ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions

Briana K Shimada, Viola Pomozi, Janna Zoll, Sheree Kuo, Ludovic Martin, Olivier Le Saux, Briana K Shimada, Viola Pomozi, Janna Zoll, Sheree Kuo, Ludovic Martin, Olivier Le Saux

Abstract

Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the "PXE gene" and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds.

Keywords: ABCC6; calcification; generalized arterial calcification of infancy; pseudoxanthoma elasticum; pyrophosphate; therapies.

Conflict of interest statement

The authors have no conflict of interest to report.

Figures

Figure 1
Figure 1
The ABCC6 pathway influences calcification and extracellular purinergic metabolism. ABCC6 facilitates the cellular efflux of ATP from liver and other tissues/cells, which is quickly converted to pyrophosphate (PPi), a potent inhibitor of mineralization. Decreased plasma PPi levels cause calcification in PXE and GACI. CD73 activity leads to adenosine production, which affects many biological activities including the inhibition of TNAP synthesis. TNAP degrades PPi into inorganic phosphate (Pi), an activator of calcification, which leads to vascular calcification in CAL JA patients.
Figure 2
Figure 2
Plasma pyrophosphate levels do not correlate with the calcification phenotype in mice. Plasma pyrophosphate levels in Abcc6−/− mice (C57BL/6J background), and in C3H/H1J mice with a naturally occurring Abcc6 mutation are virtually identical and significantly lower than wild type C57BL/6J mice. However, at 12 months of age, Abcc6−/− mice present a much more pronounced vibrissae calcification as shown on this μCT scan rendering (right, arrows). Plasma PPi results are shown as means +SEM. p-values were determined by Student’s t-test. ** p < 0.01, **** p < 0.0001. Derived from [111].
Figure 3
Figure 3
Tested therapeutic Interventions targeting different steps in the ABCC6 pathway to prevent calcification in PXE/GACI. Red boxes point to approaches that were tested in preclinical models and that are currently under human evaluation/trials.

References

    1. He K., Sawczyk M., Liu C., Yuan Y., Song B., Deivanayagam R., Nie A., Hu X., Dravid V.P., Lu J., et al. Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy. Sci. Adv. 2020;6:eaaz7524. doi: 10.1126/sciadv.aaz7524.
    1. Atzeni F., Sarzi-Puttini P., Bevilacqua M. Calcium deposition and associated chronic diseases (atherosclerosis, diffuse idiopathic skeletal hyperostosis, and others) Rheum. Dis. Clin. N. Am. 2006;32:413–426. doi: 10.1016/j.rdc.2006.02.003.
    1. Rutsch F., Nitschke Y., Terkeltaub R. Genetics in arterial calcification: Pieces of a puzzle and cogs in a wheel. Circ. Res. 2011;109:578–592. doi: 10.1161/CIRCRESAHA.111.247965.
    1. Ruiz J.L., Hutcheson J.D., Aikawa E. Cardiovascular calcification: Current controversies and novel concepts. Cardiovasc. Pathol. 2015;24:207–212. doi: 10.1016/j.carpath.2015.03.002.
    1. Bergen A.A., Plomp A.S., Schuurman E.J., Terry S.F., Breuning M.H., Dauwerse H.G., Swart J., Kool M., van Soest S., Baas F., et al. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat. Genet. 2000;25:228–231. doi: 10.1038/76109.
    1. Le Saux O., Urban Z., Tschuch C., Csiszar K., Bacchelli B., Quaglino D., Pasquali-Ronchetti I., Pope F.M., Richards A., Terry S.F., et al. Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat. Genet. 2000;25:223–227. doi: 10.1038/76102.
    1. Ringpfeil F., Lebwohl M.G., Christiano A.M., Uitto J. Pseudoxanthoma elasticum: Mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proc. Natl. Acad. Sci. USA. 2000;97:6001–6006. doi: 10.1073/pnas.100041297.
    1. Jansen R.S., Küçükosmanoglu A., de Haas M., Sapthu S., Otero J.A., Hegman I.E.M., Bergen A.A.B., Gorgels T.G.M.F., Borst P., van de Wetering K. ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc. Natl. Acad. Sci. USA. 2013;110:20206–20211. doi: 10.1073/pnas.1319582110.
    1. Jansen R.S., Duijst S., Mahakena S., Sommer D., Szeri F., Váradi A., Plomp A.S., Bergen A.A.B., Elferink R.P.J.O., Borst P., et al. ABCC6–Mediated ATP Secretion by the Liver Is the Main Source of the Mineralization Inhibitor Inorganic Pyrophosphate in the Systemic Circulation—Brief Report. Arter. Thromb. Vasc. Biol. 2014;34:1985–1989. doi: 10.1161/ATVBAHA.114.304017.
    1. Markello T.C., Pak L.K., St. Hilaire C., Dorward H., Ziegler S.G., Chen M.Y., Chaganti K., Nussbaum R.L., Boehm M., Gahl W.A. Vascular pathology of medial arterial calcifications in NT5E deficiency: Implications for the role of adenosine in pseudoxanthoma elasticum. Mol. Genet. Metab. 2011;103:44–50. doi: 10.1016/j.ymgme.2011.01.018.
    1. Miglionico R., Armentano M.F., Carmosino M., Salvia A.M., Cuviello F., Bisaccia F., Ostuni A. Dysregulation of gene expression in ABCC6 knockdown HepG2 cells. Cell. Mol. Biol. Lett. 2014;19:1–10. doi: 10.2478/s11658-014-0208-2.
    1. Aherrahrou Z., Doehring L.C., Ehlers E.-M., Liptau H., Depping R., Linsel-Nitschke P., Kaczmarek P.M., Erdmann J., Schunkert H. An Alternative Splice Variant in Abcc6, the Gene Causing Dystrophic Calcification, Leads to Protein Deficiency in C3H/He Mice. J. Biol. Chem. 2008;283:7608–7615. doi: 10.1074/jbc.M708290200.
    1. Brampton C., Aherrahrou Z., Chen L.-H., Martin L., Bergen A.A., Gorgels T.G., Erdfdi J., Schunkert H., Szabó Z., Váradi A., et al. The Level of Hepatic ABCC6 Expression Determines the Severity of Calcification after Cardiac Injury. Am. J. Pathol. 2014;184:159–170. doi: 10.1016/j.ajpath.2013.09.015.
    1. Meng H., Vera I., Che N., Wang X., Wang S.S., Ingram-Drake L., Schadt E.E., Drake T.A., Lusis A.J. Identification of Abcc6 as the major causal gene for dystrophic cardiac calcification in mice through inte-grative genomics. Proc. Natl. Acad. Sci. USA. 2007;104:4530–4535. doi: 10.1073/pnas.0607620104.
    1. Kalal I.G., Seetha D., Panda A., Nitschke Y., Rutsch F. Molecular diagnosis of generalized arterial calcification of infancy (GACI) J. Cardiovasc. Dis. Res. 2012;3:150–154. doi: 10.4103/0975-3583.95373.
    1. Le Boulanger G., Labreze C., Croue A., Schurgers L.J., Chassaing N., Wittkampf T., Rutsch F., Martin L. An unusual severe vascular case of pseudoxanthoma elasticum presenting as generalized arterial calcifica-tion of infancy. Am. J. Med. Genet. A. 2010;152:118–123. doi: 10.1002/ajmg.a.33162.
    1. Nitschke Y., Baujat G., Botschen U., Wittkampf T., du Moulin M., Stella J., le Merrer M., Guest G., Lambot K., Tazarourte-Pinturier M.-F., et al. Generalized Arterial Calcification of Infancy and Pseudoxanthoma Elasticum Can Be Caused by Mutations in Either ENPP1 or ABCC6. Am. J. Hum. Genet. 2012;90:25–39. doi: 10.1016/j.ajhg.2011.11.020.
    1. Pomozi V., Brampton C., van de Wetering K., Zoll J., Calio B., Pham K., Owens J.B., Marh J., Moisyadi S., Váradi A., et al. Pyrophosphate Supplementation Prevents Chronic and Acute Calcification in ABCC6-Deficient Mice. Am. J. Pathol. 2017;187:1258–1272. doi: 10.1016/j.ajpath.2017.02.009.
    1. Pomozi V., Julian C.B., Zoll J., Pham K., Kuo S., Tőkési N., Martin L., Váradi A., le Saux O. Dietary Pyrophosphate Modulates Calcification in a Mouse Model of Pseudoxanthoma Elasticum: Implication for Treatment of Patients. J. Investig. Dermatol. 2019;139:1082–1088. doi: 10.1016/j.jid.2018.10.040.
    1. Ziegler S.G., Ferreira C.R., Macfarlane E.G., Riddle R.C., Tomlinson R.E., Chew E.Y., Martin L., Ma C.-T., Sergienko E., Pinkerton A.B., et al. Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase. Sci. Transl. Med. 2017;9:eaal1669. doi: 10.1126/scitranslmed.aal1669.
    1. Borst P., Váradi A., van de Wetering K. PXE, a Mysterious Inborn Error Clarified. Trends Biochem. Sci. 2019;44:125–140. doi: 10.1016/j.tibs.2018.10.005.
