Chronic Pain: Structural and Functional Changes in Brain Structures and Associated Negative Affective States

Seoyon Yang, Min Cheol Chang, Seoyon Yang, Min Cheol Chang

Abstract

Chronic pain is a condition in which pain progresses from an acute to chronic state and persists beyond the healing process. Chronic pain impairs function and decreases patients' quality of life. In recent years, efforts have been made to deepen our understanding of chronic pain and to develop better treatments to alleviate chronic pain. In this review, we summarize the results of previous studies, focusing on the mechanisms underlying chronic pain development and the identification of neural areas related to chronic pain. We review the association between chronic pain and negative affective states. Further, we describe the structural and functional changes in brain structures that accompany the chronification of pain and discuss various neurotransmitter families involved. Our review aims to provide guidance for the development of future therapeutic approaches that could be used in the management of chronic pain.

Keywords: central sensitization; chronic pain; corticolimbic system; negative affective state; neurotransmitter.

Conflict of interest statement

The authors declare no conflict of interest. The funder had no role in the design of the study; in the collection, analyses, or interpretating of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Ascending pathway (red line): A nerve pathway that projects upwards from the spinal cord to the brain carrying sensory information from the body to the brain. Pain signals ascend from the spinal dorsal horn to the rostral ventral medulla (RVM) and periaqueductal grey matter (PAG). Pain signals are then transmitted to the thalamus, where they are sent to higher brain centers, such as the primary and secondary somatosensory cortices (S1/S2), prefrontal cortex (PFC), anterior cortex (ACC), amygdala (AMG), and nucleus accumbens (NAc). Descending pathway (blue line): A nerve pathway that descends down the spinal cord and has a role in the modulation of pain, involving important areas of the brainstem such as the RVM, PAG, and locus coeruleus (LC).

References

    1. Tsang A., Von Korff M., Lee S., Alonso J., Karam E., Angermeyer M.C., Borges G.L., Bromet E.J., Demytteneare K., de Girolamo G., et al. Common chronic pain conditions in developed and developing countries: Gender and age differences and comorbidity with depression-anxiety disorders. J. Pain. 2008;9:883–891. doi: 10.1016/j.jpain.2008.05.005.
    1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–1602.
    1. Vachon-Presseau E., Centeno M.V., Ren W., Berger S.E., Tetreault P., Ghantous M., Baria A., Farmer M., Baliki M.N., Schnitzer T.J., et al. The Emotional Brain as a Predictor and Amplifier of Chronic Pain. J. Dent. Res. 2016;95:605–612. doi: 10.1177/0022034516638027.
    1. Treede R.D., Rief W., Barke A., Aziz Q., Bennett M.I., Benoliel R., Cohen M., Evers S., Finnerup N.B., First M.B., et al. A classification of chronic pain for ICD-11. Pain. 2015;156:1003–1007. doi: 10.1097/j.pain.0000000000000160.
    1. Tracey I., Bushnell M.C. How neuroimaging studies have challenged us to rethink: Is chronic pain a disease? J. Pain. 2009;10:1113–1120. doi: 10.1016/j.jpain.2009.09.001.
    1. Seminowicz D.A., Moayedi M. The Dorsolateral Prefrontal Cortex in Acute and Chronic Pain. J. Pain. 2017;18:1027–1035. doi: 10.1016/j.jpain.2017.03.008.
    1. Yam M.F., Loh Y.C., Tan C.S., Khadijah Adam S., Abdul Manan N., Basir R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int. J. Mol. Sci. 2018;19 doi: 10.3390/ijms19082164.
    1. Reddi D., Curran N., Stephens R. An introduction to pain pathways and mechanisms. Br. J. Hosp. Med. (Lond.) 2013;74:C188–C191. doi: 10.12968/hmed.2013.74.Sup12.C188.
    1. Bourne S., Machado A.G., Nagel S.J. Basic anatomy and physiology of pain pathways. Neurosurg. Clin. N. Am. 2014;25:629–638. doi: 10.1016/j.nec.2014.06.001.
