Cytokine Disturbances in Coronary Artery Ectasia Do Not Support Atherosclerosis Pathogenesis

Usama Boles, Anders Johansson, Urban Wiklund, Zain Sharif, Santhosh David, Siobhan McGrory, Michael Y Henein, Usama Boles, Anders Johansson, Urban Wiklund, Zain Sharif, Santhosh David, Siobhan McGrory, Michael Y Henein

Abstract

Background: Coronary artery ectasia (CAE) is a rare disorder commonly associated with additional features of atherosclerosis. In the present study, we aimed to examine the systemic immune-inflammatory response that might associate CAE.

Methods: Plasma samples were obtained from 16 patients with coronary artery ectasia (mean age 64.9 ± 7.3 years, 6 female), 69 patients with coronary artery disease (CAD) and angiographic evidence for atherosclerosis (age 64.5 ± 8.7 years, 41 female), and 140 controls (mean age 58.6 ± 4.1 years, 40 female) with normal coronary arteries. Samples were analyzed at Umeå University Biochemistry Laboratory, Sweden, using the V-PLEX Pro-Inflammatory Panel 1 (human) Kit. Statistically significant differences (p < 0.05) between patient groups and controls were determined using Mann-Whitney U-tests.

Results: The CAE patients had significantly higher plasma levels of INF-γ, TNF-α, IL-1β, and IL-8 (p = 0.007, 0.01, 0.001, and 0.002, respectively), and lower levels of IL-2 and IL-4 (p < 0.001 for both) compared to CAD patients and controls. The plasma levels of IL-10, IL-12p, and IL-13 were not different between the three groups. None of these markers could differentiate between patients with pure (n = 6) and mixed with minimal atherosclerosis (n = 10) CAE.

Conclusions: These results indicate an enhanced systemic pro-inflammatory response in CAE. The profile of this response indicates activation of macrophages through a pathway and trigger different from those of atherosclerosis immune inflammatory response.

Keywords: atherosclerosis; coronary artery disease; coronary artery ectasia; cytokines; immune inflammatory response; macrophage activation.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Cytokines with significantly higher levels in CAE patients compared to controls. P-values are derived from Kruskal–Wallis test of all three groups (see Table 2). CAE patients also presented with significantly higher levels IL-1β and IL-8 than CAD patients. Boxes show median and interquartile. Dashed lines indicate the threshold for defining extreme values, which are shown in a compressed region between the solid lines.
Figure 2
Figure 2
Systematic diagram to illustrate the enhanced pro inflammatory systemic response in CAE. Macrophage activation and the cytokines response. The proposed TH2 pathway activation leads to increased IL-6. However, low IL-4 levels as an outcome of possibly perturbed NK T-cell function lead to poor healing.