    1. Ali S.A., Ng C., Votava-Smith J.K., Randolph L.M., Pitukcheewanont P. Bisphosphonate therapy in an infant with generalized arterial calcification with an ABCC6 mutation. Osteoporos. Int. 2018;29:2575–2579. doi: 10.1007/s00198-018-4639-x.
    1. Edouard T., Chabot G., Miro J., Buhas D.C., Nitschke Y., Lapierre C., Rutsch F., Alos N. Efficacy and safety of 2-year etidronate treatment in a child with generalized arterial calcification of infancy. Eur. J. Nucl. Med. Mol. Imaging. 2011;170:1585–1590. doi: 10.1007/s00431-011-1572-9.
    1. Finger R.P., Issa P.C., Schmitz-Valckenberg S., Holz F.G., Scholl H.N. Long-Term Effectiveness of Intravitreal Bevacizumab for Choroidal Neovascularization Secondary to Angioid Streaks in Pseudoxanthoma Elasticum. Retina. 2011;31:1268–1278. doi: 10.1097/IAE.0b013e318207d1dc.
    1. Uitto J., Shamban A. Heritable Skin Diseases with Molecular Defects in Collagen or Elastin. Dermatol. Clin. 1987;5:63–84. doi: 10.1016/S0733-8635(18)30767-8.
    1. Balzer F. Recherches sur les caractères anatomiques du xanthelasma. Arch. Physiol. 1884;4:65–80.
    1. Chauffard M.A. Xanthélasma disséminé et symétrique et sans insuffisance hépatique. Bull. Soc. Med. Paris. 1889;6:412–419.
    1. Rigal D. Observation pour servir à l’histoire de la chéloide diffuse xanthélasmique. Ann. Dermatol. Syphilol. 1881;2:491–501.
    1. Darier J. Pseudo-Xanthome Elastique. III Congrès International de Dermatoligie de Londres; London, UK: 1896. pp. 289–295.
    1. Neldner K.H. Pseudoxanthoma Elasticum. Int. J. Dermatol. 1988;27:98–100. doi: 10.1111/j.1365-4362.1988.tb01280.x.
    1. Truter S., Rosenbaum-Fiedler J., Sapadin A., Lebwohl M. Calcification of elastic fibers in pseudoxan-thoma elasticum. Mt. Sinai. J. Med. 1996;63:210–215.
    1. Uitto J., Boyd C.D., Lebwohl M.G., Moshell A.N., Rosenbloom J., Terry S. International Centennial Meeting on Pseudoxanthoma Elasticum: Progress in PXE Research. J. Investig. Dermatol. 1998;110:840–842. doi: 10.1046/j.1523-1747.1998.00188.x.
    1. Weenink A.C., Dijkman G., de Meijer P.H. Pseudoxanthoma elasticum and its complications: Two case reports. Neth. J. Med. 1996;49:24–29. doi: 10.1016/0300-2977(95)00079-8.
    1. Campens L., Vanakker O.M., Trachet B., Segers P., Leroy B.P., de Zaeytijd J., Voet D., de Paepe A., de Backer T., de Backer J. Characterization of Cardiovascular Involvement in Pseudoxanthoma Elasticum Families. Arter. Thromb. Vasc. Biol. 2013;33:2646–2652. doi: 10.1161/ATVBAHA.113.301901.
    1. Germain D.P., Boutouyrie P., Laloux B., Laurent S. Arterial Remodeling and Stiffness in Patients with Pseudoxanthoma Elasticum. Arter. Thromb. Vasc. Biol. 2003;23:836–841. doi: 10.1161/01.ATV.0000067428.19031.28.
    1. Kornet L., Bergen A.A., Hoeks A.P., Cleutjens J.P., Oostra R.-J., Daemen M.J., van Soest S., Reneman R.S. In patients with pseudoxanthoma elasticum a thicker and more elastic carotid artery is associated with elastin fragmentation and proteoglycans accumulation. Ultrasound Med. Biol. 2004;30:1041–1048. doi: 10.1016/j.ultrasmedbio.2004.06.004.
    1. Bertulezzi G., Paris R., Moroni M., Porta C., Nastasi G., Amadeo A. Atrial septal aneurysm in a patient with pseudoxanthoma elasticum. Acta Cardiol. 1998;53:223–225.
    1. Prunier F., Terrien G., le Corre Y., Apana A.L.Y., Bière L., Kauffenstein G., Furber A., Bergen A.A.B., Gorgels T.G.M.F., Le Saux O., et al. Pseudoxanthoma Elasticum: Cardiac Findings in Patients and Abcc6-Deficient Mouse Model. PLoS ONE. 2013;8:e68700. doi: 10.1371/journal.pone.0068700.
    1. Eddy D.D., Farber E.M. Pseudoxathoam elasticum. Internal manifestatons: A report of cases and a review of the literature. Arch. Dermatol. 1962;86:729–740. doi: 10.1001/archderm.1962.01590120027005.
    1. Kauffenstein G., Pizard A., le Corre Y., Vessières E., Grimaud L., Toutain B., Labat C., Mauras Y., Gorgels T.G., Bergen A.A., et al. Disseminated arterial calcification and enhanced myogenic response are associated with abcc6 deficiency in a mouse model of pseudoxanthoma elasticum. Arter. Thromb. Vasc. Biol. 2014;34:1045–1056. doi: 10.1161/ATVBAHA.113.302943.
    1. Fabre B., Bayle P., Bazex J., Durand D., Lamant L., Chassaing N. Pseudoxanthoma elasticum and nephrolithiasis. J. Eur. Acad. Dermatol. Venereol. 2005;19:212–215. doi: 10.1111/j.1468-3083.2005.01007.x.
    1. Mallette L.E., Mechanick J.I. Heritable syndrome of pseudoxanthoma elasticum with abnormal phosphorus and vitamin D metabolism. Am. J. Med. 1987;83:1157–1162. doi: 10.1016/0002-9343(87)90960-0.
    1. Seeger H., Mohebbi N. Pseudoxanthoma elasticum and nephrocalcinosis. Kidney Int. 2016;89:1407. doi: 10.1016/j.kint.2015.12.055.
    1. Legrand A., Cornez L., Samkari W., Mazzella J.-M., Venisse A., Boccio V., Auribault K., Keren B., Benistan K., Germain D.P., et al. Mutation spectrum in the ABCC6 gene and genotype–phenotype correlations in a French cohort with pseudoxanthoma elasticum. Genet. Med. 2017;19:909–917. doi: 10.1038/gim.2016.213.
    1. Letavernier E., Bouderlique E., Zaworski J., Martin L., Daudon M. Pseudoxanthoma Elasticum, Kidney Stones and Pyrophosphate: From a Rare Disease to Urolithiasis and Vascular Calcifications. Int. J. Mol. Sci. 2019;20:6353. doi: 10.3390/ijms20246353.
    1. Letavernier E., Kauffenstein G., Huguet L., Navasiolava N., Bouderlique E., Tang E., Delaitre L., Bazin D., de Frutos M., Gay C., et al. ABCC6 Deficiency Promotes Development of Randall Plaque. J. Am. Soc. Nephrol. 2018;29:2337–2347. doi: 10.1681/ASN.2017101148.
    1. Gheduzzi D., Sammarco R., Quaglino D., Bercovitch L., Terry S., Taylor W., Ronchetti I.P. Extracutaneous ultrastructural alterations in pseudoxanthoma elasticum. Ultrastruct. Pathol. 2003;27:375–384. doi: 10.1080/01913120390248584.
    1. Lebwohl M., Halperin J., Phelps R.G. Brief report: Occult pseudoxanthoma elasticum in patients with premature cardiovascular disease. N. Engl. J. Med. 1993;329:1237–1239. doi: 10.1056/NEJM199310213291705.
    1. Rutsch F., Vaingankar S., Johnson K., Goldfine I., Maddux B., Schauerte P., Kalhoff H., Sano K., Boisvert W.A., Superti-Furga A., et al. PC-1 Nucleoside Triphosphate Pyrophosphohydrolase Deficiency in Idiopathic Infantile Arterial Calcification. Am. J. Pathol. 2001;158:543–554. doi: 10.1016/S0002-9440(10)63996-X.
    1. Moran J.J. Idiopathic arterial calcification of infancy: A clinicopathologic study. Pathol. Annu. 1975;10:393–417.
    1. Morton R. Idiopathic arterial calcification in infancy. Histopathology. 1978;2:423–432. doi: 10.1111/j.1365-2559.1978.tb01736.x.
    1. Ramjan K.A., Roscioli T., Rutsch F., Sillence D., Munns C.F. Generalized arterial calcification of infancy: Treatment with bisphosphonates. Nat. Clin. Pract. Endocrinol. Metab. 2009;5:167–172.
    1. Rutsch F., Boyer P., Nitschke Y., Ruf N., Lorenz-Depierieux B., Wittkampf T., Weissen-Plenz G., Fischer R.J., Mughal Z., Gregory J.W., et al. Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ. Cardiovasc. Genet. 2008;1:133–140. doi: 10.1161/CIRCGENETICS.108.797704.