    1. Dubin A.E., Patapoutian A. Nociceptors: The sensors of the pain pathway. J. Clin. Investig. 2010;120:3760–3772. doi: 10.1172/JCI42843.
    1. Zhuo M. Cortical excitation and chronic pain. Trends Neurosci. 2008;31:199–207. doi: 10.1016/j.tins.2008.01.003.
    1. Cata J.P., Weng H.R., Chen J.H., Dougherty P.M. Altered discharges of spinal wide dynamic range neurons and down-regulation of glutamate transporter expression in rats with paclitaxel-induced hyperalgesia. Neuroscience. 2006;138:329–338. doi: 10.1016/j.neuroscience.2005.11.009.
    1. McCarberg B., Peppin J. Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain. Pain Med. 2019 doi: 10.1093/pm/pnz017.
    1. Price D.D. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288:1769–1772. doi: 10.1126/science.288.5472.1769.
    1. Apkarian A.V., Bushnell M.C., Treede R.D., Zubieta J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain. 2005;9:463–484. doi: 10.1016/j.ejpain.2004.11.001.
    1. Bushnell M.C., Ceko M., Low L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013;14:502–511. doi: 10.1038/nrn3516.
    1. Leknes S., Tracey I. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci. 2008;9:314–320. doi: 10.1038/nrn2333.
    1. Liang M., Mouraux A., Hu L., Iannetti G.D. Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nat. Commun. 2013;4:1979. doi: 10.1038/ncomms2979.
    1. Chen Q., Heinricher M.M. Descending Control Mechanisms and Chronic Pain. Curr. Rheumatol. Rep. 2019;21:13. doi: 10.1007/s11926-019-0813-1.
    1. Ren K., Dubner R. Neuron-glia crosstalk gets serious: Role in pain hypersensitivity. Curr. Opin. Anaesthesiol. 2008;21:570–579. doi: 10.1097/ACO.0b013e32830edbdf.
    1. Tiwari V., Guan Y., Raja S.N. Modulating the delicate glial-neuronal interactions in neuropathic pain: Promises and potential caveats. Neurosci. Biobehav. Rev. 2014;45:19–27. doi: 10.1016/j.neubiorev.2014.05.002.
    1. Kuner R. Central mechanisms of pathological pain. Nat. Med. 2010;16:1258–1266. doi: 10.1038/nm.2231.
    1. Yaksh T.L., Woller S.A., Ramachandran R., Sorkin L.S. The search for novel analgesics: Targets and mechanisms. F1000prime Rep. 2015;7:56. doi: 10.12703/P7-56.
    1. Latremoliere A., Woolf C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain. 2009;10:895–926. doi: 10.1016/j.jpain.2009.06.012.
    1. Becker S., Gandhi W., Schweinhardt P. Cerebral interactions of pain and reward and their relevance for chronic pain. Neurosci. Lett. 2012;520:182–187. doi: 10.1016/j.neulet.2012.03.013.
    1. Navratilova E., Morimura K., Xie J.Y., Atcherley C.W., Ossipov M.H., Porreca F. Positive emotions and brain reward circuits in chronic pain. J. Comp. Neurol. 2016;524:1646–1652. doi: 10.1002/cne.23968.
    1. Baliki M.N., Petre B., Torbey S., Herrmann K.M., Huang L., Schnitzer T.J., Fields H.L., Apkarian A.V. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 2012;15:1117–1119. doi: 10.1038/nn.3153.
    1. Hashmi J.A., Baliki M.N., Huang L., Baria A.T., Torbey S., Hermann K.M., Schnitzer T.J., Apkarian A.V. Shape shifting pain: Chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain. 2013;136:2751–2768. doi: 10.1093/brain/awt211.
    1. Mutso A.A., Radzicki D., Baliki M.N., Huang L., Banisadr G., Centeno M.V., Radulovic J., Martina M., Miller R.J., Apkarian A.V. Abnormalities in hippocampal functioning with persistent pain. J. Neurosci. 2012;32:5747–5756. doi: 10.1523/JNEUROSCI.0587-12.2012.