References

    1. Boles U., Eriksson P., Zhao Y., Henein M.Y. Coronary artery ectasia: Remains a clinical dilemma. Coron. Artery Dis. 2010;21:318–320. doi: 10.1097/MCA.0b013e32833b20da.
    1. Endoh S., Andoh H., Sonoyama K., Furuse Y., Ohtahara A., Kasahara T. Clinical features of coronary artery ectasia. J. Cardiol. 2004;43:45–52.
    1. Eitan A., Roguin A. Coronary artery ectasia: New insights into pathophysiology, diagnosis, and treatment. Coron. Artery Dis. 2016;27:420–428. doi: 10.1097/MCA.0000000000000379.
    1. Yetkin E., Waltenberger J. Novel insights into an old controversy: Is coronary artery ectasia a variant of coronary atherosclerosis? Clin. Res. Cardiol. 2007;96:331–339. doi: 10.1007/s00392-007-0521-0.
    1. Boles U., Pinto R.C., David S., Abdullah A.S., Henein M.Y. Dysregulated fatty acid metabolism in coronary ectasia: An extended lipidomic analysis. Int. J. Cardiol. 2017;228:303–308. doi: 10.1016/j.ijcard.2016.11.093.
    1. Hartnell G.G., Parnell B.M., Pridie R.B. Coronary artery ectasia. Its prevalence and clinical significance in 4993 patients. Br. Heart J. 1985;54:392–395. doi: 10.1136/hrt.54.4.392.
    1. Kornowski R., Mintz G.S., Lansky A.J., Hong M.K., Kent K.M., Pichard A.D., Pichard A.D., Satler L.F., Popma J.J., Bucher T.A., et al. Paradoxic decreases in atherosclerotic plaque mass in insulin-treated diabetic patients. Am. J. Cardiol. 1998;81:1298–1304. doi: 10.1016/S0002-9149(98)00157-X.
    1. Walford G.D., Midei M.G., Aversano T.R., Gottlieb S.O., Chew P.H., Brinker J.A. Coronary artery aneurysm formation following percutaneous transluminal coronary angioplasty: Treatment of associated restenosis with repeat percutaneous transluminal coronary angioplasty. Cathether. Cardiovasc. Interv. 1990;20:77–83. doi: 10.1002/ccd.1810200203.
    1. Bal E.T., Thijs Plokker H.W., van den Berg E.M., Ernst S.M., Gijs Mast E., Gin R.M., Ascoop C.A. Predictability and prognosis of PTCA-induced coronary artery aneurysms. Cathether. Cardiovasc. Interv. 1991;22:85–88. doi: 10.1002/ccd.1810220203.
    1. Malik I.S., Harare O., AL-Nahhas A., Beatt K., Mason J. Takayasu’s arteritis: Management of left main stem stenosis. Heart. 2003;89:e9. doi: 10.1136/heart.89.3.e9.
    1. Ross R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207.
    1. Ross R., Glomset J.A. The pathogenesis of atherosclerosis (second of two parts) N. Engl. J. Med. 1976;295:420–425. doi: 10.1056/NEJM197608192950805.
    1. Ross R., Glomset J.A. The pathogenesis of atherosclerosis (first of two parts) N. Engl. J. Med. 1976;295:369–377. doi: 10.1056/NEJM197608122950707.
    1. Ross R., Glomset J., Harker L. Response to injury and atherogenesis. Am. J. Pathol. 1977;86:675–684.
    1. Zhou X., Nicoletti A., Elhage R., Hansson G.K. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation. 2000;102:2919–2922. doi: 10.1161/01.CIR.102.24.2919.
    1. Stoger J.L., Goossens P., de Winther M.P. Macrophage heterogeneity: Relevance and functional implications in atherosclerosis. Curr. Vasc. Pharmacol. 2010;8:233–248. doi: 10.2174/157016110790886983.
    1. Berman R.M., Suzuki T., Tahara H., Robbins P.D., Narula S.K., Lotze M.T. Systemic administration of cellular IL-10 induces an effective, specific, and long-lived immune response against established tumors in mice. J. Immunol. 1996;157:231–238.
    1. Bogdan C., Vodovotz Y., Nathan C. Macrophage deactivation by interleukin-10. J. Exp. Med. 1991;174:1549–1555. doi: 10.1084/jem.174.6.1549.
    1. Heeschen C., Dimmeler S., Hamm C.W., Fichtlscherer S., Boersma E., Simoons M.L., Zeiher A.M. Serum level of the antiinflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes. Circulation. 2003;107:2109–2114. doi: 10.1161/01.CIR.0000065232.57371.25.
    1. King V.L., Szilvassy S.J., Daugherty A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol. 2002;22:456–461. doi: 10.1161/hq0302.104905.
    1. Simonet W.S., Hughes T.M., Nguyen H.Q., Trebasky L.D., Danilenko D.M., Medlock E.S. Long-term impaired neutrophil migration in mice overexpressing human interleukin-8. J. Clin. Investig. 1994;94:1310–1319. doi: 10.1172/JCI117450.
    1. Hechtman D.H., Cybulsky M.I., Fuchs H.J., Baker J.B., Gimbrone M.A., Jr. Intravascular IL-8. Inhibitor of polymorphonuclear leukocyte accumulation at sites of acute inflammation. J. Immunol. 1991;147:883–892.
    1. Boles U., Zhao Y., David S., Eriksson P., Henein M.Y. Pure coronary ectasia differs from atherosclerosis: Morphological and risk factors analysis. Int. J. Cardiol. 2012;155:321–323. doi: 10.1016/j.ijcard.2011.12.010.
    1. Nicoll R., Wiklund U., Zhao Y., Diederichsen A., Mickley H., Ovrehus K., Zamorano P., Gueret P., Schmermund A., Maffei E., et al. The coronary calcium score is a more accurate predictor of significant coronary stenosis than conventional risk factors in symptomatic patients: Euro-CCAD study. Int. J. Cardiol. 2016;207:13–19. doi: 10.1016/j.ijcard.2016.01.056.