    1. Lorenz-Depiereux B., Schnabel D., Tiosano D., Hausler G., Strom T.M. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am. J. Hum. Genet. 2010;86:267–272. doi: 10.1016/j.ajhg.2010.01.006.
    1. Rutsch F., Ruf N., Vaingankar S., Toliat M.R., Suk A., Hohne W., Schauer G., Lehmann M., Roscioli T., Schnabel D., et al. Mutations in ENPP1 are associated with ’idiopathic’ infantile arterial calcification. Nat. Genet. 2003;34:379–381. doi: 10.1038/ng1221.
    1. Le Saux O., Martin L., Aherrahrou Z., Leftheriotis G., Varadi A., Brampton C.N. The molecular and physiological roles of ABCC6: More than meets the eye. Front. Genet. 2012;3:289. doi: 10.3389/fgene.2012.00289.
    1. Nitschke Y., Rutsch F. Generalized arterial calcification of infancy and pseudoxanthoma elasticum: Two sides of the same coin. Front. Genet. 2012;3:302. doi: 10.3389/fgene.2012.00302.
    1. Li Q., Grange D.K., Armstrong N.L., Whelan A.J., Hurley M.Y., Rishavy M.A., Hallgren K.W., Berkner K.L., Schurgers L.J., Jiang Q., et al. Mutations in the GGCX and ABCC6 Genes in a Family with Pseudoxanthoma Elasticum-Like Phenotypes. J. Investig. Dermatol. 2009;129:553–563. doi: 10.1038/jid.2008.271.
    1. Omarjee L., Nitschke Y., Verschuere S., Bourrat E., Vignon M., Navasiolava N., Leftheriotis G., Kauffenstein G., Rutsch F., Vanakker O., et al. Severe early-onset manifestations of pseudoxanthoma elasticum resulting from the cumulative effects of several deleterious mutations in ENPP1, ABCC6 and HBB: Transient improvement in ectopic calcification with sodium thiosulfate. Br. J. Dermatol. 2019;183:367–372. doi: 10.1111/bjd.18632.
    1. Bentley-Phillips B. Pseudoxanthoma elasticum-like skin changes induced by penicillamine. J. R. Soc. Med. 1985;78:787.
    1. Bolognia J.L., Braverman I. Pseudoxanthoma-elasticum-like Skin Changes Induced by Penicillamine. Dermatology. 1992;184:12–18. doi: 10.1159/000247491.
    1. Coatesworth A.P., Darnton S.J., Green R.M., Cayton R.M., Antonakopoulos G.N. A case of systemic pseudo-pseudoxanthoma elasticum with diverse symptomatology caused by long-term penicillamine use. J. Clin. Pathol. 1998;51:169–171. doi: 10.1136/jcp.51.2.169.
    1. Dhurat R., Nayak C., Pereira R., Kagne R., Khatu S. Penicillamine-induced elastosis perforans serpiginosa with abnormal “lumpy-bumpy” elastic fibers in lesional and non-lesional skin. Indian J. Dermatol. Venereol. Leprol. 2011;77:55–58. doi: 10.4103/0378-6323.74982.
    1. Aessopos A., Farmakis D., Loukopoulos D. Elastic tissue abnormalities resembling pseudoxanthoma elasticum in beta thalassemia and the sickling syndromes. Blood. 2002;99:30–35. doi: 10.1182/blood.V99.1.30.
    1. Baccarani-Contri M., Bacchelli B., Boraldi F., Quaglino D., Taparelli F., Carnevali E., Francomano M.A., Seidenari S., Bettoli V., de Sanctis V., et al. Characterization of pseudoxanthoma elasticum-like lesions in the skin of patients with beta-thalassemia. J. Am. Acad. Dermatol. 2001;44:33–39. doi: 10.1067/mjd.2001.110045.
    1. Cianciulli P., Sorrentino F., Maffei L., Amadori S., Cappabianca M.P., Foglietta E., Carnevali E., Pasquali-Ronchetti I. Cardiovascular involvement in thalassaemic patients with pseudoxanthoma elasticum-like skin lesions: A long-term follow-up study. Eur. J. Clin. Investig. 2002;32:700–706. doi: 10.1046/j.1365-2362.2002.01032.x.
    1. Farmakis D., Moyssakis I., Perakis A., Rombos Y., Deftereos S., Giakoumis A., Polymeropoulos E., Aessopos A. Unstable angina associated with coronary arterial calcification in a thalassemia intermedia patient with a pseudoxanthoma elasticum-like syndrome. Eur. J. Haematol. 2003;70:64–66. doi: 10.1034/j.1600-0609.2003.02846_70_1.x.
    1. Farmakis D., Vesleme V., Papadogianni A., Tsaftaridis P., Kapralos P., Aessopos A. Aneurysmatic dilatation of ascending aorta in a patient with beta-thalassemia and a pseudoxanthoma elasticum-like syndrome. Ann. Hematol. 2004;83:596–599. doi: 10.1007/s00277-004-0859-6.
    1. Hamlin N., Beck K., Bacchelli B., Cianciulli P., Pasquali-Ronchetti I., le Saux O. Acquired Pseudoxanthoma elasticum-like syndrome in beta-thalassaemia patients. Br. J. Haematol. 2003;122:852–854. doi: 10.1046/j.1365-2141.2003.04484.x.
    1. Klein I., Sarkadi B., Váradi A. An inventory of the human ABC proteins. Biochim. Biophys. Acta Biomembr. 1999;1461:237–262. doi: 10.1016/S0005-2736(99)00161-3.
    1. Stefková J., Poledne R., Hubácek J.A. ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol. Res. 2004;53:235–243.
    1. Dawson R.J., Locher K.P. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett. 2007;581:935–938. doi: 10.1016/j.febslet.2007.01.073.
    1. Fülöp K., Barna L., Symmons O., Závodszky P., Váradi A. Clustering of disease-causing mutations on the domain–domain interfaces of ABCC6. Biochem. Biophys. Res. Commun. 2009;379:706–709. doi: 10.1016/j.bbrc.2008.12.142.
    1. Madon J., Hagenbuch B., Landmann L., Meier P.J., Stieger B. Transport Function and Hepatocellular Localization of mrp6 in Rat Liver. Mol. Pharmacol. 2000;57:634–641. doi: 10.1124/mol.57.3.634.
    1. Cai J., Daoud R., Alqawi O., Georges E., Pelletier J., Gros P. Nucleotide binding and nucleotide hydrolysis properties of the ABC transporter MRP6 (ABCC6) Biochemistry. 2002;41:8058–8067. doi: 10.1021/bi012082p.
    1. Ilias A., Urban Z., Seidl T.L., le Saux O., Sinko E., Boyd C.D., Sarkadi B., Varadi A. Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6) J. Biol. Chem. 2002;277:16860–16867. doi: 10.1074/jbc.M110918200.
    1. Hirohashi T., Suzuki H., Sugiyama Y. Characterization of the transport properties of cloned rat multi-drug resistance-associated protein 3 (MRP3) J. Biol. Chem. 1999;274:15181–15185. doi: 10.1074/jbc.274.21.15181.
    1. Belinsky M.G., Chen Z.-S., Shchaveleva I., Zeng H., Kruh G.D. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6) Cancer Res. 2002;62:6172–6177.
    1. Beck K., Hayashi K., Nishiguchi B., le Saux O., Hayashi M., Boyd C.D. The Distribution of Abcc6 in Normal Mouse Tissues Suggests Multiple Functions for this ABC Transporter. J. Histochem. Cytochem. 2003;51:887–902. doi: 10.1177/002215540305100704.
    1. Le Saux O., Fülöp K., Yamaguchi Y., Iliás A., Szabó Z., Brampton C.N., Pomozi V., Huszár K., Arányi T., Váradi A. Expression and In Vivo Rescue of Human ABCC6 Disease-Causing Mutants in Mouse Liver. PLoS ONE. 2011;6:e24738. doi: 10.1371/journal.pone.0024738.
    1. Beck K., Hayashi K., Dang K., Hayashi M., Boyd C.D. Analysis of ABCC6 (MRP6) in normal human tissues. Histochem. Cell Biol. 2005;123:517–528. doi: 10.1007/s00418-004-0744-3.
    1. Sinkó E., Iliás A., Ujhelly O., Homolya L., Scheffer G.L., Bergen A.A.B., Sarkadi B., Váradi A. Subcellular localization and N-glycosylation of human ABCC6, expressed in MDCKII cells. Biochem. Biophys. Res. Commun. 2003;308:263–269. doi: 10.1016/S0006-291X(03)01349-4.
    1. Martin L.J., Lau E., Singh H., Vergnes L., Tarling E.J., Mehrabian M., Mungrue I., Xiao S., Shih D., Castellani L., et al. ABCC6 localizes to the mitochondria-associated membrane. Circ. Res. 2012;111:516–520. doi: 10.1161/CIRCRESAHA.112.276667.
