, Janet G Hickman, Michael R Hamblin, Lawrence A Schachner

Abstract

Significance: Male and female pattern hair loss are common, chronic dermatologic disorders with limited therapeutic options. In recent years, a number of commercial devices using low-level laser therapy have been promoted, but there have been little peer-reviewed data on their efficacy.

Objective: To determine whether treatment with a low-level laser device, the US FDA-cleared HairMax Lasercomb®, increases terminal hair density in both men and women with pattern hair loss.

Methods: Randomized, sham device-controlled, double-blind clinical trials were conducted at multiple institutional and private practices. A total of 146 male and 188 female subjects with pattern hair loss were screened. A total of 128 male and 141 female subjects were randomized to receive either a lasercomb (one of three models) or a sham device in concealed sealed packets, and were treated on the whole scalp three times a week for 26 weeks. Terminal hair density of the target area was evaluated at baseline and at 16- and 26-week follow-ups, and analyzed to determine whether the hypothesis formulated prior to data collection, that lasercomb treatment would increase terminal hair density, was correct. The site investigators and the subjects remained blinded to the type of device they dispensed/received throughout the study. The evaluator of masked digital photographs was blinded to which trial arm the subject belonged.

Results: Seventy-eight, 63, 49, and 79 subjects were randomized in four trials of 9-beam lasercomb treatment in female subjects, 12-beam lasercomb treatment in female subjects, 7-beam lasercomb treatment in male subjects, and 9- and 12-beam lasercomb treatment in male subjects, compared with the sham device, respectively. Nineteen female and 25 male subjects were lost to follow-up. Among the remaining 122 female and 103 male subjects in the efficacy analysis, the mean terminal hair count at 26 weeks increased from baseline by 20.2, 20.6, 18.4, 20.9, and 25.7 per cm2 in 9-beam lasercomb-treated female subjects, 12-beam lasercomb-treated female subjects, 7-beam lasercomb-treated male subjects, and 9- and 12-beam lasercomb-treated male subjects, respectively, compared with 2.8 (p<0.0001), 3.0 (p<0.0001), 1.6 (p=0.0017), 9.4 (p=0.0249), and 9.4 (p=0.0028) in sham-treated subjects (95% confidence interval). The increase in terminal hair density was independent of the age and sex of the subject and the lasercomb model. Additionally, a higher percentage of lasercomb-treated subjects reported overall improvement of hair loss condition and thickness and fullness of hair in self-assessment, compared with sham-treated subjects. No serious adverse events were reported in any subject receiving the lasercomb in any of the four trials.

Conclusions and relevance: We observed a statistically significant difference in the increase in terminal hair density between lasercomb- and sham-treated subjects. No serious adverse events were reported. Our results suggest that low-level laser treatment may be an effective option to treat pattern hair loss in both men and women. Additional studies should be considered to determine the long-term effects of low-level laser treatment on hair growth and maintenance, and to optimize laser modality.

Figures

Fig. 1
Fig. 1
Profile of the four randomized, sham-controlled trials of lasercomb treatment of male and female pattern hair loss. Dates of recruitments are indicated
Fig. 2
Fig. 2
ad Mean changes in terminal hair density (count per cm2) from baseline in subjects treated with the lasercomb or sham device. Bars indicate standard deviation. eh Categorical changes in terminal hair density (count per cm2) from baseline to 26 weeks in subjects treated with the lasercomb or sham device. Shown are p values at 26 weeks
Fig. 3
Fig. 3
Male and female pattern hair loss before and after lasercomb treatment. Global photographs of a female subject, at baseline (a) and after 26 weeks (b) of the 12-beam lasercomb treatment. Macrophotographs of a male subject, at baseline (c) and after 26 weeks (d) of the 9-beam lasercomb treatment. Increased hair count through conversion of vellus or intermediate follicles to active follicles producing terminal hair (ovals) or resting telogen to active anagen follicles (rectangles) is highlighted

