Variation in CYP2A6 Activity and Personalized Medicine

Julie-Anne Tanner, Rachel F Tyndale, Julie-Anne Tanner, Rachel F Tyndale

Abstract

The cytochrome P450 2A6 (CYP2A6) enzyme metabolizes several clinically relevant substrates, including nicotine-the primary psychoactive component in cigarette smoke. The gene that encodes the CYP2A6 enzyme is highly polymorphic, resulting in extensive interindividual variation in CYP2A6 enzyme activity and the rate of metabolism of nicotine and other CYP2A6 substrates including cotinine, tegafur, letrozole, efavirenz, valproic acid, pilocarpine, artemisinin, artesunate, SM-12502, caffeine, and tyrosol. CYP2A6 expression and activity are also impacted by non-genetic factors, including induction or inhibition by pharmacological, endogenous, and dietary substances, as well as age-related changes, or interactions with other hepatic enzymes, co-enzymes, and co-factors. As variation in CYP2A6 activity is associated with smoking behavior, smoking cessation, tobacco-related lung cancer risk, and with altered metabolism and resulting clinical responses for several therapeutics, CYP2A6 expression and enzyme activity is an important clinical consideration. This review will discuss sources of variation in CYP2A6 enzyme activity, with a focus on the impact of CYP2A6 genetic variation on metabolism of the CYP2A6 substrates.

Keywords: CYP2A6; SNP; drug metabolism; genetic variation; inducer; inhibitor; nicotine; pharmacogenetics; pharmacogenomics; smoking.

Conflict of interest statement

Tyndale has consulted for Apotex and Quinn Emanuel on unrelated topics. The remaining author declares no conflicts of interest. This work was supported by a Canada Research Chair in Pharmacogenomics (R.F.T.), CIHR FDN-154294, and the Campbell Family Mental Health Research Institute of CAMH.

Figures

Figure 1
Figure 1
The major pathways of nicotine metabolism and clearance. The bolded arrow represents the predominant pathway of nicotine metabolism (CYP2A6 is responsible for 90% of nicotine’s metabolism to cotinine). Adapted from Hukkanen et al., 2005 [103] and Tanner et al., 2015 [41].

References

    1. Koskela S., Hakkola J., Hukkanen J., Pelkonen O., Sorri M., Saranen A., Anttila S., Fernandez-Salguero P., Gonzalez F., Raunio H. Expression of CYP2A genes in human liver and extrahepatic tissues. Biochem. Pharmacol. 1999;57:1407–1413. doi: 10.1016/S0006-2952(99)00015-5.
    1. McDonagh E.M., Wassenaar C., David S.P., Tyndale R.F., Altman R.B., Whirl-Carrillo M., Klein T.E. PharmGKB summary: Very important pharmacogene information for cytochrome P-450, family 2, subfamily A, polypeptide 6. Pharmacogenet. Genom. 2012;22:695–708. doi: 10.1097/FPC.0b013e3283540217.
    1. Loukola A., Buchwald J., Gupta R., Palviainen T., Hallfors J., Tikkanen E., Korhonen T., Ollikainen M., Sarin A.P., Ripatti S., et al. A Genome-Wide Association Study of a Biomarker of Nicotine Metabolism. PLoS Genet. 2015;11:e1005498. doi: 10.1371/journal.pgen.1005498.
    1. Tanner J.A., Prasad B., Claw K.G., Stapleton P., Chaudhry A., Schuetz E.G., Thummel K.E., Tyndale R.F. Predictors of Variation in CYP2A6 mRNA, Protein, and Enzyme Activity in a Human Liver Bank: Influence of Genetic and Nongenetic Factors. J. Pharmacol. Exp. Ther. 2017;360:129–139. doi: 10.1124/jpet.116.237594.
    1. Hukkanen J., Jacob P., III, Benowitz N.L. Effect of grapefruit juice on cytochrome P450 2A6 and nicotine renal clearance. Clin. Pharmacol. Ther. 2006;80:522–530. doi: 10.1016/j.clpt.2006.08.006.
    1. Hakooz N., Hamdan I. Effects of dietary broccoli on human in vivo caffeine metabolism: A pilot study on a group of Jordanian volunteers. Curr. Drug Metab. 2007;8:9–15. doi: 10.2174/138920007779315080.
    1. Higashi E., Fukami T., Itoh M., Kyo S., Inoue M., Yokoi T., Nakajima M. Human CYP2A6 is induced by estrogen via estrogen receptor. Drug Metab. Dispos. Biol. Fate Chem. 2007;35:1935–1941. doi: 10.1124/dmd.107.016568.
    1. Koenigs L.L., Peter R.M., Thompson S.J., Rettie A.E., Trager W.F. Mechanism-based inactivation of human liver cytochrome P450 2A6 by 8-methoxypsoralen. Drug Metab. Dispos. Biol. Fate Chem. 1997;25:1407–1415.
    1. Donato M.T., Viitala P., Rodriguez-Antona C., Lindfors A., Castell J.V., Raunio H., Gomez-Lechon M.J., Pelkonen O. CYP2A5/CYP2A6 expression in mouse and human hepatocytes treated with various in vivo inducers. Drug Metab. Dispos. Biol. Fate Chem. 2000;28:1321–1326.
    1. Wong H.L., Murphy S.E., Hecht S.S. Cytochrome P450 2A-catalyzed metabolic activation of structurally similar carcinogenic nitrosamines: N′-nitrosonornicotine enantiomers, N-nitrosopiperidine, and N-nitrosopyrrolidine. Chem. Res. Toxicol. 2005;18:61–69. doi: 10.1021/tx0497696.
    1. Kushida H., Fujita K., Suzuki A., Yamada M., Endo T., Nohmi T., Kamataki T. Metabolic activation of N-alkylnitrosamines in genetically engineered Salmonella typhimurium expressing CYP2E1 or CYP2A6 together with human NADPH-cytochrome P450 reductase. Carcinogenesis. 2000;21:1227–1232.
    1. Messina E.S., Tyndale R.F., Sellers E.M. A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J. Pharmacol. Exp. Ther. 1997;282:1608–1614.
    1. Ikeda K., Yoshisue K., Matsushima E., Nagayama S., Kobayashi K., Tyson C.A., Chiba K., Kawaguchi Y. Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin. Cancer Res. 2000;6:4409–4415.
    1. Murai K., Yamazaki H., Nakagawa K., Kawai R., Kamataki T. Deactivation of anti-cancer drug letrozole to a carbinol metabolite by polymorphic cytochrome P450 2A6 in human liver microsomes. Xenobiotica. 2009;39:795–802. doi: 10.3109/00498250903171395.
    1. di Iulio J., Fayet A., Arab-Alameddine M., Rotger M., Lubomirov R., Cavassini M., Furrer H., Gunthard H.F., Colombo S., Csajka C., et al. In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet. Genom. 2009;19:300–309. doi: 10.1097/FPC.0b013e328328d577.
    1. Thorn C.F., Aklillu E., McDonagh E.M., Klein T.E., Altman R.B. PharmGKB summary: Caffeine pathway. Pharmacogenet. Genom. 2012;22:389–395. doi: 10.1097/FPC.0b013e32834aeedb.
    1. Nakajima M., Yamamoto T., Nunoya K., Yokoi T., Nagashima K., Inoue K., Funae Y., Shimada N., Kamataki T., Kuroiwa Y. Characterization of CYP2A6 involved in 3'-hydroxylation of cotinine in human liver microsomes. J. Pharmacol. Exp. Ther. 1996;277:1010–1015.