    1. Kato K., Nishimasu H., Okudaira S., Mihara E., Ishitani R., Takagi J., Aoki J., Nureki O. Crystal structure of Enpp1, an extracellular glycoprotein involved in bone mineralization and insulin signaling. Proc. Natl. Acad. Sci. USA. 2012;109:16876–16881. doi: 10.1073/pnas.1208017109.
    1. Roberts F., Zhu D., Farquharson C., Macrae V.E. ENPP1 in the Regulation of Mineralization and Beyond. Trends Biochem. Sci. 2019;44:616–628. doi: 10.1016/j.tibs.2019.01.010.
    1. Chassaing N., Martin L., Calvas P., le Bert M., Hovnanian A. Pseudoxanthoma elasticum: A clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations. J. Med Genet. 2005;42:881–892. doi: 10.1136/jmg.2004.030171.
    1. Le Saux O., Beck K., Sachsinger C., Silvestri C., Treiber C., Goring H.H., Johnson E.W., de Paepe A., Pope F.M., Pasquali-Ronchetti I., et al. A spectrum of abcc6 mutations is responsible for pseudoxanthoma elasticum. Am. J. Hum. Genet. 2001;69:749–764. doi: 10.1086/323704.
    1. Pfendner E.G., Vanakker O.M., Terry P.F., Vourthis S., McAndrew E.P., McClain M.R., Fratta S., Marais A.-S., Hariri S., Coucke P.J., et al. Mutation detection in the ABCC6 gene and genotype phenotype analysis in a large international case series affected by pseudoxanthoma elasticum. J. Med Genet. 2007;44:621–628. doi: 10.1136/jmg.2007.051094.
    1. Nitschke Y., Yan Y., Buers I., Kintziger K., Askew K., Rutsch F. ENPP1-Fc prevents neointima formation in generalized arterial calcification of infancy through the generation of AMP. Exp. Mol. Med. 2018;50:1–12. doi: 10.1038/s12276-018-0163-5.
    1. Gorgels T.G., Hu X., Scheffer G.L., van der Wal A.C., Toonstra J., de Jong P.T., van Kuppevelt T.H., Levelt C.N., de Wolf A., Loves W.J., et al. Disruption of Abcc6 in the mouse: Novel insight in the pathogenesis of pseudoxanthoma elasticum. Hum. Mol. Genet. 2005;14:1763–1773. doi: 10.1093/hmg/ddi183.
    1. Klement J.F., Matsuzaki Y., Jiang Q.-J., Terlizzi J., Choi H.Y., Fujimoto N., Li K., Pulkkinen L., Birk D.E., Sundberg J.P., et al. Targeted Ablation of the Abcc6 Gene Results in Ectopic Mineralization of Connective Tissues. Mol. Cell. Biol. 2005;25:8299–8310. doi: 10.1128/MCB.25.18.8299-8310.2005.
    1. Brampton C., Yamaguchi Y., Vanakker O., van Laer L., Chen L.-H., Thakore M., de Paepe A., Pomozi V., Szabó P.T., Martin L., et al. Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum. Cell Cycle. 2011;10:1810–1820. doi: 10.4161/cc.10.11.15681.
    1. Brampton C., Pomozi V., Chen L.-H., Apana A., McCurdy S., Zoll J., Boisvert W.A., Lambert G., Henrion D., Blanchard S., et al. ABCC6 deficiency promotes dyslipidemia and atherosclerosis. Sci. Rep. 2021;11:3881. doi: 10.1038/s41598-021-82966-y.
    1. Ibold B., Tiemann J., Faust I., Ceglarek U., Dittrich J., Gorgels T.G.M.F., Bergen A.A.B., Vanakker O., van Gils M., Knabbe C., et al. Genetic deletion of Abcc6 disturbs cholesterol homeostasis in mice. Sci. Rep. 2021;11:2137. doi: 10.1038/s41598-021-81573-1.
    1. Jiang Q., Endo M., Dibra F., Wang K., Uitto J. Pseudoxanthoma Elasticum Is a Metabolic Disease. J. Investig. Dermatol. 2009;129:348–354. doi: 10.1038/jid.2008.212.
    1. Jiang Q., Oldenburg R., Otsuru S., Grand-Pierre A.E., Horwitz E.M., Uitto J. Parabiotic heterogenetic pairing of Abcc6−/−/Rag1−/− mice and their wild-type counterparts halts ectopic mineralization in a murine model of pseudoxanthoma elasticum. Am. J. Pathol. 2010;176:1855–1862. doi: 10.2353/ajpath.2010.090983.
    1. Le Saux O., Bunda S., van Wart C.M., Douet V., Got L., Martin L., Hinek A. Serum Factors from Pseudoxanthoma Elasticum Patients Alter Elastic Fiber Formation In Vitro. J. Investig. Dermatol. 2006;126:1497–1505. doi: 10.1038/sj.jid.5700201.
    1. Li Q., Sundberg J.P., Levine M.A., Terry S.F., Uitto J. The effects of bisphosphonates on ectopic soft tissue mineralization caused by mutations in the ABCC6 gene. Cell Cycle. 2015;14:1082–1089. doi: 10.1080/15384101.2015.1007809.
    1. Pomozi V., Brampton C., Szeri F., Dedinszki D., Kozak E., van de Wetering K., Hopkins H., Martin L., Varadi A., le Saux O. Functional Rescue of ABCC6 Deficiency by 4-Phenylbutyrate Therapy Reduces Dystrophic Calcification in Abcc6(−/−) Mice. J. Investig. Dermatol. 2017;137:595–602. doi: 10.1016/j.jid.2016.10.035.
    1. Doehring L.C., Kaczmarek P.M., Ehlers E.-M., Mayer B., Erdmann J., Schunkert H., Aherrahrou Z. Arterial calcification in mice after freeze-thaw injury. Ann. Anat. Anat. Anz. 2006;188:235–242. doi: 10.1016/j.aanat.2006.01.013.
    1. Eaton G.J., Custer R.P., Johnson F.N., Stabenow K.T. Dystrophic cardiac calcinosis in mice: Genetic, hormonal, and dietary influences. Am. J. Pathol. 1978;90:173–186.
    1. Everitt J.I., Olson L.M., Mangum J.B., Visek W.J. High mortality with severe dystrophic cardiac calcinosis in C3H/OUJ mice fed high fat purified diets. Vet. Pathol. 1988;25:113–118. doi: 10.1177/030098588802500202.
    1. Aherrahrou Z., Axtner S.B., Kaczmarek P.M., Jurat A., Korff S., Doehring L.C., Weichenhan D., Katus H.A., Ivandic B.T. A locus on chromosome 7 determines dramatic up-regulation of osteopontin in dystrophic cardiac calcification in mice. Am. J. Pathol. 2004;164:1379–1387. doi: 10.1016/S0002-9440(10)63224-5.
    1. Ivandic B.T., Utz H.F., Kaczmarek P.M., Aherrahrou Z., Axtner S.B., Klepsch C., Lusis A.J., Katus H.A. New Dyscalc loci for myocardial cell necrosis and calcification (dystrophic cardiac calcinosis) in mice. Physiol. Genom. 2001;6:137–144. doi: 10.1152/physiolgenomics.2001.6.3.137.
    1. Brunnert S.R. Morphologic response of myocardium to freeze-thaw injury in mouse strains with dystrophic cardiac calcification. Lab. Anim. Sci. 1997;47:11–18.
    1. Smolen K.K., Gelinas L., Franzen L., Dobson S., Dawar M., Ogilvie G., Krajden M., Fortuno E.S., III, Kollmann T.R. Age of recipient and number of doses differentially impact human B and T cell immune memory responses to HPV vaccination. Vaccine. 2012;30:3572–3579. doi: 10.1016/j.vaccine.2012.03.051.
    1. Li Q., Berndt A., Guo H., Sundberg J.P., Uitto J. A Novel Animal Model for Pseudoxanthoma Elasticum: The KK/HlJ Mouse. Am. J. Pathol. 2012;181:1190–1196. doi: 10.1016/j.ajpath.2012.06.014.
    1. Berndt A., Sundberg B.A., Silva K.A., Kennedy V.E., Richardson M.A., Li Q., Bronson R.T., Uitto J., Sundberg J.P. Phenotypic Characterization of the KK/HlJ Inbred Mouse Strain. Veter. Pathol. 2013;51:846–857. doi: 10.1177/0300985813501335.
    1. De Vilder E.Y., Hosen M.J., Martin L., de Zaeytijd J., Leroy B.P., Ebran J., Coucke P.J., de Paepe A., Vanakker O.M. VEGFA variants as prognostic markers for the retinopathy in pseudoxanthoma elasticum. Clin. Genet. 2020;98:74–79. doi: 10.1111/cge.13751.
    1. Luo H., Faghankhani M., Cao Y., Uitto J., Li Q. Molecular Genetics and Modifier Genes in Pseudoxanthoma Elasticum, a Heritable Multisystem Ectopic Mineralization Disorder. J. Investig. Dermatol. 2020 doi: 10.1016/j.jid.2020.10.013.
    1. Le Corre Y., le Saux O., Froeliger F., Libouban H., Kauffenstein G., Willoteaux S., Leftheriotis G., Martin L. Quantification of the calcification phenotype of abcc6-deficient mice with microcomputed tomography. Am. J. Pathol. 2012;180:2208–2213. doi: 10.1016/j.ajpath.2012.02.007.
