Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors

Sara E Jones, James Versalovic, Sara E Jones, James Versalovic

Abstract

Background: Commensal-derived probiotic bacteria inhibit enteric pathogens and regulate host immune responses in the gastrointestinal tract, but studies examining specific functions of beneficial microbes in the context of biofilms have been limited in scope.

Results: Lactobacillus reuteri formed biofilms that retained functions potentially advantageous to the host including modulation of cytokine output and the production of the antimicrobial agent, reuterin. Immunomodulatory activities of biofilms were demonstrated by the abilities of specific L. reuteri strains to suppress human TNF production by LPS-activated monocytoid cells. Quantification of the antimicrobial glycerol derivative, reuterin, was assessed in order to document the antipathogenic potential of probiotic biofilms. L. reuteri biofilms differed in the quantities of reuterin secreted in this physiological state.

Conclusion: L. reuteri biofilms secreted factors that confer specific health benefits such as immunomodulation and pathogen inhibition. Future probiotic selection strategies should consider a strain's ability to perform beneficial functions as a biofilm.

Figures

Figure 1
Figure 1
L. reuteri adherence is strain-dependent. L. reuteri biofilms were cultured for 24 hours in 96-well polystyrene plates. The relative propensities of L. reuteri to form biofilms were measured by absorbance spectrophotometry after staining with crystal violet. L. reuteri ATCC 6475 and ATCC PTA 5289 were more adherent then CF48-3A and ATCC 55730 (ANOVA, p < 0.02).
Figure 2
Figure 2
L. reuteri biofilms were observed by confocal microscopy. Biofilms were cultured in a flow cell supplied with MRS for 48 hours at 37°C in ambient atmosphere. L. reuteri biofilms (green) were stained with acridine orange and observed by confocal microscopy. A single optical section and the stacked optical sections of ATCC 55730 (A and B, respectively) are shown at 630× magnification. These images are representative of 30 microscopic fields obtained in 3 independent experiments.
Figure 3
Figure 3
Modulation of TNF production by L. reuteri is strain-dependent. Cell-free supernatants from stationary phase L. reuteri cultures (planktonic cells) were added to human monocytoid cells in the presence or absence of E. coli-derived LPS (no LPS-black bars, LPS-gray bars). Quantitative ELISAs measured the amounts of human TNF produced by THP-1 cells. In the absence of LPS, supernatants from L. reuteri CF48-3A and ATCC 55730 stimulated TNF by human THP-1 cells, while supernatants from ATCC PTA 6475 and ATCC PTA 5289 did not induce TNF production. However, L. reuteri CF48-3A and ATCC 55730 did not suppress TNF production by LPS-activated cells, while PTA 6475 and ATCC PTA 5289 inhibited production of TNF by 76% and 77% respectively, when compared to the media control (ANOVA, p < 0.001).
Figure 4
Figure 4
L. reuteri strains proficient in biofilm formation suppress TNF production. Cell-free supernatants from L. reuteri biofilms cultured in 24-well plates (A) or flow cells (B) were added to human monocytoid cells in the presence of E. coli-derived LPS. Quantitative ELISAs measured the amounts of human TNF produced by THP-1 cells. As biofilms, TNF inhibitory strains (ATCC PTA 6475 and ATCC PTA 5289) retained their ability to suppress TNF produced by LPS-activated human monocytoid cells. L. reuteri ATCC PTA 6475 and ATCC PTA 5289 biofilms cultured in 24-well plates (A) inhibited TNF by 60% and 50% respectively, (ANOVA, p < 0.02). Supernatants of L. reuteri ATCC PTA 5289 cultured in a flow cell (B) inhibited TNF by 73% when compared to the media control (ANOVA, p < 0.0001).
Figure 5
Figure 5
L. reuteri strains cultured as planktonic cells produce the antimicrobial compound, reuterin. Stationary phase planktonic cultures of L. reuteri were incubated anaerobically in a glycerol solution. Reuterin concentrations of the cell free supernatants were determined using a colorimetric assay and were normalized with respect to viable colony counts prior to the addition of glycerol. ATCC PTA 6475 and ATCC 5289 produced less reuterin than ATCC 55730 and CF48-3A (ANOVA, p < 0.05).
Figure 6
Figure 6
L. reuteri biofilms produce reuterin. L. reuteri biofilms were cultured in MRS for 48 hours at 37°C in ambient atmosphere in multiwell plates. In order to measure reuterin production, biofilms were incubated in the presence of glycerol in anaerobic conditions. Reuterin concentrations were determined using a colorimetric assay and were normalized with respect to viable colony counts prior to the addition of glycerol. All L. reuteri biofilms produced detectable amounts of reuterin, although inter-strain differences were observed. ATCC PTA 6475 and ATCC 5289 produced less reuterin than ATCC 55730 and CF48-3A (ANOVA, p < 0.05).