    1. Dempsey D., Tutka P., Jacob P., III, Allen F., Schoedel K., Tyndale R.F., Benowitz N.L. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin. Pharmacol. Ther. 2004;76:64–72. doi: 10.1016/j.clpt.2004.02.011.
    1. Swan G.E., Lessov-Schlaggar C.N., Bergen A.W., He Y., Tyndale R.F., Benowitz N.L. Genetic and environmental influences on the ratio of 3′hydroxycotinine to cotinine in plasma and urine. Pharmacogenet. Genom. 2009;19:388–398. doi: 10.1097/FPC.0b013e32832a404f.
    1. Baurley J.W., Edlund C.K., Pardamean C.I., Conti D.V., Krasnow R., Javitz H.S., Hops H., Swan G.E., Benowitz N.L., Bergen A.W. Genome-wide association of the laboratory-based nicotine metabolite ratio in three ancestries. Nicotine Tob. Res. 2016;18:1837–1844. doi: 10.1093/ntr/ntw117.
    1. Rao Y., Hoffmann E., Zia M., Bodin L., Zeman M., Sellers E.M., Tyndale R.F. Duplications and defects in the CYP2A6 gene: Identification, genotyping, and in vivo effects on smoking. Mol. Pharmacol. 2000;58:747–755.
    1. Fukami T., Nakajima M., Yamanaka H., Fukushima Y., McLeod H.L., Yokoi T. A novel duplication type of CYP2A6 gene in African-American population. Drug Metab. Dispos. Biol. Fate Chem. 2007;35:515–520. doi: 10.1124/dmd.106.013557.
    1. Mwenifumbo J.C., Lessov-Schlaggar C.N., Zhou Q., Krasnow R.E., Swan G.E., Benowitz N.L., Tyndale R.F. Identification of novel CYP2A6*1B variants: The CYP2A6*1B allele is associated with faster in vivo nicotine metabolism. Clin. Pharmacol. Ther. 2008;83:115–121. doi: 10.1038/sj.clpt.6100246.
    1. Wang J., Pitarque M., Ingelman-Sundberg M. 3′-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression. Biochem. Biophys. Res. Commun. 2006;340:491–497. doi: 10.1016/j.bbrc.2005.12.035.
    1. Al Koudsi N., Hoffmann E.B., Assadzadeh A., Tyndale R.F. Hepatic CYP2A6 levels and nicotine metabolism: Impact of genetic, physiological, environmental, and epigenetic factors. Eur. J. Clin. Pharmacol. 2010;66:239–251. doi: 10.1007/s00228-009-0762-0.
    1. Mwenifumbo J.C., Zhou Q., Benowitz N.L., Sellers E.M., Tyndale R.F. New CYP2A6 gene deletion and conversion variants in a population of Black African descent. Pharmacogenomics. 2010;11:189–198. doi: 10.2217/pgs.09.144.
    1. Oscarson M., McLellan R.A., Gullsten H., Yue Q.Y., Lang M.A., Bernal M.L., Sinues B., Hirvonen A., Raunio H., Pelkonen O., et al. Characterisation and PCR-based detection of a CYP2A6 gene deletion found at a high frequency in a Chinese population. FEBS Lett. 1999;448:105–110. doi: 10.1016/S0014-5793(99)00359-2.
    1. Pitarque M., von Richter O., Oke B., Berkkan H., Oscarson M., Ingelman-Sundberg M. Identification of a single nucleotide polymorphism in the TATA box of the CYP2A6 gene: Impairment of its promoter activity. Biochem. Biophys. Res. Commun. 2001;284:455–460. doi: 10.1006/bbrc.2001.4990.
    1. Oscarson M., McLellan R.A., Asp V., Ledesma M., Bernal Ruiz M.L., Sinues B., Rautio A., Ingelman-Sundberg M. Characterization of a novel CYP2A7/CYP2A6 hybrid allele (CYP2A6*12) that causes reduced CYP2A6 activity. Hum. Mutat. 2002;20:275–283. doi: 10.1002/humu.10126.
    1. Fukami T., Nakajima M., Higashi E., Yamanaka H., McLeod H.L., Yokoi T. A novel CYP2A6*20 allele found in African-American population produces a truncated protein lacking enzymatic activity. Biochem. Pharmacol. 2005;70:801–808. doi: 10.1016/j.bcp.2005.05.029.
    1. Oscarson M., McLellan R.A., Gullsten H., Agundez J.A., Benitez J., Rautio A., Raunio H., Pelkonen O., Ingelman-Sundberg M. Identification and characterisation of novel polymorphisms in the CYP2A locus: Implications for nicotine metabolism. FEBS Lett. 1999;460:321–327. doi: 10.1016/S0014-5793(99)01364-2.
    1. Xu C., Rao Y.S., Xu B., Hoffmann E., Jones J., Sellers E.M., Tyndale R.F. An in vivo pilot study characterizing the new CYP2A6*7, *8, and *10 alleles. Biochem. Biophys. Res. Commun. 2002;290:318–324. doi: 10.1006/bbrc.2001.6209.
    1. Fukami T., Nakajima M., Higashi E., Yamanaka H., Sakai H., McLeod H.L., Yokoi T. Characterization of novel CYP2A6 polymorphic alleles (CYP2A6*18 and CYP2A6*19) that affect enzymatic activity. Drug Metab. Dispos. Biol. Fate Chem. 2005;33:1202–1210. doi: 10.1124/dmd.105.004994.
    1. Mwenifumbo J.C., Al Koudsi N., Ho M.K., Zhou Q., Hoffmann E.B., Sellers E.M., Tyndale R.F. Novel and established CYP2A6 alleles impair in vivo nicotine metabolism in a population of Black African descent. Hum. Mutat. 2008;29:679–688. doi: 10.1002/humu.20698.
    1. Ho M.K., Mwenifumbo J.C., Zhao B., Gillam E.M., Tyndale R.F. A novel CYP2A6 allele, CYP2A6*23, impairs enzyme function in vitro and in vivo and decreases smoking in a population of Black-African descent. Pharmacogenet. Genom. 2008;18:67–75. doi: 10.1097/FPC.0b013e3282f3606e.
    1. Al Koudsi N., Ahluwalia J.S., Lin S.K., Sellers E.M., Tyndale R.F. A novel CYP2A6 allele (CYP2A6*35) resulting in an amino-acid substitution (Asn438Tyr) is associated with lower CYP2A6 activity in vivo. Pharmacogenom. J. 2009;9:274–282. doi: 10.1038/tpj.2009.11.
    1. Hadidi H., Zahlsen K., Idle J.R., Cholerton S. A single amino acid substitution (Leu160His) in cytochrome P450 CYP2A6 causes switching from 7-hydroxylation to 3-hydroxylation of coumarin. Food Chem. Toxicol. 1997;35:903–907. doi: 10.1016/S0278-6915(97)00066-5.
    1. Oscarson M., Gullsten H., Rautio A., Bernal M.L., Sinues B., Dahl M.L., Stengard J.H., Pelkonen O., Raunio H., Ingelman-Sundberg M. Genotyping of human cytochrome P450 2A6 (CYP2A6), a nicotine C-oxidase. FEBS Lett. 1998;438:201–205. doi: 10.1016/S0014-5793(98)01297-6.