    1. Li Q., Kingman J., van de Wetering K., Tannouri S., Sundberg J.P., Uitto J. Abcc6 Knockout Rat Model Highlights the Role of Liver in PPi Homeostasis in Pseudoxanthoma Elasticum. J. Investig. Dermatol. 2017;137:1025–1032. doi: 10.1016/j.jid.2016.11.042.
    1. Li Q., Sadowski S., Frank M.M., Chai C., Váradi A., Ho S.-Y., Lou H., Dean M., Thisse C., Thisse B., et al. The abcc6a Gene Expression Is Required for Normal Zebrafish Development. J. Investig. Dermatol. 2010;130:2561–2568. doi: 10.1038/jid.2010.174.
    1. Van Gils M., Willaert A., de Vilder E., Coucke P., Vanakker O. Generation and Validation of a Complete Knockout Model of abcc6a in Zebrafish. J. Investig. Dermatol. 2018;138:2333–2342. doi: 10.1016/j.jid.2018.06.183.
    1. Sun J., She P., Liu X., Gao B., Jin D., Zhong T.P. Disruption of Abcc6 Transporter in Zebrafish Causes Ocular Calcification and Cardiac Fibrosis. Int. J. Mol. Sci. 2020;22:278. doi: 10.3390/ijms22010278.
    1. Mackay E.W., Apschner A., Schulte-Merker S. Vitamin K reduces hypermineralisation in zebrafish models of PXE and GACI. Development. 2015;142:1095–1101. doi: 10.1242/dev.113811.
    1. Pomozi V., Brampton C., Fülöp K., Chen L.-H., Apana A., Li Q., Uitto J., le Saux O., Váradi A. Analysis of Pseudoxanthoma Elasticum–Causing Missense Mutants of ABCC6 In Vivo; Pharmacological Correction of the Mislocalized Proteins. J. Investig. Dermatol. 2014;134:946–953. doi: 10.1038/jid.2013.482.
    1. Okawa A., Nakamura I., Goto S., Moriya H., Nakamura Y., Ikegawa S. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat. Genet. 1998;19:271–273. doi: 10.1038/956.
    1. Li Q., Guo H., Chou D.W., Berndt A., Sundberg J.P., Uitto J. Mutant Enpp1asj mice as a model for generalized arterial calcification of infancy. Dis. Model. Mech. 2013;6:1227–1235. doi: 10.1242/dmm.012765.
    1. Dedinszki D., Szeri F., Kozak E., Pomozi V., Tokesi N., Mezei T.R., Merczel K., Letavernier E., Tang E., Le Saux O., et al. Oral administration of pyrophosphate inhibits con-nective tissue calcification. EMBO Mol. Med. 2017;9:1463–1470. doi: 10.15252/emmm.201707532.
    1. Huesa C., Zhu D., Glover J.D., Ferron M., Karsenty G., Milne E.M., Millan J.L., Ahmed S.F., Farquharson C., Morton N.M., et al. Deficiency of the bone mineralization inhibitor NPP1 protects mice against obesity and diabetes. Dis. Model. Mech. 2014;7:1341–1350. doi: 10.1242/dmm.017905.
    1. Mackenzie N., Huesa C., Rutsch F., MacRae V. New insights into NPP1 function: Lessons from clinical and animal studies. Bone. 2012;51:961–968. doi: 10.1016/j.bone.2012.07.014.
    1. Apschner A., Huitema L.F., Ponsioen B., Peterson-Maduro J., Schulte-Merker S. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of in-fancy (GACI) and pseudoxanthoma elasticum (PXE) Dis. Model Mech. 2014;7:811–822. doi: 10.1242/dmm.015693.
    1. Kauffenstein G., Yegutkin G.G., Khiati S., Pomozi V., le Saux O., Leftheriotis G., Lenaers G., Henrion D., Martin L. Alteration of Extracellular Nucleotide Metabolism in Pseudoxanthoma Elasticum. J. Investig. Dermatol. 2018;138:1862–1870. doi: 10.1016/j.jid.2018.02.023.
    1. Uitto J., Li Q., van de Wetering K., Váradi A., Terry S.F. Insights into Pathomechanisms and Treatment Development in Heritable Ectopic Mineralization Disorders: Summary of the PXE International Biennial Research Symposium-2016. J. Investig. Dermatol. 2017;137:790–795. doi: 10.1016/j.jid.2016.12.014.
    1. Kranenburg G., de Jong P.A., Bartstra J.W., Lagerweij S.J., Lam M.G., Norel J.O.-V., Risseeuw S., van Leeuwen R., Imhof S.M., Verhaar H.J., et al. Etidronate for Prevention of Ectopic Mineralization in Patients with Pseudoxanthoma Elasticum. J. Am. Coll. Cardiol. 2018;71:1117–1126. doi: 10.1016/j.jacc.2017.12.062.
    1. Li Q., Huang J., Pinkerton A.B., Millan J.L., van Zelst B.D., Levine M.A., Sundberg J.P., Uitto J. Inhibition of Tissue-Nonspecific Alkaline Phosphatase Attenuates Ectopic Mineralization in the Abcc6 (−/−) Mouse Model of PXE but Not in the Enpp1 Mutant Mouse Models of GACI. J. Investig. Dermatol. 2019;139:360–368. doi: 10.1016/j.jid.2018.07.030.
    1. Pomozi V., le Saux O., Brampton C., Apana A., Iliás A., Szeri F., Martin L., Monostory K., Paku S., Sarkadi B., et al. ABCC6 Is a Basolateral Plasma Membrane Protein. Circ. Res. 2013;112:e148–e151. doi: 10.1161/CIRCRESAHA.111.300194.
    1. Rose S., On S.J., Fuchs W., Chen C., Phelps R., Kornreich D., Haddican M., Singer G., Wong V., Baum D., et al. Magnesium Supplementation in the Treatment of Pseudoxanthoma Elasticum (PXE): A randomized trial. J. Am. Acad. Dermatol. 2019;81:263–265. doi: 10.1016/j.jaad.2019.02.055.
    1. Yoo J.Y., Blum R.R., Singer G.K., Stern D.K., Emanuel P.O., Fuchs W., Phelps R.G., Terry S.F., Lebwohl M.G. A randomized controlled trial of oral phosphate binders in the treatment of pseudoxanthoma elasticum. J. Am. Acad. Dermatol. 2011;65:341–348. doi: 10.1016/j.jaad.2010.05.023.
    1. Zhou Y., Jiang Q., Takahagi S., Shao C., Uitto J., Takahagi S. Premature termination codon read-through in the ABCC6 gene: Potential treatment for pseudoxanthoma elasticum. J. Investig. Dermatol. 2013;133:2672–2677. doi: 10.1038/jid.2013.234.
    1. Albright R.A., Stabach P., Cao W., Kavanagh D., Mullen I., Braddock A.A., Covo M.S., Tehan M., Yang G., Cheng Z., et al. ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy. Nat. Commun. 2015;6:10006. doi: 10.1038/ncomms10006.
    1. Khan T., Sinkevicius K.W., Vong S., Avakian A., Leavitt M.C., Malanson H., Marozsan A., Askew K.L. ENPP1 enzyme replacement therapy improves blood pressure and cardiovascular function in a mouse model of generalized arterial calcification of infancy. Dis. Model. Mech. 2018;11:dmm035691. doi: 10.1242/dmm.035691.
    1. Schafer C., Heiss A., Schwarz A., Westenfeld R., Ketteler M., Floege J., Muller-Esterl W., Schinke T., Jahnen-Dechent W. The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Investig. 2003;112:357–366. doi: 10.1172/JCI17202.
    1. Jiang Q., Dibra F., Lee M.D., Oldenburg R., Uitto J. Overexpression of fetuin-a counteracts ectopic mineralization in a mouse model of pseudoxanthoma elasticum (abcc6 (−/−)) J. Investig. Dermatol. 2010;130:1288–1296. doi: 10.1038/jid.2009.423.
    1. Huang J., Snook A.E., Uitto J., Li Q. Adenovirus-Mediated ABCC6 Gene Therapy for Heritable Ectopic Mineralization Disorders. J. Investig. Dermatol. 2019;139:1254–1263. doi: 10.1016/j.jid.2018.12.017.
    1. La Russo J., Jiang Q., Li Q., Uitto J. Ectopic mineralization of connective tissue in Abcc6(−/−) mice: Effects of dietary modifications and a phosphate binder—A preliminary study. Exp. Dermatol. 2008;17:203–207. doi: 10.1111/j.1600-0625.2007.00645.x.
    1. Gorgels T.G.M.F., Waarsing J.H., de Wolf A., Brink J.B.T., Loves W.J.P., Bergen A.A.B. Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for pseudoxanthoma elasticum. J. Mol. Med. 2010;88:467–475. doi: 10.1007/s00109-010-0596-3.
    1. La Russo J., Li Q., Jiang Q., Uitto J. Elevated dietary magnesium prevents connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6 (−/−)) J. Investig. Dermatol. 2009;129:1388–1394. doi: 10.1038/jid.2008.391.