References

    1. Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66(5):365–378.
    1. FAO/WHO. Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Report of the Joint Food and Agriculture Organization (FAO) of the United Nations/World Health Organization (WHO) Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. 2001.
    1. Abrahamsson TR, Jakobsson T, Bottcher MF, Fredrikson M, Jenmalm MC, Bjorksten B, Oldaeus G. Probiotics in prevention of IgE-associated eczema: a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2007;119(5):1174–1180.
    1. Shornikova AV, Casas IA, Isolauri E, Mykkanen H, Vesikari T. Lactobacillus reuteri as a therapeutic agent in acute diarrhea in young children. J Pediatr Gastroenterol Nutr. 1997;24(4):399–404.
    1. Shornikova AV, Casas IA, Mykkanen H, Salo E, Vesikari T. Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. Pediatr Infect Dis J. 1997;16(12):1103–1107.
    1. Saunders S, Bocking A, Challis J, Reid G. Effect of Lactobacillus challenge on Gardnerella vaginalis biofilms. Colloids Surf B Biointerfaces. 2007;55(2):138–142.
    1. Savino F, Pelle E, Palumeri E, Oggero R, Miniero R. Lactobacillus reuteri (American Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile colic: a prospective randomized study. Pediatrics. 2007;119(1):e124–130.
    1. Tubelius P, Stan V, Zachrisson A. Increasing work-place healthiness with the probiotic Lactobacillus reuteri: a randomised, double-blind placebo-controlled study. Environ Health. 2005;4:25.
    1. Imase K, Tanaka A, Tokunaga K, Sugano H, Ishida H, Takahashi S. Lactobacillus reuteri tablets suppress Helicobacter pylori infection – a double-blind randomised placebo-controlled cross-over clinical study. Kansenshogaku Zasshi. 2007;81(4):387–393.
    1. Reuter G. The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol. 2001;2(2):43–53.
    1. Valeur N, Engel P, Carbajal N, Connolly E, Ladefoged K. Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl Environ Microbiol. 2004;70(2):1176–1181.
    1. Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends Microbiol. 2005;13(12):589–595.
    1. Kobayashi H. Airway biofilms: implications for pathogenesis and therapy of respiratory tract infections. Treat Respir Med. 2005;4(4):241–253.
    1. Bollinger RR, Barbas AS, Bush EL, Lin SS, Parker W. Biofilms in the normal human large bowel: fact rather than fiction. Gut. 2007;56(10):1481–1482.
    1. Macfarlane S, Dillon JF. Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol. 2007;102(5):1187–1196.
    1. Palestrant D, Holzknecht ZE, Collins BH, Parker W, Miller SE, Bollinger RR. Microbial biofilms in the gut: visualization by electron microscopy and by acridine orange staining. Ultrastruct Pathol. 2004;28(1):23–27.
    1. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43(7):3380–3389.
    1. Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol. 2002;68(7):3401–3407.
    1. Swidsinski A, Sydora BC, Doerffel Y, Loening-Baucke V, Vaneechoutte M, Lupicki M, Scholze J, Lochs H, Dieleman LA. Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm Bowel Dis. 2007;13(8):963–970.
    1. Macfarlane S. Microbial biofilm communities in the gastrointestinal tract. J Clin Gastroenterol. 2008;42(Suppl 3 Pt 1):S142–143.
    1. Kleessen B, Blaut M. Modulation of gut mucosal biofilms. Br J Nutr. 2005;93(Suppl 1):S35–40.
    1. Kleessen B, Kroesen AJ, Buhr HJ, Blaut M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol. 2002;37(9):1034–1041.
    1. Kleessen B, Hartmann L, Blaut M. Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr. 2003;89(5):597–606.
    1. Macfarlane GT, Furrie E, Macfarlane S. Bacterial milieu and mucosal bacteria in ulcerative colitis. Novartis Found Symp. 2004;263:57–64.
    1. Pena JA, Li SY, Wilson PH, Thibodeau SA, Szary AJ, Versalovic J. Genotypic and phenotypic studies of murine intestinal lactobacilli: species differences in mice with and without colitis. Appl Environ Microbiol. 2004;70(1):558–568.