    1. Schmidt-Wilcke T., Ganssbauer S., Neuner T., Bogdahn U., May A. Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia. 2008;28:1–4. doi: 10.1111/j.1468-2982.2007.01428.x.
    1. Thompson J.M., Neugebauer V. Cortico-limbic pain mechanisms. Neurosci. Lett. 2019 doi: 10.1016/j.neulet.2018.11.037.
    1. Bair M.J., Robinson R.L., Katon W., Kroenke K. Depression and pain comorbidity: A literature review. Arch. Intern. Med. 2003;163:2433–2445. doi: 10.1001/archinte.163.20.2433.
    1. Sheng J., Liu S., Wang Y., Cui R., Zhang X. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain. Neural Plast. 2017;2017:9724371. doi: 10.1155/2017/9724371.
    1. Haase J., Brown E. Integrating the monoamine, neurotrophin and cytokine hypotheses of depression—A central role for the serotonin transporter? Pharmacol. Ther. 2015;147:1–11. doi: 10.1016/j.pharmthera.2014.10.002.
    1. Meerwijk E.L., Ford J.M., Weiss S.J. Brain regions associated with psychological pain: Implications for a neural network and its relationship to physical pain. Brain Imaging Behav. 2013;7:1–14. doi: 10.1007/s11682-012-9179-y.
    1. Elman I., Borsook D., Volkow N.D. Pain and suicidality: Insights from reward and addiction neuroscience. Prog. Neurobiol. 2013;109:1–27. doi: 10.1016/j.pneurobio.2013.06.003.
    1. Fishbain D.A., Lewis J.E., Gao J. The pain suicidality association: A narrative review. Pain Med. 2014;15:1835–1849. doi: 10.1111/pme.12463.
    1. Racine M. Chronic pain and suicide risk: A comprehensive review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2018;87:269–280. doi: 10.1016/j.pnpbp.2017.08.020.
    1. Llorca-Torralba M., Suarez-Pereira I., Bravo L., Camarena-Delgado C., Garcia-Partida J.A., Mico J.A., Berrocoso E. Chemogenetic Silencing of the Locus Coeruleus-Basolateral Amygdala Pathway Abolishes Pain-Induced Anxiety and Enhanced Aversive Learning in Rats. Biol. Psychiatry. 2019;85:1021–1035. doi: 10.1016/j.biopsych.2019.02.018.
    1. Wu Y., Yao X., Jiang Y., He X., Shao X., Du J., Shen Z., He Q., Fang J. Pain aversion and anxiety-like behavior occur at different times during the course of chronic inflammatory pain in rats. J. Pain Res. 2017;10:2585–2593. doi: 10.2147/JPR.S139679.
    1. Finnerup N.B., Sindrup S.H., Jensen T.S. The evidence for pharmacological treatment of neuropathic pain. Pain. 2010;150:573–581. doi: 10.1016/j.pain.2010.06.019.
    1. Backonja M.M., Irving G., Argoff C. Rational multidrug therapy in the treatment of neuropathic pain. Curr. Pain Headache Rep. 2006;10:34–38. doi: 10.1007/s11916-006-0007-1.
    1. Apkarian A.V., Baliki M.N., Geha P.Y. Towards a theory of chronic pain. Prog. Neurobiol. 2009;87:81–97. doi: 10.1016/j.pneurobio.2008.09.018.
    1. Mansour A.R., Farmer M.A., Baliki M.N., Apkarian A.V. Chronic pain: The role of learning and brain plasticity. Restor. Neurol. Neurosci. 2014;32:129–139.
    1. Kang D., McAuley J.H., Kassem M.S., Gatt J.M., Gustin S.M. What does the grey matter decrease in the medial prefrontal cortex reflect in people with chronic pain? Eur. J. Pain. 2019;23:203–219. doi: 10.1002/ejp.1304.
    1. Ji G., Neugebauer V. CB1 augments mGluR5 function in medial prefrontal cortical neurons to inhibit amygdala hyperactivity in an arthritis pain model. Eur. J. Neurosci. 2014;39:455–466. doi: 10.1111/ejn.12432.