    1. Gorgels T.G.M.F., Waarsing J.H., Herfs M., Versteeg D., Schoensiegel F., Sato T., Schlingemann R.O., Ivandic B., Vermeer C., Schurgers L.J., et al. Vitamin K supplementation increases vitamin K tissue levels but fails to counteract ectopic calcification in a mouse model for pseudoxanthoma elasticum. J. Mol. Med. 2011;89:1125–1135. doi: 10.1007/s00109-011-0782-y.
    1. Jiang Q., Li Q., Grand-Pierre A.E., Schurgers L.J., Uitto J. Administration of vitamin K does not counteract the ectopic mineralization of connective tissues in Abcc6 (−/−) mice, a model for pseudoxanthoma elasticum. Cell Cycle. 2011;10:701–707. doi: 10.4161/cc.10.4.14862.
    1. Carrillo-Linares J.L., García-Fernández M.I., Morillo M.J., Sánchez P., Rioja J., Barón F.J., Ariza M.J., Harrington D.J., Card D., Boraldi F., et al. The Effects of Parenteral K1 Administration in Pseudoxanthoma Elasticum Patients Versus Controls. A Pilot Study. Front. Med. 2018;5:86. doi: 10.3389/fmed.2018.00086.
    1. Nollet L., van Gils M., Verschuere S., Vanakker O. The Role of Vitamin K and Its Related Compounds in Mendelian and Acquired Ectopic Mineralization Disorders. Int. J. Mol. Sci. 2019;20:2142. doi: 10.3390/ijms20092142.
    1. Bauer C., le Saux O., Pomozi V., Aherrahrou R., Kriesen R., Stölting S., Liebers A., Kessler T.S.H., Erdmann J., Aherrahrou Z. Etidronate prevents but does not completely reverse dystrophic cardiac calcification by.2 inhibiting macrophage aggregation. Sci. Rep. 2018;8:5812. doi: 10.1038/s41598-018-24228-y.
    1. Otero J.E., Gottesman G.S., McAlister W.H., Mumm S., Madson K.L., Kiffer-Moreira T., Sheen C., Millán J.L., Ericson K.L., Whyte M.P. Severe skeletal toxicity from protracted etidronate therapy for generalized arterial calcification of infancy. J. Bone Miner. Res. 2013;28:419–430. doi: 10.1002/jbmr.1752.
    1. Chong C.R., Hutchins G.M. Idiopathic infantile arterial calcification: The spectrum of clinical presentations. Pediatr. Dev. Pathol. 2008;11:405–415. doi: 10.2350/07-06-0297.1.
    1. Dabisch-Ruthe M., Kuzaj P., Götting C., Knabbe C., Hendig D. Pyrophosphates as a major inhibitor of matrix calcification in Pseudoxanthoma elasticum. J. Dermatol. Sci. 2014;75:109–120. doi: 10.1016/j.jdermsci.2014.04.015.
    1. Li Q., Kingman J., Sundberg J.P., Levine M.A., Uitto J. Etidronate prevents, but does not reverse, ectopic mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6−/−) Oncotarget. 2016;9:30721. doi: 10.18632/oncotarget.10738.
    1. Jacobs I.J., Li D., Ivarsson M.E., Uitto J., Li Q. A phytic acid analogue INS-3001 prevents ectopic calcification in an Abcc6(−/−) mouse model of pseudoxanthoma elasticum. Exp. Dermatol. 2021 doi: 10.1111/exd.14288.
    1. Hosen M.J., van Nieuwerburgh F., Steyaert W., Deforce D., Martin L., Leftheriotis G., de Paepe A., Coucke P.J., Vanakker O.M. Efficiency of Exome Sequencing for the Molecular Diagnosis of Pseudoxanthoma Elasticum. J. Investig. Dermatol. 2015;135:992–998. doi: 10.1038/jid.2014.421.
    1. Plomp A.S., Bergen A.A., Florijn R.J., Terry S.F., Toonstra J., van Dijk M.R., de Jong P.T. Pseudoxanthoma elasticum: Wide phenotypic variation in homozygotes and no signs in heterozygotes for the c.3775delT mutation in ABCC6. Genet. Med. 2009;11:852–858. doi: 10.1097/GIM.0b013e3181c00a96.
    1. Uitto J., Jiang Q., Varadi A., Bercovitch L.G., Terry S.F. Pseudoxanthoma Elasticum: Diagnostic Features, Classification, and Treatment Options. Expert Opin. Orphan Drugs. 2014;2:567–577. doi: 10.1517/21678707.2014.908702.
    1. Bartstra J.W., Risseeuw S., de Jong P.A., van Os B., Kalsbeek L., Mol C., Baas A.F., Verschuere S., Vanakker O., Florijn R.J., et al. Genotype-phenotype correlation in pseudoxanthoma elasticum. Atherosclerosis. 2021;324:18–26. doi: 10.1016/j.atherosclerosis.2021.03.012.
    1. Boraldi F., Costa S., Rabacchi C., Ciani M., Vanakker O., Quaglino D. Can APOE and MTHFR poly-morphisms have an influence on the severity of cardiovascular manifestations in Italian Pseudoxanthoma elasticum affected patients? Mol. Genet. Metab. Rep. 2014;1:477–482. doi: 10.1016/j.ymgmr.2014.11.002.
    1. Hendig D., Knabbe C., Götting C. New insights into the pathogenesis of pseudoxanthoma elasticum and related soft tissue calcification disorders by identifying genetic interactions and modifiers. Front. Genet. 2013;4:114. doi: 10.3389/fgene.2013.00114.
    1. Vanakker O.M.M., Hosen M.J., de Paepe A. The ABCC6 transporter: What lessons can be learnt from other ATP-binding cassette transporters? Front. Genet. 2013;4:203. doi: 10.3389/fgene.2013.00203.
    1. Navasiolava N., Gnanou M., Douillard M., Saulnier P., Aranyi T., Ebran J.-M., Henni S., Humeau H., Lefthériotis G., Martin L. The extent of pseudoxanthoma elasticum skin changes is related to cardiovascular complications and visual loss: A cross-sectional study. Br. J. Dermatol. 2019;180:207–208. doi: 10.1111/bjd.17094.
    1. Zhao J., Kingman J., Sundberg J.P., Uitto J., Li Q. Plasma PPi Deficiency Is the Major, but Not the Exclusive, Cause of Ectopic Mineralization in an Abcc6 Mouse Model of PXE. J. Investig. Dermatol. 2017;137:2336–2343. doi: 10.1016/j.jid.2017.06.006.
    1. Mention P.J., Lacoeuille F., Leftheriotis G., Martin L., Omarjee L. 18F-Flurodeoxyglucose and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography Imaging of Arterial and Cu-taneous Alterations in Pseudoxanthoma Elasticum. Circ. Cardiovasc. Imaging. 2018;11:e007060. doi: 10.1161/CIRCIMAGING.117.007060.
    1. Oudkerk S.F., de Jong P.A., Blomberg B.A., Scholtens A.M., Mali W.P., Spiering W. Whole-Body Visualization of Ectopic Bone Formation of Arteries and Skin in Pseudoxanthoma Elasticum. JACC Cardiovasc. Imaging. 2016;9:755–756. doi: 10.1016/j.jcmg.2015.06.006.
    1. Humeau-Heurtier A., Colominas M.A., Schlotthauer G., Etienne M., Martin L., Abraham P. Bidimensional unconstrained optimization approach to EMD: An algorithm revealing skin perfusion alterations in pseudoxanthoma elasticum patients. Comput. Methods Programs Biomed. 2017;140:233–239. doi: 10.1016/j.cmpb.2016.12.016.
    1. Gass J.D. “Comet” lesion: An ocular sign of pseudoxanthoma elasticum. Retina. 2003;23:729–730. doi: 10.1097/00006982-200310000-00029.
    1. Ciulla T.A., Rosenfeld P.J. Anti-vascular endothelial growth factor therapy for neovascular ocular diseases other than age-related macular degeneration. Curr. Opin. Ophthalmol. 2009;20:166–174. doi: 10.1097/ICU.0b013e328329d173.
    1. Vasseur M., Carsin-Nicol B., Ebran J., Willoteaux S., Martin L., Leftheriotis G. Carotid Rete Mirabile and Pseudoxanthoma Elasticum: An Accidental Association? Eur. J. Vasc. Endovasc. Surg. 2011;42:292–294. doi: 10.1016/j.ejvs.2011.05.007.
    1. Pavlovic A.M., Zidverc-Trajkovic J., Milovic M.M., Pavlovic D.M., Jovanovic Z., Mijajlovic M., Petrovic M., Kostic V.S., Sternic N. Cerebral Small Vessel Disease in Pseudoxanthoma Elasticum: Three Cases. Can. J. Neurol. Sci. 2005;32:115–118. doi: 10.1017/S0317167100016991.
    1. Miglionico R., Ostuni A., Armentano M.F., Milella L., Crescenzi E., Carmosino M., Bisaccia F. ABCC6 knockdown in HepG2 cells induces a senescent-like cell phenotype. Cell. Mol. Biol. Lett. 2017;22:1–10. doi: 10.1186/s11658-017-0036-2.