    1. Fukami T., Nakajima M., Yoshida R., Tsuchiya Y., Fujiki Y., Katoh M., McLeod H.L., Yokoi T. A novel polymorphism of human CYP2A6 gene CYP2A6*17 has an amino acid substitution (V365M) that decreases enzymatic activity in vitro and in vivo. Clin. Pharmacol. Ther. 2004;76:519–527. doi: 10.1016/j.clpt.2004.08.014.
    1. Hosono H., Kumondai M., Maekawa M., Yamaguchi H., Mano N., Oda A., Hirasawa N., Hiratsuka M. Functional Characterization of 34 CYP2A6 Allelic Variants by Assessment of Nicotine C-Oxidation and Coumarin 7-Hydroxylation Activities. Drug Metab. Dispos. Biol. Fate Chem. 2017;45:279–285. doi: 10.1124/dmd.116.073494.
    1. Tanner J.A., Chenoweth M.J., Tyndale R.F. Pharmacogenetics of nicotine and associated smoking behaviors. Curr. Top. Behav. Neurosci. 2015;23:37–86. doi: 10.1007/978-3-319-13665-3_3.
    1. Tanner J.A., Henderson J.A., Buchwald D., Howard B.V., Nez Henderson P., Tyndale R.F. Variation in CYP2A6 and nicotine metabolism among two American Indian tribal groups differing in smoking patterns and risk for tobacco-related cancer. Pharmacogenet. Genom. 2017;27:169–178. doi: 10.1097/FPC.0000000000000271.
    1. Ward L.D., Kellis M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–D934. doi: 10.1093/nar/gkr917.
    1. Patel Y.M., Park S.L., Han Y., Wilkens L.R., Bickeboller H., Rosenberger A., Caporaso N., Landi M.T., Bruske I., Risch A., et al. Novel Association of Genetic Markers Affecting CYP2A6 Activity and Lung Cancer Risk. Cancer Res. 2016;76:5768–5776. doi: 10.1158/0008-5472.CAN-16-0446.
    1. Tanner J.A., Zhu A.Z., Claw K.G., Prasad B., Korchina V., Hu J., Doddapaneni H.V., Muzny D., Schuetz E.G., Lerman C., et al. Novel CYP2A6 diplotypes identified through next-generation sequencing are associated with in-vitro and in-vivo nicotine metabolism. Pharmacogenet. Genom. 2017 In press.
    1. Chenoweth M.J., Ware J.J., Zhu A.Z.X., Cole C.B., Cox L.S., Nollen N., Ahluwalia J.S., Benowitz N.L., Schnoll R.A., Hawk L.W., Jr., et al. Genome-wide association study of a nicotine metabolism biomarker in African American smokers: Impact of chromosome 19 genetic influences. Addiction. 2017 doi: 10.1111/add.14032.
    1. Mwenifumbo J.C., Myers M.G., Wall T.L., Lin S.K., Sellers E.M., Tyndale R.F. Ethnic variation in CYP2A6*7, CYP2A6*8 and CYP2A6*10 as assessed with a novel haplotyping method. Pharmacogenet. Genom. 2005;15:189–192. doi: 10.1097/01213011-200503000-00008.
    1. Nakajima M., Fukami T., Yamanaka H., Higashi E., Sakai H., Yoshida R., Kwon J.T., McLeod H.L., Yokoi T. Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin. Pharmacol. Ther. 2006;80:282–297. doi: 10.1016/j.clpt.2006.05.012.
    1. Ho M.K., Mwenifumbo J.C., Al Koudsi N., Okuyemi K.S., Ahluwalia J.S., Benowitz N.L., Tyndale R.F. Association of nicotine metabolite ratio and CYP2A6 genotype with smoking cessation treatment in African-American light smokers. Clin. Pharmacol. Ther. 2009;85:635–643. doi: 10.1038/clpt.2009.19.
    1. Park S.L., Tiirikainen M.I., Patel Y.M., Wilkens L.R., Stram D.O., Le Marchand L., Murphy S.E. Genetic determinants of CYP2A6 activity across racial/ethnic groups with different risks of lung cancer and effect on their smoking intensity. Carcinogenesis. 2016;37:269–279. doi: 10.1093/carcin/bgw012.
    1. Schoedel K.A., Hoffmann E.B., Rao Y., Sellers E.M., Tyndale R.F. Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians. Pharmacogenetics. 2004;14:615–626. doi: 10.1097/00008571-200409000-00006.
    1. Benowitz N.L., Perez-Stable E.J., Herrera B., Jacob P., III Slower metabolism and reduced intake of nicotine from cigarette smoking in Chinese-Americans. J. Natl. Cancer Inst. 2002;94:108–115. doi: 10.1093/jnci/94.2.108.
    1. Rubinstein M.L., Shiffman S., Rait M.A., Benowitz N.L. Race, gender, and nicotine metabolism in adolescent smokers. Nicotine Tob. Res. 2013;15:1311–1315. doi: 10.1093/ntr/nts272.
    1. Perez-Stable E.J., Herrera B., Jacob P., III, Benowitz N.L. Nicotine metabolism and intake in black and white smokers. JAMA. 1998;280:152–156. doi: 10.1001/jama.280.2.152.
    1. Ross K.C., Gubner N.R., Tyndale R.F., Hawk L.W., Jr., Lerman C., George T.P., Cinciripini P., Schnoll R.A., Benowitz N.L. Racial differences in the relationship between rate of nicotine metabolism and nicotine intake from cigarette smoking. Pharmacol. Biochem. Behav. 2016;148:1–7. doi: 10.1016/j.pbb.2016.05.002.
    1. Binnington M.J., Zhu A.Z., Renner C.C., Lanier A.P., Hatsukami D.K., Benowitz N.L., Tyndale R.F. CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people. Pharmacogenet. Genom. 2012;22:429–440. doi: 10.1097/FPC.0b013e3283527c1c.
    1. Rae J.M., Johnson M.D., Lippman M.E., Flockhart D.A. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: Studies with cDNA and oligonucleotide expression arrays. J. Pharmacol. Exp. Ther. 2001;299:849–857.
    1. Maurice M., Emiliani S., Dalet-Beluche I., Derancourt J., Lange R. Isolation and characterization of a cytochrome P450 of the IIA subfamily from human liver microsomes. Eur. J. Biochem. 1991;200:511–517. doi: 10.1111/j.1432-1033.1991.tb16212.x.
    1. Itoh M., Nakajima M., Higashi E., Yoshida R., Nagata K., Yamazoe Y., Yokoi T. Induction of human CYP2A6 is mediated by the pregnane X receptor with peroxisome proliferator-activated receptor-γ coactivator 1α. J. Pharmacol. Exp. Ther. 2006;319:693–702. doi: 10.1124/jpet.106.107573.
    1. Moore L.B., Parks D.J., Jones S.A., Bledsoe R.K., Consler T.G., Stimmel J.B., Goodwin B., Liddle C., Blanchard S.G., Willson T.M., et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem. 2000;275:15122–15127. doi: 10.1074/jbc.M001215200.
    1. Onica T., Nichols K., Larin M., Ng L., Maslen A., Dvorak Z., Pascussi J.M., Vilarem M.J., Maurel P., Kirby G.M. Dexamethasone-mediated up-regulation of human CYP2A6 involves the glucocorticoid receptor and increased binding of hepatic nuclear factor 4α to the proximal promoter. Mol. Pharmacol. 2008;73:451–460. doi: 10.1124/mol.107.039354.