    1. Ji G., Sun H., Fu Y., Li Z., Pais-Vieira M., Galhardo V., Neugebauer V. Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J. Neurosci. 2010;30:5451–5464. doi: 10.1523/JNEUROSCI.0225-10.2010.
    1. Becerra L., Navratilova E., Porreca F., Borsook D. Analogous responses in the nucleus accumbens and cingulate cortex to pain onset (aversion) and offset (relief) in rats and humans. J. Neurophysiol. 2013;110:1221–1226. doi: 10.1152/jn.00284.2013.
    1. Navratilova E., Atcherley C.W., Porreca F. Brain Circuits Encoding Reward from Pain Relief. Trends Neurosci. 2015;38:741–750. doi: 10.1016/j.tins.2015.09.003.
    1. Neugebauer V. Amygdala pain mechanisms. Handb. Exp. Pharmacol. 2015;227:261–284.
    1. Neugebauer V., Galhardo V., Maione S., Mackey S.C. Forebrain pain mechanisms. Brain Res. Rev. 2009;60:226–242. doi: 10.1016/j.brainresrev.2008.12.014.
    1. Thompson J.M., Neugebauer V. Amygdala Plasticity and Pain. Pain Res. Manag. 2017;2017:8296501. doi: 10.1155/2017/8296501.
    1. Williams D.J., Crossman A.R., Slater P. The efferent projections of the nucleus accumbens in the rat. Brain Res. 1977;130:217–227. doi: 10.1016/0006-8993(77)90271-2.
    1. Baliki M.N., Apkarian A.V. Nociception, Pain, Negative Moods, and Behavior Selection. Neuron. 2015;87:474–491. doi: 10.1016/j.neuron.2015.06.005.
    1. Baliki M.N., Chialvo D.R., Geha P.Y., Levy R.M., Harden R.N., Parrish T.B., Apkarian A.V. Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 2006;26:12165–12173. doi: 10.1523/JNEUROSCI.3576-06.2006.
    1. Villemure C., Bushnell M.C. Mood influences supraspinal pain processing separately from attention. J. Neurosci. 2009;29:705–715. doi: 10.1523/JNEUROSCI.3822-08.2009.
    1. Kato F., Sugimura Y.K., Takahashi Y. Pain-Associated Neural Plasticity in the Parabrachial to Central Amygdala Circuit: Pain Changes the Brain, and the Brain Changes the Pain. Adv. Exp. Med. Biol. 2018;1099:157–166.
    1. Simons L.E., Moulton E.A., Linnman C., Carpino E., Becerra L., Borsook D. The human amygdala and pain: Evidence from neuroimaging. Hum. Brain Mapp. 2014;35:527–538. doi: 10.1002/hbm.22199.
    1. Simons L.E., Pielech M., Erpelding N., Linnman C., Moulton E., Sava S., Lebel A., Serrano P., Sethna N., Berde C., et al. The responsive amygdala: Treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome. Pain. 2014;155:1727–1742. doi: 10.1016/j.pain.2014.05.023.
    1. Ikeda R., Takahashi Y., Inoue K., Kato F. NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain. 2007;127:161–172. doi: 10.1016/j.pain.2006.09.003.
    1. Nakao A., Takahashi Y., Nagase M., Ikeda R., Kato F. Role of capsaicin-sensitive C-fiber afferents in neuropathic pain-induced synaptic potentiation in the nociceptive amygdala. Mol. Pain. 2012;8:51. doi: 10.1186/1744-8069-8-51.
    1. Eichenbaum H. Memory: Organization and Control. Annu. Rev. Psychol. 2017;68:19–45. doi: 10.1146/annurev-psych-010416-044131.
    1. Liu W., Ge T., Leng Y., Pan Z., Fan J., Yang W., Cui R. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast. 2017;2017:6871089. doi: 10.1155/2017/6871089.
    1. Chan S.W., Harmer C.J., Norbury R., O’Sullivan U., Goodwin G.M., Portella M.J. Hippocampal volume in vulnerability and resilience to depression. J. Affect. Disord. 2016;189:199–202. doi: 10.1016/j.jad.2015.09.021.