    1. Kocaman S.A., Tacoy G., Sahinarslan A., Cengel A. Relationship between total and differential leukocyte counts and isolated coronary artery ectasia. Coron. Artery Dis. 2008;19:307–310. doi: 10.1097/MCA.0b013e328300427e.
    1. Tedgui A., Mallat Z. Cytokines in atherosclerosis: Pathogenic and regulatory pathways. Physiol. Rev. 2006;86:515–581. doi: 10.1152/physrev.00024.2005.
    1. Triantafyllis A.S., Kalogeropoulos A.S., Rigopoulos A.G., Sakadakis E.A., Toumpoulis I.K., Tsikrikas S., Kremastinos D.T., Rizos I. Coronary artery ectasia and inflammatory cytokines: Link with a predominant Th-2 immune response? Cytokine. 2013;64:427–432. doi: 10.1016/j.cyto.2013.05.003.
    1. Adiloglu A.K., Ocal A., Tas T., Onal S., Kapan S., Aridogan B. Increased expression of CD11a and CD45 on leukocytes and decreased serum TNF-alpha levels in patients with isolated coronary artery ectasia. Clin. Lab. 2011;57:703–709.
    1. Ait-Oufella H., Taleb S., Mallat Z., Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2011;31:969–979. doi: 10.1161/ATVBAHA.110.207415.
    1. Elhage R., Clamens S., Besnard S., Mallat Z., Tedgui A., Arnal J., Maret A., Bayard F. Involvement of interleukin-6 in atherosclerosis but not in the prevention of fatty streak formation by 17beta-estradiol in apolipoprotein E-deficient mice. Atherosclerosis. 2001;156:315–320. doi: 10.1016/S0021-9150(00)00682-1.
    1. Xing Z., Gauldie J., Cox G., Baumann H., Jordana M., Lei X.F., Achong M.K. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J. Clin. Investig. 1998;101:311–320. doi: 10.1172/JCI1368.
    1. Liao H.S., Matsumoto A., Itakura H., Doi T., Honda M., Kodama T., Geng Y.J. Transcriptional inhibition by interleukin-6 of the class A macrophage scavenger receptor in macrophages derived from human peripheral monocytes and the THP-1 monocytic cell line. Arterioscler. Thromb. Vasc. Biol. 1999;19:1872–1880. doi: 10.1161/01.ATV.19.8.1872.
    1. El Bakry S.A., Fayez D., Morad C.S., Abdel-Salam A.M., Abdel-Salam Z., ElKabarity R.H., Al Hussein M. Ischemic heart disease and rheumatoid arthritis: Do inflammatory cytokines have a role? Cytokine. 2017;96:228–233. doi: 10.1016/j.cyto.2017.04.026.
    1. Wilson H.M. Macrophages heterogeneity in atherosclerosis—Implications for therapy. J. Cell. Mol. Med. 2010;14:2055–2065. doi: 10.1111/j.1582-4934.2010.01121.x.
    1. Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008;8:958–969. doi: 10.1038/nri2448.
    1. Sherry B., Horii Y., Manogue K.R., Widmer U., Cerami A. Macrophage inflammatory proteins 1 and 2: An overview. Cytokines. 1992;4:117–130.
    1. Caligiuri G., Liuzzo G., Biasucci L.M., Maseri A. Immune system activation follows inflammation in unstable angina: Pathogenetic implications. J. Am. Coll. Cardiol. 1998;32:1295–1304. doi: 10.1016/S0735-1097(98)00410-0.
    1. Caligiuri G., Paulsson G., Nicoletti A., Maseri A., Hansson G.K. Evidence for antigen-driven T-cell response in unstable angina. Circulation. 2000;102:1114–1119. doi: 10.1161/01.CIR.102.10.1114.
    1. Simon A.D., Yazdani S., Wang W., Schwartz A., Rabbani L.E. Elevated plasma levels of interleukin-2 and soluble IL-2 receptor in ischemic heart disease. Clin. Cardiol. 2001;24:253–256. doi: 10.1002/clc.4960240315.
    1. Liuzzo G., Kopecky S.L., Frye R.L., O’Fallon W.M., Maseri A., Goronzy J.J., Weyand C.M. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation. 1999;100:2135–2139. doi: 10.1161/01.CIR.100.21.2135.
    1. Antoniadis A.P., Chatzizisis Y.S., Giannoglou G.D. Pathogenetic mechanisms of coronary ectasia. Int. J. Cardiol. 2008;130:335–343. doi: 10.1016/j.ijcard.2008.05.071.
    1. Li J.J., Li Z., Li J. Is any link between inflammation and coronary artery ectasia? Med. Hypotheses. 2007;69:678–683. doi: 10.1016/j.mehy.2006.09.071.
    1. Finkelstein A., Michowitz Y., Abashidze A., Miller H., Keren G., George J. Temporal association between circulating proteolytic, inflammatory and neurohormonal markers in patients with coronary ectasia. Atherosclerosis. 2005;179:353–359. doi: 10.1016/j.atherosclerosis.2004.10.020.
    1. Savino M., Parisi Q., Biondi-Zoccai G.G., Pristipino C., Cianflone D., Crea F. New insights into molecular mechanisms of diffuse coronary ectasiae: A possible role for VEGF. Int. J. Cardiol. 2006;106:307–312. doi: 10.1016/j.ijcard.2005.01.025.
    1. Weber C., Zernecke A., Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models. Nat. Rev. Immunol. 2008;8:802–815. doi: 10.1038/nri2415.
    1. AC N. The Th2-type cytokine IL-4 inhibits the production of most MMPs from macrophages. Arterioscler. Thromb. Vasc. Biol. 2008;28:2108–2114.

Source: PubMed

3
Suscribir