    1. Tiemann J., Wagner T., Lindenkamp C., Plumers R., Faust I., Knabbe C., Hendig D. Linking ABCC6 Deficiency in Primary Human Dermal Fibroblasts of PXE Patients to p21-Mediated Premature Cellular Se-nescence and the Development of a Proinflammatory Secretory Phenotype. Int. J. Mol. Sci. 2020;21:24. doi: 10.3390/ijms21249665.
    1. Mungrue I.N., Zhao P., Yao Y., Meng H., Rau C., Havel J.V., Gorgels T.G.M.F., Bergen A.A., MacLellan W.R., Drake T.A., et al. Abcc6 Deficiency Causes Increased Infarct Size and Apoptosis in a Mouse Cardiac Ischemia-Reperfusion Model. Arter. Thromb. Vasc. Biol. 2011;31:2806–2812. doi: 10.1161/ATVBAHA.111.237420.
    1. Hu X., Peek R., Plomp A., Brink J.T., Scheffer G., van Soest S., Leys A., de Jong P.T.V.M., Bergen A.A.B. Analysis of the Frequent R1141X Mutation in theABCC6Gene in Pseudoxanthoma Elasticum. Investig. Ophthalmol. Vis. Sci. 2003;44:1824–1829. doi: 10.1167/iovs.02-0981.
    1. Pfendner E.G., Uitto J., Gerard G.F., Terry S.F. Pseudoxanthoma elasticum: Genetic diagnostic markers. Expert Opin. Med. Diagn. 2008;2:63–79. doi: 10.1517/17530059.2.1.63.
    1. Keeling K.M., Bedwell D.M. Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases. Wiley Interdiscip. Rev. RNA. 2011;2:837–852. doi: 10.1002/wrna.95.
    1. Wilschanski M., Miller L.L., Shoseyov D., Blau H., Rivlin J., Aviram M., Cohen M., Armoni S., Yaakov Y., Pugatch T., et al. Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis. Eur. Respir. J. 2011;38:59–69. doi: 10.1183/09031936.00120910.
    1. Kerem E.E., Konstan M.M., de Boeck K., Accurso F.F., Sermet-Gaudelus I., Wilschanski M.M., Elborn S.J., Melotti P.P., Bronsveld I.I., Fajac I., et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir. Med. 2014;2:539–547. doi: 10.1016/S2213-2600(14)70100-6.
    1. Dover G.J., Brusilow S., Samid D. Increased Fetal Hemoglobin in Patients Receiving Sodium 4-Phenylbutyrate. N. Engl. J. Med. 1992;327:569–570. doi: 10.1056/nejm199208203270818.
    1. Maestri N.E., Brusilow S.W., Clissold D.B., Bassett S.S. Long-Term Treatment of Girls with Ornithine Transcarbamylase Deficiency. N. Engl. J. Med. 1996;335:855–860. doi: 10.1056/NEJM199609193351204.
    1. Perrine S.P., Ginder G.D., Faller D.V., Dover G.H., Ikuta T., Witkowska H.E., Cai S.P., Vichinsky E.P., Olivieri N.F. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. N. Engl. J. Med. 1993;328:81–86. doi: 10.1056/NEJM199301143280202.
    1. McGuire B.M., Zupanets I.A., Lowe M.E., Xiao X., Syplyviy V.A., Monteleone J., Gargosky S., Dickinson K., Martinez A., Mokhtarani M., et al. Pharmacology and safety of glycerol phenyl-butyrate in healthy adults and adults with cirrhosis. Hepatology. 2010;51:2077–2085. doi: 10.1002/hep.23589.
    1. Iannitti T., Palmieri B. Clinical and experimental applications of sodium phenylbutyrate. Drugs R D. 2011;11:227–249. doi: 10.2165/11591280-000000000-00000.
    1. Gonzales E., Grosse B., Schuller B., Davit-Spraul A., Conti F., Guettier C., Cassio D., Jacquemin E. Targeted pharmacotherapy in progressive familial intrahepatic cholestasis type 2: Evidence for improvement of cholestasis with 4-phenylbutyrate. Hepatology. 2015;62:558–566. doi: 10.1002/hep.27767.
    1. Hayashi H., Naoi S., Hirose Y., Matsuzaka Y., Tanikawa K., Igarashi K., Nagasaka H., Kage M., Inui A., Kusuhara H. Successful treatment with 4-phenylbutyrate in a patient with benign recurrent intrahepatic cholestasis type 2 refractory to biliary drainage and bilirubin absorption. Hepatol. Res. 2016;46:192–200. doi: 10.1111/hepr.12561.
    1. Rubenstein R.C., Zeitlin P.L. Sodium 4-phenylbutyrate downregulates Hsc70: Implications for intra-cellular trafficking of DeltaF508-CFTR. Am. J. Physiol. Cell. Physiol. 2000;278:C259–C267. doi: 10.1152/ajpcell.2000.278.2.C259.
    1. Sorrenson B., Suetani R.J., Williams M.J.A., Bickley V.M., George P.M., Jones G.T., McCormick S.P.A. Functional rescue of mutant ABCA1 proteins by sodium 4-phenylbutyrate. J. Lipid Res. 2013;54:55–62. doi: 10.1194/jlr.M027193.
    1. Millán J.L., Whyte M.P. Alkaline Phosphatase and Hypophosphatasia. Calcif. Tissue Int. 2016;98:398–416. doi: 10.1007/s00223-015-0079-1.
    1. Narisawa S., Harmey D., Yadav M.C., O’Neill W.C., Hoylaerts M.F., Millán J.L. Novel Inhibitors of Alkaline Phosphatase Suppress Vascular Smooth Muscle Cell Calcification. J. Bone Miner. Res. 2007;22:1700–1710. doi: 10.1359/jbmr.070714.
    1. Sheen C.R., Kuss P., Narisawa S., Yadav M.C., Nigro J., Wang W., Chhea T.N., Sergienko E.A., Kapoor K., Jackson M.R., et al. Pathophysiological Role of Vascular Smooth Muscle Alkaline Phosphatase in Medial Artery Calcification. J. Bone Miner. Res. 2015;30:824–836. doi: 10.1002/jbmr.2420.
    1. Savinov A.Y., Salehi M., Yadav M.C., Radichev I., Millan J.L., Savinova O.V. Transgenic Overexpression of Tissue-Nonspecific Alkaline Phosphatase (TNAP) in Vascular Endothelium Results in Generalized Arterial Calcification. J. Am. Heart Assoc. 2015;4:12. doi: 10.1161/JAHA.115.002499.
    1. St Hilaire C., Ziegler S.G., Markello T.C., Brusco A., Groden C., Gill F., Carlson-Donohoe H., Lederman R.J., Chen M.Y., Yang D., et al. NT5E mutations and arterial calcifications. N. Engl. J. Med. 2011;364:432–442. doi: 10.1056/NEJMoa0912923.
    1. Li Q., Price T.P., Sundberg J.P., Uitto J. Juxta-articular joint-capsule mineralization in CD73 deficient mice: Similarities to patients with NT5E mutations. Cell Cycle. 2014;13:2609–2615. doi: 10.4161/15384101.2014.943567.
    1. Lee C.S., Bishop E.S., Zhang R., Yu X., Farina E.M., Yan S., Zhao C., Zheng Z., Shu Y., Wu X., et al. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis. 2017;4:43–63. doi: 10.1016/j.gendis.2017.04.001.
    1. De Baaij J.H.F., Hoenderop J.G.J., Bindels R.J.M. Magnesium in Man: Implications for Health and Disease. Physiol. Rev. 2015;95:1–46. doi: 10.1152/physrev.00012.2014.
    1. Ter B.A.D., Shanahan C.M., de Baaij J.H.F. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation? Arter. Thromb Vasc. Biol. 2017;37:1431–1445.
    1. Alfrey A.C., Miller N.L., Trow R. Effect of Age and Magnesium Depletion on Bone Magnesium Pools in Rats. J. Clin. Investig. 1974;54:1074–1081. doi: 10.1172/JCI107851.
    1. Sakaguchi Y., Hamano T., Isaka Y. Magnesium and Progression of Chronic Kidney Disease: Benefits Beyond Cardiovascular Protection? Adv. Chronic Kidney Dis. 2018;25:274–280. doi: 10.1053/j.ackd.2017.11.001.
    1. D’Marco L., Lima-Martínez M., Karohl C., Chacín M., Bermúdez V. Pseudoxanthoma Elasticum: An Interesting Model to Evaluate Chronic Kidney Disease-Like Vascular Damage without Renal Disease. Kidney Dis. 2020;6:92–97. doi: 10.1159/000505026.
    1. Schinke T., McKee M.D., Karsenty G. Extracellular matrix calcification: Where is the action? Nat. Genet. 1999;21:150–151. doi: 10.1038/5928.