References

    1. Olsen EA, Messenger AG, Shapiro J, Bergfeld WF, Hordinsky MK, Roberts JL, et al. Evaluation and treatment of male and female pattern hair loss. J Am Acad Dermatol. 2005;52(2):301–311. doi: 10.1016/j.jaad.2004.04.008.
    1. Hoffmann R, Happle R. Current understanding of androgenetic alopecia: Part I. Etiopathogenesis. Eur J Dermatol. 2000;10(4):319–327.
    1. Gan DC, Sinclair RD. Prevalence of male and female pattern hair loss in Maryborough. J Investig Dermatol Symp Proc. 2005;10(3):184–189. doi: 10.1111/j.1087-0024.2005.10102.x.
    1. McElwee KJ, Shapiro JS. Promising therapies for treating and/or preventing androgenic alopecia. Skin Therapy Lett. 2012;17(6):1–4.
    1. Rangwala S, Rashid RM. Alopecia: a review of laser and light therapies. Dermatol Online J. 2012;18(2):3.
    1. Avram MR, Rogers NE. The use of low-level light for hair growth: part I. J Cosmet Laser Ther. 2009;11(2):110–117. doi: 10.1080/14764170902842531.
    1. Lanzafame RJ, Blanche RR, Bodian AB, Chiacchierini RP, Fernandez-Obregon A, Kazmirek ER. The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med. 2013;45(8):487–495.
    1. Leavitt M, Charles G, Heyman E, Michaels D. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin Drug Investig. 2009;29(5):283–292. doi: 10.2165/00044011-200929050-00001.
    1. Satino JL, Markou M. Hair regrowth and increased hair tensile strength using the HairMax LaserComb for low-level laser therapy. Int J Cosmetic Surg Aesthetic Dermatol. 2003;5(2):113–117. doi: 10.1089/153082003769591209.
    1. Norwood OT. Male pattern baldness: classification and incidence. South Med J. 1975;68(11):1359–1365. doi: 10.1097/00007611-197511000-00009.
    1. Ludwig E. Classification of the types of androgenetic alopecia (common baldness) occurring in the female sex. Br J Dermatol. 1977;97(3):247–254. doi: 10.1111/j.1365-2133.1977.tb15179.x.
    1. Price VH, Roberts JL, Hordinsky M, Olsen EA, Savin R, Bergfeld W, et al. Lack of efficacy of finasteride in postmenopausal women with androgenetic alopecia. J Am Acad Dermatol. 2000;43(5 Pt 1):768–776. doi: 10.1067/mjd.2000.107953.
    1. Savin R. Evaluating androgenetic alopecia in male and female patients: an improved visual method of classifying and tracking hair loss using computer-generated male and female pattern and density scales. Kalamazoo: The Upjohn Company; 1994.
    1. Fitzpatrick TB, Ortonne J-P. Normal skin color and general consideration of pigmentary disorders. In: Freedberg IM, Eisen Z, Wolff K, Austen KF, Goldsmith LA, Katz SI, editors. Fitzpatrick’s dermatology in general medicine. New York: McGraw-Hill; 2003. pp. 819–826.
    1. Bjordal JM, Couppe C, Chow RT, Tuner J, Ljunggren EA. A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust J Physiother. 2003;49(2):107–116. doi: 10.1016/S0004-9514(14)60127-6.
    1. Brosseau L, Welch V, Wells G, et al. Low level laser therapy (classes I, II and III) in the treatment of rheumatoid arthritis. Cochrane Database Syst Rev. 2000(2):CD002049.
    1. Cauwels RG, Martens LC. Low level laser therapy in oral mucositis: a pilot study. Eur Arch Paediatr Dent. 2011;12(2):118–123. doi: 10.1007/BF03262791.
    1. Christie A, Jamtvedt G, Dahm KT, Moe RH, Haavardsholm EA, Hagen KB. Effectiveness of nonpharmacological and nonsurgical interventions for patients with rheumatoid arthritis: an overview of systematic reviews. Phys Ther. 2007;87(12):1697–1715. doi: 10.2522/ptj.20070039.
    1. Jamtvedt G, Dahm KT, Holm I, Flottorp S. Measuring physiotherapy performance in patients with osteoarthritis of the knee: a prospective study. BMC Health Serv Res. 2008;8:145. doi: 10.1186/1472-6963-8-145.
    1. Metelitsa AI, Green JB. Home-use laser and light devices for the skin: an update. Semin Cutan Med Surg. 2011;30(3):144–147. doi: 10.1016/j.sder.2011.05.005.
    1. Schubert MM, Eduardo FP, Guthrie KA, Franquin JC, Bensadoun RJ, Migliorati CA, et al. A phase III randomized double-blind placebo-controlled clinical trial to determine the efficacy of low level laser therapy for the prevention of oral mucositis in patients undergoing hematopoietic cell transplantation. Support Care Cancer. 2007;15(10):1145–1154. doi: 10.1007/s00520-007-0238-7.