    1. Benowitz N.L., Lessov-Schlaggar C.N., Swan G.E., Jacob P., III Female sex and oral contraceptive use accelerate nicotine metabolism. Clin. Pharmacol. Ther. 2006;79:480–488. doi: 10.1016/j.clpt.2006.01.008.
    1. Chenoweth M.J., Novalen M., Hawk L.W., Jr., Schnoll R.A., George T.P., Cinciripini P.M., Lerman C., Tyndale R.F. Known and novel sources of variability in the nicotine metabolite ratio in a large sample of treatment-seeking smokers. Cancer Epidemiol. Biomark. Prev. 2014 doi: 10.1158/1055-9965.EPI-14-0427.
    1. Siu E.C., Tyndale R.F. Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J. Pharmacol. Exp. Ther. 2008;324:992–999. doi: 10.1124/jpet.107.133900.
    1. Tzaneva S., Kittler H., Thallinger C., Honigsmann H., Tanew A. Oral vs. bath PUVA using 8-methoxypsoralen for chronic palmoplantar eczema. Photodermatol. Photoimmunol. Photomed. 2009;25:101–105. doi: 10.1111/j.1600-0781.2009.00419.x.
    1. Robertson D.B., McCarty J.R., Jarratt M. Treatment of psoriasis with 8-methoxypsoralen and sunlight. South Med. J. 1978;71:1345–1349. doi: 10.1097/00007611-197811000-00009.
    1. Youdim M.B., Edmondson D., Tipton K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 2006;7:295–309. doi: 10.1038/nrn1883.
    1. Cereda E., Cilia R., Canesi M., Tesei S., Mariani C.B., Zecchinelli A.L., Pezzoli G. Efficacy of rasagiline and selegiline in Parkinson’s disease: A head-to-head 3-year retrospective case-control study. J. Neurol. 2017;264:1254–1263. doi: 10.1007/s00415-017-8523-y.
    1. Blobaum A.L. Mechanism-based inactivation and reversibility: Is there a new trend in the inactivation of cytochrome p450 enzymes? Drug Metab. Dispos. 2006;34:1–7. doi: 10.1124/dmd.105.004747.
    1. Zhang W., Kilicarslan T., Tyndale R.F., Sellers E.M. Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab. Dispos. Biol. Fate Chem. 2001;29:897–902.
    1. Draper A.J., Madan A., Parkinson A. Inhibition of coumarin 7-hydroxylase activity in human liver microsomes. Arch. Biochem. Biophys. 1997;341:47–61. doi: 10.1006/abbi.1997.9964.
    1. Zhang W., Ramamoorthy Y., Kilicarslan T., Nolte H., Tyndale R.F., Sellers E.M. Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab. Dispos. Biol. Fate Chem. 2002;30:314–318. doi: 10.1124/dmd.30.3.314.
    1. Sullivan J.P., McDonnell L., Hardiman O.M., Farrell M.A., Phillips J.P., Tipton K.F. The oxidation of tryptamine by the two forms of monoamine oxidase in human tissues. Biochem. Pharmacol. 1986;35:3255–3260. doi: 10.1016/0006-2952(86)90421-1.
    1. Higashi E., Nakajima M., Katoh M., Tokudome S., Yokoi T. Inhibitory effects of neurotransmitters and steroids on human CYP2A6. Drug Metab. Dispos. Biol. Fate Chem. 2007;35:508–514. doi: 10.1124/dmd.106.014084.
    1. MacDougall J.M., Fandrick K., Zhang X., Serafin S.V., Cashman J.R. Inhibition of human liver microsomal (S)-nicotine oxidation by (-)-menthol and analogues. Chem. Res. Toxicol. 2003;16:988–993. doi: 10.1021/tx0340551.
    1. Benowitz N.L., Herrera B., Jacob P., III Mentholated cigarette smoking inhibits nicotine metabolism. J. Pharmacol. Exp. Ther. 2004;310:1208–1215. doi: 10.1124/jpet.104.066902.
    1. Ware J.J., Tanner J.A., Taylor A.E., Bin Z., Haycock P., Bowden J., Rogers P.J., Davey Smith G., Tyndale R.F., Munafo M.R. Does coffee consumption impact on heaviness of smoking? Addiction. 2017 doi: 10.1111/add.13888.
    1. Chan J., Oshiro T., Thomas S., Higa A., Black S., Todorovic A., Elbarbry F., Harrelson J.P. Inactivation of CYP2A6 by the Dietary Phenylpropanoid trans-Cinnamic Aldehyde (Cinnamaldehyde) and Estimation of Interactions with Nicotine and Letrozole. Drug Metab. Dispos. Biol. Fate Chem. 2016;44:534–543. doi: 10.1124/dmd.115.067942.
    1. Molander L., Hansson A., Lunell E. Pharmacokinetics of nicotine in healthy elderly people. Clin. Pharmacol. Ther. 2001;69:57–65. doi: 10.1067/mcp.2001.113181.
    1. Gourlay S.G., Benowitz N.L., Forbes A., McNeil J.J. Determinants of plasma concentrations of nicotine and cotinine during cigarette smoking and transdermal nicotine treatment. Eur. J. Clin. Pharmacol. 1997;51:407–414. doi: 10.1007/s002280050222.
    1. Hu L., Zhuo W., He Y.J., Zhou H.H., Fan L. Pharmacogenetics of P450 oxidoreductase: Implications in drug metabolism and therapy. Pharmacogenet. Genom. 2012;22:812–819. doi: 10.1097/FPC.0b013e328358d92b.
    1. Gu J., Weng Y., Zhang Q.Y., Cui H., Behr M., Wu L., Yang W., Zhang L., Ding X. Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: Impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. J. Biol. Chem. 2003;278:25895–25901. doi: 10.1074/jbc.M303125200.
    1. Henderson C.J., Otto D.M., Carrie D., Magnuson M.A., McLaren A.W., Rosewell I., Wolf C.R. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J. Biol. Chem. 2003;278:13480–13486. doi: 10.1074/jbc.M212087200.
    1. Chenoweth M.J., Zhu A.Z., Sanderson Cox L., Ahluwalia J.S., Benowitz N.L., Tyndale R.F. Variation in P450 oxidoreductase (POR) A503V and flavin-containing monooxygenase (FMO)-3 E158K is associated with minor alterations in nicotine metabolism, but does not alter cigarette consumption. Pharmacogenet. Genom. 2014;24:172–176. doi: 10.1097/FPC.0000000000000031.
    1. Schuetz E.G., Strom S., Yasuda K., Lecureur V., Assem M., Brimer C., Lamba J., Kim R.B., Ramachandran V., Komoroski B.J., et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J. Biol. Chem. 2001;276:39411–39418. doi: 10.1074/jbc.M106340200.
    1. Lee W.H., Lukacik P., Guo K., Ugochukwu E., Kavanagh K.L., Marsden B., Oppermann U. Structure-activity relationships of human AKR-type oxidoreductases involved in bile acid synthesis: AKR1D1 and AKR1C4. Mol. Cell. Endocrinol. 2009;301:199–204. doi: 10.1016/j.mce.2008.09.042.
    1. Rizner T.L., Penning T.M. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids. 2014;79:49–63. doi: 10.1016/j.steroids.2013.10.012.
    1. Yang X., Zhang B., Molony C., Chudin E., Hao K., Zhu J., Gaedigk A., Suver C., Zhong H., Leeder J.S., et al. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 2010;20:1020–1036. doi: 10.1101/gr.103341.109.