    1. Apkarian A.V., Mutso A.A., Centeno M.V., Kan L., Wu M., Levinstein M., Banisadr G., Gobeske K.T., Miller R.J., Radulovic J., et al. Role of adult hippocampal neurogenesis in persistent pain. Pain. 2016;157:418–428. doi: 10.1097/j.pain.0000000000000332.
    1. Apkarian A.V. Pain perception in relation to emotional learning. Curr. Opin. Neurobiol. 2008;18:464–468. doi: 10.1016/j.conb.2008.09.012.
    1. Floresco S.B. The nucleus accumbens: An interface between cognition, emotion, and action. Annu. Rev. Psychol. 2015;66:25–52. doi: 10.1146/annurev-psych-010213-115159.
    1. Ito R., Hayen A. Opposing roles of nucleus accumbens core and shell dopamine in the modulation of limbic information processing. J. Neurosci. 2011;31:6001–6007. doi: 10.1523/JNEUROSCI.6588-10.2011.
    1. Salgado S., Kaplitt M.G. The Nucleus Accumbens: A Comprehensive Review. Stereotact. Funct. Neurosurg. 2015;93:75–93. doi: 10.1159/000368279.
    1. Chang P.C., Pollema-Mays S.L., Centeno M.V., Procissi D., Contini M., Baria A.T., Martina M., Apkarian A.V. Role of nucleus accumbens in neuropathic pain: Linked multi-scale evidence in the rat transitioning to neuropathic pain. Pain. 2014;155:1128–1139. doi: 10.1016/j.pain.2014.02.019.
    1. Apkarian A.V., Baliki M.N., Farmer M.A. Predicting transition to chronic pain. Curr. Opin. Neurol. 2013;26:360–367. doi: 10.1097/WCO.0b013e32836336ad.
    1. Vachon-Presseau E., Tetreault P., Petre B., Huang L., Berger S.E., Torbey S., Baria A.T., Mansour A.R., Hashmi J.A., Griffith J.W., et al. Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain. 2016;139:1958–1970. doi: 10.1093/brain/aww100.
    1. Hemington K.S., Coulombe M.A. The periaqueductal gray and descending pain modulation: Why should we study them and what role do they play in chronic pain? J. Neurophysiol. 2015;114:2080–2083. doi: 10.1152/jn.00998.2014.
    1. Holstege G. The periaqueductal gray controls brainstem emotional motor systems including respiration. Prog. Brain Res. 2014;209:379–405.
    1. Millan M.J. Descending control of pain. Prog. Neurobiol. 2002;66:355–474. doi: 10.1016/S0301-0082(02)00009-6.
    1. Ji R.R., Suter M.R. p38 MAPK, microglial signaling, and neuropathic pain. Mol. Pain. 2007;3:33. doi: 10.1186/1744-8069-3-33.
    1. Carniglia L., Ramirez D., Durand D., Saba J., Turati J., Caruso C., Scimonelli T.N., Lasaga M. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediat. Inflamm. 2017;2017:5048616. doi: 10.1155/2017/5048616.
    1. Ji R.R., Berta T., Nedergaard M. Glia and pain: Is chronic pain a gliopathy? Pain. 2013;154:S10–S28. doi: 10.1016/j.pain.2013.06.022.
    1. Diaz-delCastillo M., Woldbye D.P.D., Heegaard A.M. Neuropeptide Y and its Involvement in Chronic Pain. Neuroscience. 2018;387:162–169. doi: 10.1016/j.neuroscience.2017.08.050.
    1. Zieglgansberger W. Substance P and pain chronicity. Cell Tissue Res. 2019;375:227–241. doi: 10.1007/s00441-018-2922-y.
    1. Zhuo M. Ionotropic glutamate receptors contribute to pain transmission and chronic pain. Neuropharmacology. 2017;112:228–234. doi: 10.1016/j.neuropharm.2016.08.014.
    1. Malcangio M. GABAB receptors and pain. Neuropharmacology. 2018;136:102–105. doi: 10.1016/j.neuropharm.2017.05.012.
    1. Sheng N., Bemben M.A., Diaz-Alonso J., Tao W., Shi Y.S., Nicoll R.A. LTP requires postsynaptic PDZ-domain interactions with glutamate receptor/auxiliary protein complexes. Proc. Natl. Acad. Sci. USA. 2018;115:3948–3953. doi: 10.1073/pnas.1800719115.