    1. Silva GB, Mendonca EF, Bariani C, Antunes HS, Silva MA. The prevention of induced oral mucositis with low-level laser therapy in bone marrow transplantation patients: a randomized clinical trial. Photomed Laser Surg. 2011;29(1):27–31. doi: 10.1089/pho.2009.2699.
    1. Avram MR, Leonard RT, Jr, Epstein ES, Williams JL, Bauman AJ. The current role of laser/light sources in the treatment of male and female pattern hair loss. J Cosmet Laser Ther. 2007;9(1):27–28. doi: 10.1080/14764170601134479.
    1. Lubart R, Eichler M, Lavi R, Friedman H, Shainberg A. Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Surg. 2005;23(1):3–9. doi: 10.1089/pho.2005.23.3.
    1. Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5–6):559–567. doi: 10.1016/j.mito.2004.07.033.
    1. Pastore D, Greco M, Passarella S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol. 2000;76(6):863–870. doi: 10.1080/09553000050029020.
    1. Arany PR, Nayak RS, Hallikerimath S, Limaye AM, Kale AD, Kondaiah P. Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound Repair Regen. 2007;15(6):866–874. doi: 10.1111/j.1524-475X.2007.00306.x.
    1. de Lima FM, Villaverde AB, Albertini R, Correa JC, Carvalho RL, Munin E, et al. Dual effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines. Lasers Surg Med. 2011;43(5):410–420. doi: 10.1002/lsm.21053.
    1. Jaworsky C, Kligman AM, Murphy GF. Characterization of inflammatory infiltrates in male pattern alopecia: implications for pathogenesis. Br J Dermatol. 1992;127(3):239–246. doi: 10.1111/j.1365-2133.1992.tb00121.x.
    1. Mafra de Lima F, Villaverde AB, Salgado MA, Castro-Faria-Neto HC, Munin E, Albertini R, et al. Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. J Photochem Photobiol B. 2010;101(3):271–278. doi: 10.1016/j.jphotobiol.2010.07.012.
    1. Magro CM, Rossi A, Poe J, Manhas-Bhutani S, Sadick N. The role of inflammation and immunity in the pathogenesis of androgenetic alopecia. J Drugs Dermatol. 2011;10(12):1404–1411.
    1. Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci. 2000;108(1):29–34. doi: 10.1034/j.1600-0722.2000.00783.x.
    1. Berger RS, Fu JL, Smiles KA, Turner CB, Schnell BM, Werchowski KM, et al. The effects of minoxidil, 1% pyrithione zinc and a combination of both on hair density: a randomized controlled trial. Br J Dermatol. 2003;149(2):354–362. doi: 10.1046/j.1365-2133.2003.05435.x.
    1. Olsen EA, Dunlap FE, Funicella T, Koperski JA, Swinehart JM, Tschen EH, et al. A randomized clinical trial of 5% topical minoxidil versus 2% topical minoxidil and placebo in the treatment of androgenetic alopecia in men. J Am Acad Dermatol. 2002;47(3):377–385. doi: 10.1067/mjd.2002.124088.
    1. Lucky AW, Piacquadio DJ, Ditre CM, Dunlap F, Kantor I, Pandya AG, et al. A randomized, placebo-controlled trial of 5% and 2% topical minoxidil solutions in the treatment of female pattern hair loss. J Am Acad Dermatol. 2004;50(4):541–553. doi: 10.1016/j.jaad.2003.06.014.
    1. Leyden J, Dunlap F, Miller B, Winters P, Lebwohl M, Hecker D, et al. Finasteride in the treatment of men with frontal male pattern hair loss. J Am Acad Dermatol. 1999;40(6 Pt 1):930–937. doi: 10.1016/S0190-9622(99)70081-2.
    1. Roberts JL, Fiedler V, Imperato-McGinley J, Whiting D, Olsen E, Shupack J, et al. Clinical dose ranging studies with finasteride, a type 2 5alpha-reductase inhibitor, in men with male pattern hair loss. J Am Acad Dermatol. 1999;41(4):555–563.
    1. Kaufman KD, Olsen EA, Whiting D, Savin R, DeVillez R, Bergfeld W, et al. Finasteride in the treatment of men with androgenetic alopecia: Finasteride Male Pattern Hair Loss Study Group. J Am Acad Dermatol. 1998;39(4 Pt 1):578–589. doi: 10.1016/S0190-9622(98)70007-6.
    1. Blume-Peytavi U, Hillmann K, Dietz E, Canfield D. Garcia Bartels N. A randomized, single-blind trial of 5 % minoxidil foam once daily versus 2% minoxidil solution twice daily in the treatment of androgenetic alopecia in women. J Am Acad Dermatol. 2011;65(6):1126–1134 e2. doi: 10.1016/j.jaad.2010.09.724.

Source: PubMed

3
Suscribir