    1. Chaudhry A.S., Thirumaran R.K., Yasuda K., Yang X., Fan Y., Strom S.C., Schuetz E.G. Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and activity of multiple cytochrome P450s. Drug Metab. Dispos. Biol. Fate Chem. 2013;41:1538–1547. doi: 10.1124/dmd.113.051672.
    1. Benowitz N.L., Jacob P., III Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin. Pharmacol. Ther. 1994;56:483–493. doi: 10.1038/clpt.1994.169.
    1. Benowitz N.L., Jacob P., III, Fong I., Gupta S. Nicotine metabolic profile in man: Comparison of cigarette smoking and transdermal nicotine. J. Pharmacol. Exp. Ther. 1994;268:296–303.
    1. Byrd G.D., Chang K.M., Greene J.M., deBethizy J.D. Evidence for urinary excretion of glucuronide conjugates of nicotine, cotinine, and trans-3′-hydroxycotinine in smokers. Drug Metab. Dispos. Biol. Fate Chem. 1992;20:192–197.
    1. Brandange S., Lindblom L. The enzyme “aldehyde oxidase“ is an iminium oxidase. Reaction with nicotine ∆ 1′(5′) iminium ion. Biochem. Biophys. Res. Commun. 1979;91:991–996. doi: 10.1016/0006-291X(79)91977-6.
    1. Benowitz N.L., Jacob P., III Trans-3′-hydroxycotinine: Disposition kinetics, effects and plasma levels during cigarette smoking. Br. J. Clin. Pharmacol. 2001;51:53–59. doi: 10.1046/j.1365-2125.2001.01309.x.
    1. Benowitz N.L., Jacob P., III Effects of cigarette smoking and carbon monoxide on nicotine and cotinine metabolism. Clin. Pharmacol. Ther. 2000;67:653–659. doi: 10.1067/mcp.2000.107086.
    1. Zevin S., Jacob P., III, Benowitz N. Cotinine effects on nicotine metabolism. Clin. Pharmacol. Ther. 1997;61:649–654. doi: 10.1016/S0009-9236(97)90099-0.
    1. Al Koudsi N., Tyndale R.F. Hepatic CYP2B6 is altered by genetic, physiologic, and environmental factors but plays little role in nicotine metabolism. Xenobiotica. 2010;40:381–392. doi: 10.3109/00498251003713958.
    1. Yamazaki H., Inoue K., Hashimoto M., Shimada T. Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch. Toxicol. 1999;73:65–70. doi: 10.1007/s002040050588.
    1. Kaivosaari S., Toivonen P., Hesse L.M., Koskinen M., Court M.H., Finel M. Nicotine glucuronidation and the human UDP-glucuronosyltransferase UGT2B10. Mol. Pharmacol. 2007;72:761–768. doi: 10.1124/mol.107.037093.
    1. Nakajima M., Tanaka E., Kwon J.T., Yokoi T. Characterization of nicotine and cotinine N-glucuronidations in human liver microsomes. Drug Metab. Dispos. Biol. Fate Chem. 2002;30:1484–1490. doi: 10.1124/dmd.30.12.1484.
    1. Kuehl G.E., Murphy S.E. N-glucuronidation of nicotine and cotinine by human liver microsomes and heterologously expressed UDP-glucuronosyltransferases. Drug Metab. Dispos. Biol. Fate Chem. 2003;31:1361–1368. doi: 10.1124/dmd.31.11.1361.
    1. Izukawa T., Nakajima M., Fujiwara R., Yamanaka H., Fukami T., Takamiya M., Aoki Y., Ikushiro S., Sakaki T., Yokoi T. Quantitative analysis of UDP-glucuronosyltransferase (UGT) 1A and UGT2B expression levels in human livers. Drug Metab. Dispos. Biol. Fate Chem. 2009;37:1759–1768. doi: 10.1124/dmd.109.027227.
    1. Hukkanen J., Jacob P., III, Benowitz N.L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 2005;57:79–115. doi: 10.1124/pr.57.1.3.
    1. Mooney M.E., Li Z.Z., Murphy S.E., Pentel P.R., Le C., Hatsukami D.K. Stability of the nicotine metabolite ratio in ad libitum and reducing smokers. Cancer Epidemiol. Biomark. Prev. 2008;17:1396–1400. doi: 10.1158/1055-9965.EPI-08-0242.
    1. St Helen G., Jacob P., III, Benowitz N.L. Stability of the nicotine metabolite ratio in smokers of progressively reduced nicotine content cigarettes. Nicotine Tob. Res. 2013;15:1939–1942. doi: 10.1093/ntr/ntt065.
    1. Lea R.A., Dickson S., Benowitz N.L. Within-subject variation of the salivary 3HC/COT ratio in regular daily smokers: Prospects for estimating CYP2A6 enzyme activity in large-scale surveys of nicotine metabolic rate. J. Anal. Toxicol. 2006;30:386–389. doi: 10.1093/jat/30.6.386.
    1. St Helen G., Novalen M., Heitjan D.F., Dempsey D., Jacob P., III, Aziziyeh A., Wing V.C., George T.P., Tyndale R.F., Benowitz N.L. Reproducibility of the nicotine metabolite ratio in cigarette smokers. Cancer Epidemiol. Biomark. Prev. 2012;21:1105–1114. doi: 10.1158/1055-9965.EPI-12-0236.
    1. Tanner J.A., Novalen M., Jatlow P., Huestis M.A., Murphy S.E., Kaprio J., Kankaanpaa A., Galanti L., Stefan C., George T.P., et al. Nicotine metabolite ratio (3-hydroxycotinine/cotinine) in plasma and urine by different analytical methods and laboratories: Implications for clinical implementation. Cancer Epidemiol. Biomark. Prev. 2015 doi: 10.1158/1055-9965.EPI-14-1381.
    1. Kubota T., Nakajima-Taniguchi C., Fukuda T., Funamoto M., Maeda M., Tange E., Ueki R., Kawashima K., Hara H., Fujio Y., et al. CYP2A6 polymorphisms are associated with nicotine dependence and influence withdrawal symptoms in smoking cessation. Pharmacogenomics J. 2006;6:115–119. doi: 10.1038/sj.tpj.6500348.
    1. Wassenaar C.A., Dong Q., Wei Q., Amos C.I., Spitz M.R., Tyndale R.F. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J. Natl. Cancer Inst. 2011;103:1342–1346. doi: 10.1093/jnci/djr237.
    1. Sofuoglu M., Herman A.I., Nadim H., Jatlow P. Rapid nicotine clearance is associated with greater reward and heart rate increases from intravenous nicotine. Neuropsychopharmacology. 2012;37:1509–1516. doi: 10.1038/npp.2011.336.
    1. Johnstone E., Benowitz N., Cargill A., Jacob R., Hinks L., Day I., Murphy M., Walton R. Determinants of the rate of nicotine metabolism and effects on smoking behavior. Clin. Pharmacol. Ther. 2006;80:319–330. doi: 10.1016/j.clpt.2006.06.011.
    1. Schnoll R.A., Patterson F., Wileyto E.P., Tyndale R.F., Benowitz N., Lerman C. Nicotine metabolic rate predicts successful smoking cessation with transdermal nicotine: A validation study. Pharmacol. Biochem. Behav. 2009;92:6–11. doi: 10.1016/j.pbb.2008.10.016.
    1. McMorrow M.J., Foxx R.M. Nicotine’s role in smoking: An analysis of nicotine regulation. Psychol. Bull. 1983;93:302–327. doi: 10.1037/0033-2909.93.2.302.