    1. Collingridge G.L., Bliss T.V. Memories of NMDA receptors and LTP. Trends Neurosci. 1995;18:54–56. doi: 10.1016/0166-2236(95)80016-U.
    1. Anggono V., Huganir R.L. Regulation of AMPA receptor trafficking and synaptic plasticity. Curr. Opin. Neurobiol. 2012;22:461–469. doi: 10.1016/j.conb.2011.12.006.
    1. Yao L., Zhou Q. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators. Neural. Plast. 2017;2017:2875904. doi: 10.1155/2017/2875904.
    1. Zanos P., Moaddel R., Morris P.J., Georgiou P., Fischell J., Elmer G.I., Alkondon M., Yuan P., Pribut H.J., Singh N.S., et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–486. doi: 10.1038/nature17998.
    1. Calver A.R., Medhurst A.D., Robbins M.J., Charles K.J., Evans M.L., Harrison D.C., Stammers M., Hughes S.A., Hervieu G., Couve A., et al. The expression of GABA(B1) and GABA(B2) receptor subunits in the cNS differs from that in peripheral tissues. Neuroscience. 2000;100:155–170. doi: 10.1016/S0306-4522(00)00262-1.
    1. Bowery N.G. GABAB receptor: A site of therapeutic benefit. Curr. Opin. Pharmacol. 2006;6:37–43. doi: 10.1016/j.coph.2005.10.002.
    1. Skaper S.D. Neurotrophic Factors: An Overview. Methods Mol. Biol. 2018;1727:1–17.
    1. Kelleher J.H., Tewari D., McMahon S.B. Neurotrophic factors and their inhibitors in chronic pain treatment. Neurobiol. Dis. 2017;97:127–138. doi: 10.1016/j.nbd.2016.03.025.
    1. Bjurstrom M.F., Giron S.E., Griffis C.A. Cerebrospinal Fluid Cytokines and Neurotrophic Factors in Human Chronic Pain Populations: A Comprehensive Review. Pain Pract. 2016;16:183–203. doi: 10.1111/papr.12252.
    1. Patapoutian A., Tate S., Woolf C.J. Transient receptor potential channels: Targeting pain at the source. Nat. Rev. Drug Discov. 2009;8:55–68. doi: 10.1038/nrd2757.
    1. Jimenez-Andrade J.M., Ghilardi J.R., Castaneda-Corral G., Kuskowski M.A., Mantyh P.W. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain. 2011;152:2564–2574. doi: 10.1016/j.pain.2011.07.020.
    1. McCaffrey G., Thompson M.L., Majuta L., Fealk M.N., Chartier S., Longo G., Mantyh P.W. NGF blockade at early times during bone cancer development attenuates bone destruction and increases limb use. Cancer Res. 2014;74:7014–7023. doi: 10.1158/0008-5472.CAN-14-1220.
    1. Sevcik M.A., Ghilardi J.R., Peters C.M., Lindsay T.H., Halvorson K.G., Jonas B.M., Kubota K., Kuskowski M.A., Boustany L., Shelton D.L., et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain. 2005;115:128–141. doi: 10.1016/j.pain.2005.02.022.
    1. Moalem G., Tracey D.J. Immune and inflammatory mechanisms in neuropathic pain. Brain Res. Rev. 2006;51:240–264. doi: 10.1016/j.brainresrev.2005.11.004.
    1. Scholz J., Woolf C.J. The neuropathic pain triad: Neurons, immune cells and glia. Nat. Neurosci. 2007;10:1361–1368. doi: 10.1038/nn1992.
    1. De Jongh R.F., Vissers K.C., Meert T.F., Booij L.H., De Deyne C.S., Heylen R.J. The role of interleukin-6 in nociception and pain. Anesth. Analg. 2003;96:1096–1103. doi: 10.1213/01.ANE.0000055362.56604.78. table of contents.