    1. Gheduzzi D., Boraldi F., Annovi G., Devincenzi C.P., Schurgers L.J., Vermeer C., Quaglino D., Ronchetti I.P. Matrix Gla protein is involved in elastic fiber calcification in the dermis of pseudoxanthoma elasticum patients. Lab. Investig. 2007;87:998–1008. doi: 10.1038/labinvest.3700667.
    1. Vermeer C. Gamma-carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase. Biochem. J. 1990;266:625–636. doi: 10.1042/bj2660625.
    1. Li Q., Jiang Q., Schurgers L.J., Uitto J. Pseudoxanthoma elasticum: Reduced gamma-glutamyl carboxylation of matrix gla protein in a mouse model (Abcc6−/−) Biochem. Biophys. Res. Commun. 2007;364:208–213. doi: 10.1016/j.bbrc.2007.09.122.
    1. Vanakker O.M., Martin L., Gheduzzi D., Leroy B.P., Loeys B.L., Guerci V.I., Matthys D., Terry S.F., Coucke P.J., Pasquali-Ronchetti I., et al. Pseudoxanthoma Elasticum-Like Phenotype with Cutis Laxa and Multiple Coagulation Factor Deficiency Represents a Separate Genetic Entity. J. Investig. Dermatol. 2007;127:581–587. doi: 10.1038/sj.jid.5700610.
    1. Borst P., van de Wetering K., Schlingemann R. Does the absence of ABCC6 (multidrug resistance protein 6) in patients with Pseudoxanthoma elasticum prevent the liver from providing sufficient vitamin K to the periphery? Cell Cycle. 2008;7:1575–1579. doi: 10.4161/cc.7.11.6005.
    1. Vanakker O.M., Martin L., Schurgers L.J., Quaglino D., Costrop L., Vermeer C., Pasquali-Ronchetti I., Coucke P.J., de Paepe A. Low serum vitamin K in PXE results in defective carboxylation of mineralization inhibitors similar to the GGCX mutations in the PXE-like syndrome. Lab. Investig. 2010;90:895–905. doi: 10.1038/labinvest.2010.68.
    1. Boraldi F., Annovi G., Guerra D., Devincenzi C.P., Garcia-Fernandez M.I., Panico F., de Santis G., Tiozzo R., Ronchetti I., Quaglino D. Fibroblast protein profile analysis highlights the role of oxidative stress and vitamin K recycling in the pathogenesis of pseudoxanthoma elasticum. Proteom. Clin. Appl. 2009;3:1084–1098. doi: 10.1002/prca.200900007.
    1. Huesa C., Staines K.A., Millan J.L., MacRae V.E. Effects of etidronate on the Enpp1(-)/(-) mouse model of generalized arterial calcification of infancy. Int. J. Mol. Med. 2015;36:159–165. doi: 10.3892/ijmm.2015.2212.
    1. Lomashvili K.A., Monier-Faugere M.C., Wang X., Malluche H.H., O’Neill W.C. Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure. Kidney Int. 2009;75:617–625. doi: 10.1038/ki.2008.646.
    1. Oliveira J.R.M., Oliveira M.F. Primary brain calcification in patients undergoing treatment with the biphosphanate alendronate. Sci. Rep. 2016;6:22961. doi: 10.1038/srep22961.
    1. Fleisch H., Bisaz S. Mechanism of Calcification: Inhibitory Role of Pyrophosphate. Nat. Cell Biol. 1962;195:911. doi: 10.1038/195911a0.
    1. O’Neill W.C., Lomashvili K.A., Malluche H.H., Faugere M.C., Riser B.L. Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int. 2011;79:512–517. doi: 10.1038/ki.2010.461.
    1. Orriss I.R., Arnett T.R., Russell R.G.G. Pyrophosphate: A key inhibitor of mineralisation. Curr. Opin. Pharmacol. 2016;28:57–68. doi: 10.1016/j.coph.2016.03.003.
    1. Grases F., Sanchis P., Perello J., Isern B., Prieto R.M., Fernandez-Palomeque C., Fiol M., Bonnin O., Torres J.J. Phytate (Myo-inositol hexakisphosphate) inhibits cardiovascular calcifications in rats. Front. Biosci. 2006;11:136–142. doi: 10.2741/1786.
    1. Van den Berg C.J., Hill L.F., Stanbury S.W. Inositol phosphates and phytic acid as inhibitors of biological calcification in the rat. Clin. Sci. 1972;43:377–383. doi: 10.1042/cs0430377.
    1. Schantl A.E., Verhulst A., Neven E., Behets G.J., D’Haese P.C., Maillard M., Mordasini D., Phan O., Burnier M., Spaggiari D., et al. Inhibition of vascular calcification by inositol phosphates derivatized with ethylene glycol oligomers. Nat. Commun. 2020;11:721. doi: 10.1038/s41467-019-14091-4.
    1. Dennie W., McBride C. Treatment of arsphenamine dermatitis and certain other metallic poisonings. Arch. Dermatol. Syphilol. 1923;11:63.
    1. Halliday H.M., Sutherland C.E. Arsenical Poisoning Treated by Sodium Thiosulphate. BMJ. 1925;1:407. doi: 10.1136/bmj.1.3348.407.
    1. Hayden M.R., Goldsmith D.J.A. Sodium Thiosulfate: New Hope for the Treatment of Calciphylaxis. Semin. Dial. 2010;23:258–262. doi: 10.1111/j.1525-139X.2010.00738.x.
    1. Arányi T., Bacquet C., de Boussac H., Ratajewski M., Pomozi V., Fülöp K., Brampton C.N., Pulaski L., le Saux O., Váradi A. Transcriptional regulation of the ABCC6 gene and the background of impaired function of missense disease-causing mutations. Front. Genet. 2013;4:27. doi: 10.3389/fgene.2013.00027.
    1. Douet V., Heller M.B., le Saux O. DNA methylation and Sp1 binding determine the tissue-specific transcriptional activity of the mouse Abcc6 promoter. Biochem. Biophys. Res. Commun. 2007;354:66–71. doi: 10.1016/j.bbrc.2006.12.151.
    1. Douet V., van Wart C.M., Heller M.B., Reinhard S., le Saux O. HNF4alpha and NF-E2 are key transcriptional regulators of the murine Abcc6 gene expression. Biochim. Biophys. Acta. 2006;1759:426–436. doi: 10.1016/j.bbaexp.2006.08.002.
    1. Väärämäki S., Pelttari S., Uusitalo H., Tokesi N., Varadi A., Nevalainen P. Pyrophosphate Treatment in Pseudoxanthoma Elasticum (PXE)-Preventing ReOcclusion After Surgery for Critical Limb Ischaemia. Surg. Case Rep. 2019;2:1–3. doi: 10.31487/j.SCR.2019.04.02.
    1. Leopold J.A. Vascular calcification: An age-old problem of old age. Circulation. 2013;127:2380–2382. doi: 10.1161/CIRCULATIONAHA.113.003341.
    1. Rennenberg R.J.M.W., Kessels A.G.H., Schurgers L.J., Van Engelshoven J.M.A., de Leeuw P., Kroon A.A. Vascular calcifications as a marker of increased cardiovascular risk: A meta-analysis. Vasc. Health Risk Manag. 2009;5:185–197. doi: 10.2147/VHRM.S4822.
    1. Kranenburg G., Baas A.F., de Jong P.A., Asselbergs F.W., Visseren F.L.J., Spiering W. The prevalence of pseudoxanthoma elasticum: Revised estimations based on genotyping in a high vascular risk cohort. Eur. J. Med. Genet. 2019;62:90–92. doi: 10.1016/j.ejmg.2018.05.020.
    1. Buchheiser A., Ebner A., Burghoff S., Ding Z., Romio M., Viethen C., Lindecke A., Köhrer K., Fischer J.W., Schrader J. Inactivation of CD73 promotes atherogenesis in apolipoprotein E-deficient mice. Cardiovasc. Res. 2011;92:338–347. doi: 10.1093/cvr/cvr218.
    1. Jalkanen J., Hollmén M., Jalkanen S., Hakovirta H. Regulation of CD73 in the development of lower limb atherosclerosis. Purinergic Signal. 2016;13:127–134. doi: 10.1007/s11302-016-9545-0.
    1. Nitschke Y., Weissen-Plenz G., Terkeltaub R., Rutsch F. Npp1 promotes atherosclerosis in ApoE knockout mice. J. Cell. Mol. Med. 2011;15:2273–2283. doi: 10.1111/j.1582-4934.2011.01327.x.
    1. Sutton N.R., Bouïs D., Mann K.M., Rashid I.M., McCubbrey A.L., Hyman M.C., Goldstein D.R., Mei A., Pinsky D.J. CD73 Promotes Age-Dependent Accretion of Atherosclerosis. Arter. Thromb. Vasc. Biol. 2020;40:61–71. doi: 10.1161/ATVBAHA.119.313002.
    1. Li Q., Guo H., Chou D.W., Berndt A., Sundberg J.P., Uitto J. Mouse Models for Pseudoxanthoma Elasticum: Genetic and Dietary Modulation of the Ectopic Mineralization Phenotypes. PLoS ONE. 2014;9:e89268. doi: 10.1371/journal.pone.0089268.

Source: PubMed

3
Suscribir