    1. Jarvik M.E., Madsen D.C., Olmstead R.E., Iwamoto-Schaap P.N., Elins J.L., Benowitz N.L. Nicotine blood levels and subjective craving for cigarettes. Pharmacol. Biochem. Behav. 2000;66:553–558. doi: 10.1016/S0091-3057(00)00261-6.
    1. Ariyoshi N., Miyamoto M., Umetsu Y., Kunitoh H., Dosaka-Akita H., Sawamura Y., Yokota J., Nemoto N., Sato K., Kamataki T. Genetic polymorphism of CYP2A6 gene and tobacco-induced lung cancer risk in male smokers. Cancer Epidemiol. Biomark. Prev. 2002;11:890–894.
    1. Fujieda M., Yamazaki H., Saito T., Kiyotani K., Gyamfi M.A., Sakurai M., Dosaka-Akita H., Sawamura Y., Yokota J., Kunitoh H., et al. Evaluation of CYP2A6 genetic polymorphisms as determinants of smoking behavior and tobacco-related lung cancer risk in male Japanese smokers. Carcinogenesis. 2004;25:2451–2458. doi: 10.1093/carcin/bgh258.
    1. Pan L., Yang X., Li S., Jia C. Association of CYP2A6 gene polymorphisms with cigarette consumption: A meta-analysis. Drug Alcohol Depend. 2015;149:268–271. doi: 10.1016/j.drugalcdep.2015.01.032.
    1. Benowitz N.L., Pomerleau O.F., Pomerleau C.S., Jacob P., III Nicotine metabolite ratio as a predictor of cigarette consumption. Nicotine Tob. Res. 2003;5:621–624.
    1. Strasser A.A., Benowitz N.L., Pinto A.G., Tang K.Z., Hecht S.S., Carmella S.G., Tyndale R.F., Lerman C.E. Nicotine metabolite ratio predicts smoking topography and carcinogen biomarker level. Cancer Epidemiol. Biomark. Prev. 2011;20:234–238. doi: 10.1158/1055-9965.EPI-10-0674.
    1. Strasser A.A., Malaiyandi V., Hoffmann E., Tyndale R.F., Lerman C. An association of CYP2A6 genotype and smoking topography. Nicotine Tob. Res. 2007;9:511–518. doi: 10.1080/14622200701239605.
    1. Ho M.K., Faseru B., Choi W.S., Nollen N.L., Mayo M.S., Thomas J.L., Okuyemi K.S., Ahluwalia J.S., Benowitz N.L., Tyndale R.F. Utility and relationships of biomarkers of smoking in African-American light smokers. Cancer Epidemiol. Biomark. Prev. 2009;18:3426–3434. doi: 10.1158/1055-9965.EPI-09-0956.
    1. Zhu A.Z., Binnington M.J., Renner C.C., Lanier A.P., Hatsukami D.K., Stepanov I., Watson C.H., Sosnoff C.S., Benowitz N.L., Tyndale R.F. Alaska Native smokers and smokeless tobacco users with slower CYP2A6 activity have lower tobacco consumption, lower tobacco-specific nitrosamine exposure and lower tobacco-specific nitrosamine bioactivation. Carcinogenesis. 2013;34:93–101. doi: 10.1093/carcin/bgs306.
    1. Gu D.F., Hinks L.J., Morton N.E., Day I.N. The use of long PCR to confirm three common alleles at the CYP2A6 locus and the relationship between genotype and smoking habit. Ann. Hum. Genet. 2000;64:383–390. doi: 10.1046/j.1469-1809.2000.6450383.x.
    1. Chenoweth M.J., O’Loughlin J., Sylvestre M.P., Tyndale R.F. CYP2A6 slow nicotine metabolism is associated with increased quitting by adolescent smokers. Pharmacogenet. Genom. 2013;23:232–235. doi: 10.1097/FPC.0b013e32835f834d.
    1. Lerman C., Tyndale R., Patterson F., Wileyto E.P., Shields P.G., Pinto A., Benowitz N. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin. Pharmacol. Ther. 2006;79:600–608. doi: 10.1016/j.clpt.2006.02.006.
    1. Warner C., Shoaib M. How does bupropion work as a smoking cessation aid? Addict. Biol. 2005;10:219–231. doi: 10.1080/13556210500222670.
    1. Chen L.S., Bloom A.J., Baker T.B., Smith S.S., Piper M.E., Martinez M., Saccone N., Hatsukami D., Goate A., Bierut L. Pharmacotherapy effects on smoking cessation vary with nicotine metabolism gene (CYP2A6) Addiction. 2014;109:128–137. doi: 10.1111/add.12353.
    1. Patterson F., Schnoll R.A., Wileyto E.P., Pinto A., Epstein L.H., Shields P.G., Hawk L.W., Tyndale R.F., Benowitz N., Lerman C. Toward personalized therapy for smoking cessation: A randomized placebo-controlled trial of bupropion. Clin. Pharmacol. Ther. 2008;84:320–325. doi: 10.1038/clpt.2008.57.
    1. Lerman C., Schnoll R.A., Hawk L.W., Jr., Cinciripini P., George T.P., Wileyto E.P., Swan G.E., Benowitz N.L., Heitjan D.F., Tyndale R.F., et al. Use of the nicotine metabolite ratio as a genetically informed biomarker of response to nicotine patch or varenicline for smoking cessation: A randomised, double-blind placebo-controlled trial. Lancet Respir. Med. 2015;3:131–138. doi: 10.1016/S2213-2600(14)70294-2.
    1. Garrison G.D., Dugan S.E. Varenicline: A first-line treatment option for smoking cessation. Clin. Ther. 2009;31:463–491. doi: 10.1016/j.clinthera.2009.03.021.
    1. Khuder S.A. Effect of cigarette smoking on major histological types of lung cancer: A meta-analysis. Lung Cancer. 2001;31:139–148. doi: 10.1016/S0169-5002(00)00181-1.
    1. Hecht S.S. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem. Res. Toxicol. 1998;11:559–603. doi: 10.1021/tx980005y.
    1. Wassenaar C.A., Ye Y., Cai Q., Aldrich M.C., Knight J., Spitz M.R., Wu X., Blot W.J., Tyndale R.F. CYP2A6 reduced activity gene variants confer reduction in lung cancer risk in African American smokers—findings from two independent populations. Carcinogenesis. 2015;36:99–103. doi: 10.1093/carcin/bgu235.
    1. Park S.L., Murphy S.E., Wilkens L.R., Stram D.O., Hecht S.S., Le Marchand L. Association of CYP2A6 activity with lung cancer incidence in smokers: The multiethnic cohort study. PLoS ONE. 2017;12:e0178435. doi: 10.1371/journal.pone.0178435.
    1. Komatsu T., Yamazaki H., Shimada N., Nakajima M., Yokoi T. Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab. Dispos. Biol. Fate Chem. 2000;28:1457–1463.
    1. Wang H., Bian T., Liu D., Jin T., Chen Y., Lin A., Chen C. Association analysis of CYP2A6 genotypes and haplotypes with 5-fluorouracil formation from tegafur in human liver microsomes. Pharmacogenomics. 2011;12:481–492. doi: 10.2217/pgs.10.202.
    1. Kaida Y., Inui N., Suda T., Nakamura H., Watanabe H., Chida K. The CYP2A6*4 allele is determinant of S-1 pharmacokinetics in Japanese patients with non-small-cell lung cancer. Clin. Pharmacol. Ther. 2008;83:589–594. doi: 10.1038/sj.clpt.6100484.