    1. Chen S.R., Jin X.G., Pan H.L. Endogenous nitric oxide inhibits spinal NMDA receptor activity and pain hypersensitivity induced by nerve injury. Neuropharmacology. 2017;125:156–165. doi: 10.1016/j.neuropharm.2017.07.023.
    1. Schmidtko A. Nitric oxide-mediated pain processing in the spinal cord. Handb. Exp. Pharmacol. 2015;227:103–117.
    1. Chu Y.C., Guan Y., Skinner J., Raja S.N., Johns R.A., Tao Y.X. Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund’s adjuvant-induced persistent pain. Pain. 2005;119:113–123. doi: 10.1016/j.pain.2005.09.024.
    1. Maihofner C., Euchenhofer C., Tegeder I., Beck K.F., Pfeilschifter J., Geisslinger G. Regulation and immunhistochemical localization of nitric oxide synthases and soluble guanylyl cyclase in mouse spinal cord following nociceptive stimulation. Neurosci. Lett. 2000;290:71–75. doi: 10.1016/S0304-3940(00)01302-1.
    1. Guan Y., Yaster M., Raja S.N., Tao Y.X. Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice. Mol. Pain. 2007;3:29. doi: 10.1186/1744-8069-3-29.
    1. Azzam A.A.H., McDonald J., Lambert D.G. Hot topics in opioid pharmacology: Mixed and biased opioids. Br. J. Anaesth. 2019;122:e136–e145. doi: 10.1016/j.bja.2019.03.006.
    1. Brown C.A., Matthews J., Fairclough M., McMahon A., Barnett E., Al-Kaysi A., El-Deredy W., Jones A.K. Striatal opioid receptor availability is related to acute and chronic pain perception in arthritis: Does opioid adaptation increase resilience to chronic pain? Pain. 2015;156:2267–2275. doi: 10.1097/j.pain.0000000000000299.
    1. Piomelli D., Sasso O. Peripheral gating of pain signals by endogenous lipid mediators. Nat. Neurosci. 2014;17:164–174. doi: 10.1038/nn.3612.
    1. Rice A.S. Cannabinoids and pain. Curr. Opin. Investig. Drugs. 2001;2:399–414.
    1. Jimenez X.F. Cannabis for chronic pain: Not a simple solution. Clevel. Clin. J. Med. 2018;85:950–952. doi: 10.3949/ccjm.85a.18089.
    1. Starowicz K., Finn D.P. Advances in Pharmacology. Volume 80. Academic Press; Cambridge, MA, USA: 2017. Cannabinoids and Pain: Sites and Mechanisms of Action; pp. 437–475.
    1. Hill K.P., Palastro M.D., Johnson B., Ditre J.W. Cannabis and Pain: A Clinical Review. Cannabis Cannabinoid Res. 2017;2:96–104. doi: 10.1089/can.2017.0017.
    1. Hill K.P. Medical Marijuana for Treatment of Chronic Pain and Other Medical and Psychiatric Problems: A Clinical Review. JAMA. 2015;313:2474–2483. doi: 10.1001/jama.2015.6199.
    1. Whiting P.F., Wolff R.F., Deshpande S., Di Nisio M., Duffy S., Hernandez A.V., Keurentjes J.C., Lang S., Misso K., Ryder S., et al. Cannabinoids for Medical Use: A Systematic Review and Meta-analysis. JAMA. 2015;313:2456–2473. doi: 10.1001/jama.2015.6358.
    1. Lim G., Wang S., Zhang Y., Tian Y., Mao J. Spinal leptin contributes to the pathogenesis of neuropathic pain in rodents. J. Clin. Investig. 2009;119:295–304. doi: 10.1172/JCI36785.
    1. Maeda T., Kiguchi N., Kobayashi Y., Ikuta T., Ozaki M., Kishioka S. Leptin derived from adipocytes in injured peripheral nerves facilitates development of neuropathic pain via macrophage stimulation. Proc. Natl. Acad. Sci. USA. 2009;106:13076–13081. doi: 10.1073/pnas.0903524106.