    1. Pena JA, Rogers AB, Ge Z, Ng V, Li SY, Fox JG, Versalovic J. Probiotic Lactobacillus spp. diminish Helicobacter hepaticus-induced inflammatory bowel disease in interleukin-10-deficient mice. Infect Immun. 2005;73(2):912–920.
    1. Tannock GW, Ghazally S, Walter J, Loach D, Brooks H, Cook G, Surette M, Simmers C, Bremer P, Dal Bello F. Ecological behavior of Lactobacillus reuteri 100-23 is affected by mutation of the luxS gene. Appl Environ Microbiol. 2005;71(12):8419–8425.
    1. Doleyres Y, Beck P, Vollenweider S, Lacroix C. Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Appl Microbiol Biotechnol. 2005;68(4):467–474.
    1. Frick JS, Schenk K, Quitadamo M, Kahl F, Koberle M, Bohn E, Aepfelbacher M, Autenrieth IB. Lactobacillus fermentum attenuates the proinflammatory effect of Yersinia enterocolitica on human epithelial cells. Inflamm Bowel Dis. 2007;13(1):83–90.
    1. Sougioultzis S, Simeonidis S, Bhaskar KR, Chen X, Anton PM, Keates S, Pothoulakis C, Kelly CP. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kappaB-mediated IL-8 gene expression. Biochem Biophys Res Commun. 2006;343(1):69–76.
    1. Menard S, Candalh C, Bambou JC, Terpend K, Cerf-Bensussan N, Heyman M. Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut. 2004;53(6):821–828.
    1. Pena JA, Versalovic J. Lactobacillus rhamnosus GG decreases TNF-alpha production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cellular microbiology. 2003;5(4):277–285.
    1. Madara J. Building an intestine-architectural contributions of commensal bacteria. N Engl J Med. 2004;351(16):1685–1686.
    1. Bollinger RR, Everett ML, Palestrant D, Love SD, Lin SS, Parker W. Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology. 2003;109(4):580–587.
    1. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002;122(1):44–54.
    1. Lee JH, Del Sorbo L, Khine AA, de Azavedo J, Low DE, Bell D, Uhlig S, Slutsky AS, Zhang H. Modulation of bacterial growth by tumor necrosis factor-alpha in vitro and in vivo. Am J Respir Crit Care Med. 2003;168(12):1462–1470.
    1. Orndorff PE, Devapali A, Palestrant S, Wyse A, Everett ML, Bollinger RR, Parker W. Immunoglobulin-mediated agglutination of and biofilm formation by Escherichia coli K-12 require the type 1 pilus fiber. Infect Immun. 2004;72(4):1929–1938.
    1. Zarate G, Nader-Macias ME. Influence of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells. Lett Appl Microbiol. 2006;43(2):174–180.
    1. Talarico TL, Dobrogosz WJ. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother. 1989;33(5):674–679.
    1. Cleusix V, Lacroix C, Vollenweider S, Le Blay G. Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS microbiology ecology. 2008;63(1):56–64.
    1. El-Azizi M, Rao S, Kanchanapoom T, Khardori N. In vitro activity of vancomycin, quinupristin/dalfopristin, and linezolid against intact and disrupted biofilms of staphylococci. Ann Clin Microbiol Antimicrob. 2005;4:2.
    1. Castagliuolo I, Galeazzi F, Ferrari S, Elli M, Brun P, Cavaggioni A, Tormen D, Sturniolo GC, Morelli L, Palu G. Beneficial effect of auto-aggregating Lactobacillus crispatus on experimentally induced colitis in mice. FEMS Immunol Med Microbiol. 2005;43(2):197–204.
    1. Walter J, Loach DM, Alqumber M, Rockel C, Hermann C, Pfitzenmaier M, Tannock GW. D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract. Environ Microbiol. 2007;9(7):1750–1760.
    1. Mathee K, Ciofu O, Sternberg C, Lindum PW, Campbell JI, Jensen P, Johnsen AH, Givskov M, Ohman DE, Molin S. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology (Reading, England) 1999;145(Pt 6):1349–1357.
    1. Lin YP, Thibodeaux CH, Pena JA, Ferry GD, Versalovic J. Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun. Inflamm Bowel Dis. 2008;14(8):1068–1083.
    1. Spinler JK, Taweechotipatr M, Rognerud CL, Ou CN, Tumwasorn S, Versalovic J. Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe. 2008.

Source: PubMed

3
Suscribir