    1. Hirose T., Fujita K., Nishimura K., Ishida H., Yamashita K., Sunakawa Y., Mizuno K., Miwa K., Nagashima F., Tanigawara Y., et al. Pharmacokinetics of S-1 and CYP2A6 genotype in Japanese patients with advanced cancer. Oncol. Rep. 2010;24:529–536. doi: 10.3892/or_00000889.
    1. Fujita K., Yamamoto W., Endo S., Endo H., Nagashima F., Ichikawa W., Tanaka R., Miya T., Araki K., Kodama K., et al. CYP2A6 and the plasma level of 5-chloro-2, 4-dihydroxypyridine are determinants of the pharmacokinetic variability of tegafur and 5-fluorouracil, respectively, in Japanese patients with cancer given S-1. Cancer Sci. 2008;99:1049–1054. doi: 10.1111/j.1349-7006.2008.00773.x.
    1. Kong S.Y., Lim H.S., Nam B.H., Kook M.C., Kim Y.W., Ryu K.W., Lee J.H., Choi I.J., Lee J.S., Park Y.I., et al. Association of CYP2A6 polymorphisms with S-1 plus docetaxel therapy outcomes in metastatic gastric cancer. Pharmacogenomics. 2009;10:1147–1155. doi: 10.2217/pgs.09.48.
    1. Jeong J.H., Park S.R., Ahn Y., Ryu M.H., Ryoo B.Y., Kong S.Y., Yook J.H., Yoo M.W., Kim B.S., Kim B.S., et al. Associations between CYP2A6 polymorphisms and outcomes of adjuvant S-1 chemotherapy in patients with curatively resected gastric cancer. Gastric Cancer. 2017;20:146–155. doi: 10.1007/s10120-015-0586-9.
    1. Kim S.Y., Hong Y.S., Shim E.K., Kong S.Y., Shin A., Baek J.Y., Jung K.H. S-1 plus irinotecan and oxaliplatin for the first-line treatment of patients with metastatic colorectal cancer: A prospective phase II study and pharmacogenetic analysis. Br. J. Cancer. 2013;109:1420–1427. doi: 10.1038/bjc.2013.479.
    1. Kim K.P., Jang G., Hong Y.S., Lim H.S., Bae K.S., Kim H.S., Lee S.S., Shin J.G., Lee J.L., Ryu M.H., et al. Phase II study of S-1 combined with oxaliplatin as therapy for patients with metastatic biliary tract cancer: Influence of the CYP2A6 polymorphism on pharmacokinetics and clinical activity. Br. J. Cancer. 2011;104:605–612. doi: 10.1038/bjc.2011.17.
    1. He M.M., Zhang D.S., Wang F., Wang Z.X., Yuan S.Q., Wang Z.Q., Luo H.Y., Ren C., Qiu M.Z., Jin Y., et al. Phase II trial of S-1 plus leucovorin in patients with advanced gastric cancer and clinical prediction by S-1 pharmacogenetic pathway. Cancer Chemother. Pharmacol. 2017;79:69–79. doi: 10.1007/s00280-016-3209-1.
    1. Kim S.Y., Baek J.Y., Oh J.H., Park S.C., Sohn D.K., Kim M.J., Chang H.J., Kong S.Y., Kim D.Y. A phase II study of preoperative chemoradiation with tegafur-uracil plus leucovorin for locally advanced rectal cancer with pharmacogenetic analysis. Radiat. Oncol. 2017;12:62. doi: 10.1186/s13014-017-0800-5.
    1. Bhatnagar A.S. The discovery and mechanism of action of letrozole. Breast Cancer Res. Treat. 2007;105(Suppl. 1):7–17. doi: 10.1007/s10549-007-9696-3.
    1. Desta Z., Kreutz Y., Nguyen A.T., Li L., Skaar T., Kamdem L.K., Henry N.L., Hayes D.F., Storniolo A.M., Stearns V., et al. Plasma letrozole concentrations in postmenopausal women with breast cancer are associated with CYP2A6 genetic variants, body mass index, and age. Clin. Pharmacol. Ther. 2011;90:693–700. doi: 10.1038/clpt.2011.174.
    1. Tanii H., Shitara Y., Horie T. Population pharmacokinetic analysis of letrozole in Japanese postmenopausal women. Eur. J. Clin. Pharmacol. 2011;67:1017–1025. doi: 10.1007/s00228-011-1042-3.
    1. Marzolini C., Telenti A., Decosterd L.A., Greub G., Biollaz J., Buclin T. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS. 2001;15:71–75. doi: 10.1097/00002030-200101050-00011.
    1. Ogburn E.T., Jones D.R., Masters A.R., Xu C., Guo Y., Desta Z. Efavirenz primary and secondary metabolism in vitro and in vivo: Identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab. Dispos. Biol. Fate Chem. 2010;38:1218–1229. doi: 10.1124/dmd.109.031393.
    1. Heil S.G., van der Ende M.E., Schenk P.W., van der Heiden I., Lindemans J., Burger D., van Schaik R.H. Associations between ABCB1, CYP2A6, CYP2B6, CYP2D6, and CYP3A5 alleles in relation to efavirenz and nevirapine pharmacokinetics in HIV-infected individuals. Ther. Drug Monit. 2012;34:153–159. doi: 10.1097/FTD.0b013e31824868f3.
    1. Sukasem C., Chamnanphon M., Koomdee N., Santon S., Jantararoungtong T., Prommas S., Puangpetch A., Manosuthi W. Pharmacogenetics and clinical biomarkers for subtherapeutic plasma efavirenz concentration in HIV-1 infected Thai adults. Drug Metab. Pharmacokinet. 2014;29:289–295. doi: 10.2133/dmpk.DMPK-13-RG-077.
    1. Sinxadi P.Z., Leger P.D., McIlleron H.M., Smith P.J., Dave J.A., Levitt N.S., Maartens G., Haas D.W. Pharmacogenetics of plasma efavirenz exposure in HIV-infected adults and children in South Africa. Br. J. Clin. Pharmacol. 2015;80:146–156. doi: 10.1111/bcp.12590.
    1. Cusato J., Tomasello C., Simiele M., Calcagno A., Bonora S., Marinaro L., Leggieri A., Allegra S., Di Perri G., D’Avolio A. Efavirenz pharmacogenetics in a cohort of Italian patients. Int. J. Antimicrob. Agents. 2016;47:117–123. doi: 10.1016/j.ijantimicag.2015.11.012.
    1. Swart M., Evans J., Skelton M., Castel S., Wiesner L., Smith P.J., Dandara C. An Expanded Analysis of Pharmacogenetics Determinants of Efavirenz Response that Includes 3′-UTR Single Nucleotide Polymorphisms among Black South African HIV/AIDS Patients. Front. Genet. 2015;6:356. doi: 10.3389/fgene.2015.00356.
    1. Haas D.W., Kwara A., Richardson D.M., Baker P., Papageorgiou I., Acosta E.P., Morse G.D., Court M.H. Secondary metabolism pathway polymorphisms and plasma efavirenz concentrations in HIV-infected adults with CYP2B6 slow metabolizer genotypes. J. Antimicrob. Chemother. 2014;69:2175–2182. doi: 10.1093/jac/dku110.
    1. Kwara A., Lartey M., Sagoe K.W., Kenu E., Court M.H. CYP2B6, CYP2A6 and UGT2B7 genetic polymorphisms are predictors of efavirenz mid-dose concentration in HIV-infected patients. AIDS. 2009;23:2101–2106. doi: 10.1097/QAD.0b013e3283319908.