    1. Fernandez-Martos C.M., Gonzalez P., Rodriguez F.J. Acute leptin treatment enhances functional recovery after spinal cord injury. PLoS ONE. 2012;7:e35594. doi: 10.1371/journal.pone.0035594.
    1. Pourreza P., Babapour V., Haghparast A. Role of dorsal hippocampal orexin-1 receptors in modulation of antinociception induced by chemical stimulation of the lateral hypothalamus. Physiol. Behav. 2018;185:79–86. doi: 10.1016/j.physbeh.2017.12.036.
    1. Chen W.W., Zhang X., Huang W.J. Pain control by melatonin: Physiological and pharmacological effects. Exp. Ther. Med. 2016;12:1963–1968. doi: 10.3892/etm.2016.3565.
    1. Marseglia L., D’Angelo G., Manti S., Aversa S., Arrigo T., Reiter R.J., Gitto E. Analgesic, anxiolytic and anaesthetic effects of melatonin: New potential uses in pediatrics. Int. J. Mol. Sci. 2015;16:1209–1220. doi: 10.3390/ijms16011209.
    1. Srinivasan V., Lauterbach E.C., Ho K.Y., Acuna-Castroviejo D., Zakaria R., Brzezinski A. Melatonin in antinociception: Its therapeutic applications. Curr. Neuropharmacol. 2012;10:167–178. doi: 10.2174/157015912800604489.
    1. Salat K., Kowalczyk P., Gryzlo B., Jakubowska A., Kulig K. New investigational drugs for the treatment of neuropathic pain. Expert Opin. Investig. Drugs. 2014;23:1093–1104. doi: 10.1517/13543784.2014.916688.
    1. Schaible H.G. Emerging concepts of pain therapy based on neuronal mechanisms. Handb. Exp. Pharmacol. 2015;227:1–14.
    1. Molton I.R., Graham C., Stoelb B.L., Jensen M.P. Current psychological approaches to the management of chronic pain. Curr. Opin. Anaesthesiol. 2007;20:485–489. doi: 10.1097/ACO.0b013e3282ef6b40.
    1. Osborne T.L., Raichle K.A., Jensen M.P. Psychologic interventions for chronic pain. Phys. Med. Rehabil. Clin. N. Am. 2006;17:415–433. doi: 10.1016/j.pmr.2005.12.002.
    1. Mouraux D., Brassinne E., Sobczak S., Nonclercq A., Warzee N., Sizer P.S., Tuna T., Penelle B. 3D augmented reality mirror visual feedback therapy applied to the treatment of persistent, unilateral upper extremity neuropathic pain: A preliminary study. J. Man. Manip. Ther. 2017;25:137–143. doi: 10.1080/10669817.2016.1176726.
    1. Hsu J.H., Daskalakis Z.J., Blumberger D.M. An Update on Repetitive Transcranial Magnetic Stimulation for the Treatment of Co-morbid Pain and Depressive Symptoms. Curr. Pain Headache Rep. 2018;22:51. doi: 10.1007/s11916-018-0703-7.
    1. Choi G.S., Kwak S.G., Lee H.D., Chang M.C. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study. J. Rehabil. Med. 2018;50:246–252. doi: 10.2340/16501977-2321.
    1. Bonakdar R.A. Integrative Pain Management. Med. Clin. N. Am. 2017;101:987–1004. doi: 10.1016/j.mcna.2017.04.012.
    1. Da Silva Santos R., Galdino G. Endogenous systems involved in exercise-induced analgesia. J. Physiol. Pharmacol. 2018;69:3–13.
    1. Streeter C.C., Whitfield T.H., Owen L., Rein T., Karri S.K., Yakhkind A., Perlmutter R., Prescot A., Renshaw P.F., Ciraulo D.A., et al. Effects of yoga versus walking on mood, anxiety, and brain GABA levels: A randomized controlled MRS study. J. Altern. Complement. Med. 2010;16:1145–1152. doi: 10.1089/acm.2010.0007.
    1. Tick H. Nutrition and pain. Phys. Med. Rehabil. Clin. N. Am. 2015;26:309–320. doi: 10.1016/j.pmr.2014.12.006.

Source: PubMed

3
Suscribir