    1. Sarfo F.S., Zhang Y., Egan D., Tetteh L.A., Phillips R., Bedu-Addo G., Sarfo M.A., Khoo S., Owen A., Chadwick D.R. Pharmacogenetic associations with plasma efavirenz concentrations and clinical correlates in a retrospective cohort of Ghanaian HIV-infected patients. J. Antimicrob. Chemother. 2014;69:491–499. doi: 10.1093/jac/dkt372.
    1. Dickinson L., Amin J., Else L., Boffito M., Egan D., Owen A., Khoo S., Back D., Orrell C., Clarke A., et al. Comprehensive pharmacokinetic, pharmacodynamic and pharmacogenetic evaluation of once-daily efavirenz 400 and 600 mg in treatment-naive HIV-infected patients at 96 weeks: Results of the ENCORE1 study. Clin. Pharmacokinet. 2016;55:861–873. doi: 10.1007/s40262-015-0360-5.
    1. Cummins N.W., Neuhaus J., Chu H., Neaton J., Wyen C., Rockstroh J.K., Skiest D.J., Boyd M.A., Khoo S., Rotger M., et al. Investigation of efavirenz discontinuation in multi-ethnic populations of HIV-positive individuals by genetic analysis. EBioMedicine. 2015;2:706–712. doi: 10.1016/j.ebiom.2015.05.012.
    1. Kiang T.K., Ho P.C., Anari M.R., Tong V., Abbott F.S., Chang T.K. Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol. Sci. 2006;94:261–271. doi: 10.1093/toxsci/kfl096.
    1. Stephens J.R., Levy R.H. Valproate hepatotoxicity syndrome: Hypotheses of pathogenesis. Pharm. Weekbl. Sci. 1992;14:118–121.
    1. Rettie A.E., Rettenmeier A.W., Howald W.N., Baillie T.A. Cytochrome P-450—Catalyzed formation of delta 4-VPA, a toxic metabolite of valproic acid. Science. 1987;235:890–893. doi: 10.1126/science.3101178.
    1. Sadeque A.J., Fisher M.B., Korzekwa K.R., Gonzalez F.J., Rettie A.E. Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J. Pharmacol. Exp. Ther. 1997;283:698–703.
    1. Tan L., Yu J.T., Sun Y.P., Ou J.R., Song J.H., Yu Y. The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clin. Neurol. Neurosurg. 2010;112:320–323. doi: 10.1016/j.clineuro.2010.01.002.
    1. Wang C., Wang P., Yang L.P., Pan J., Yang X., Ma H.Y. Association of CYP2C9, CYP2A6, ACSM2A, and CPT1A gene polymorphisms with adverse effects of valproic acid in Chinese patients with epilepsy. Epilepsy Res. 2017;132:64–69. doi: 10.1016/j.eplepsyres.2017.02.015.
    1. Endo T., Ban M., Hirata K., Yamamoto A., Hara Y., Momose Y. Involvement of CYP2A6 in the formation of a novel metabolite, 3-hydroxypilocarpine, from pilocarpine in human liver microsomes. Drug Metab. Dispos. Biol. Fate Chem. 2007;35:476–483. doi: 10.1124/dmd.106.013425.
    1. Kimonen T., Juvonen R.O., Alhava E., Pasanen M. The inhibition of CYP enzymes in mouse and human liver by pilocarpine. Br. J. Pharmacol. 1995;114:832–836. doi: 10.1111/j.1476-5381.1995.tb13279.x.
    1. Kinonen T., Pasanen M., Gynther J., Poso A., Jarvinen T., Alhava E., Juvonen R.O. Competitive inhibition of coumarin 7-hydroxylation by pilocarpine and its interaction with mouse CYP 2A5 and human CYP 2A6. Br. J. Pharmacol. 1995;116:2625–2630. doi: 10.1111/j.1476-5381.1995.tb17217.x.
    1. Endo T., Nakajima M., Fukami T., Hara Y., Hasunuma T., Yokoi T., Momose Y. Genetic polymorphisms of CYP2A6 affect the in-vivo pharmacokinetics of pilocarpine. Pharmacogenet. Genom. 2008;18:761–772. doi: 10.1097/FPC.0b013e328303c034.
    1. Svensson U.S., Ashton M. Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br. J. Clin. Pharmacol. 1999;48:528–535. doi: 10.1046/j.1365-2125.1999.00044.x.
    1. Li X.Q., Bjorkman A., Andersson T.B., Gustafsson L.L., Masimirembwa C.M. Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur. J. Clin. Pharmacol. 2003;59:429–442. doi: 10.1007/s00228-003-0636-9.
    1. Yusof W., Hua G.S. Gene, ethnic and gender influences predisposition of adverse drug reactions to artesunate among Malaysians. Toxicol. Mech. Methods. 2012;22:184–192. doi: 10.3109/15376516.2011.623331.
    1. Phompradit P., Muhamad P., Cheoymang A., Na-Bangchang K. Preliminary investigation of the contribution of CYP2A6, CYP2B6, and UGT1A9 polymorphisms on artesunate-mefloquine treatment response in Burmese patients with Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 2014;91:361–366. doi: 10.4269/ajtmh.13-0531.
    1. Morooka S., Koike H., Imanishi N., Natsume Y. SM-12502: A platelet activating factor antagonist. Cardiovasc. Drug Rev. 1995;13:105–122. doi: 10.1111/j.1527-3466.1995.tb00300.x.
    1. Nunoya K., Yokoi Y., Kimura K., Kodama T., Funayama M., Inoue K., Nagashima K., Funae Y., Shimada N., Green C., et al. (+)-cis-3,5-dimethyl-2-(3-pyridyl) thiazolidin-4-one hydrochloride (SM-12502) as a novel substrate for cytochrome P450 2A6 in human liver microsomes. J. Pharmacol. Exp. Ther. 1996;277:768–774.
    1. Nunoya K.I., Yokoi T., Kimura K., Kainuma T., Satoh K., Kinoshita M., Kamataki T. A new CYP2A6 gene deletion responsible for the in vivo polymorphic metabolism of (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride in humans. J. Pharmacol. Exp. Ther. 1999;289:437–442.
    1. Kimura M., Yamazaki H., Fujieda M., Kiyotani K., Honda G., Saruwatari J., Nakagawa K., Ishizaki T., Kamataki T. Cyp2a6 is a principal enzyme involved in hydroxylation of 1,7-dimethylxanthine, a main caffeine metabolite, in humans. Drug Metab. Dispos. Biol. Fate Chem. 2005;33:1361–1366. doi: 10.1124/dmd.105.004796.
    1. Djordjevic N., Carrillo J.A., Gervasini G., Jankovic S., Aklillu E. In vivo evaluation of CYP2A6 and xanthine oxidase enzyme activities in the Serbian population. Eur. J. Clin. Pharmacol. 2010;66:571–578. doi: 10.1007/s00228-010-0785-6.
    1. Murayama N., Shimizu M., Kobayashi K., Kishimoto I., Yamazaki H. Cytochrome P450 2A6 phenotyping using dietary caffeine salivary metabolite ratios and genotyping using blood on storage cards in Non-smoking japanese volunteers. Drug Metab. Lett. 2017;10:240–243. doi: 10.2174/1872312810666161114144008.
    1. Aklillu E., Djordjevic N., Carrillo J.A., Makonnen E., Bertilsson L., Ingelman-Sundberg M. High CYP2A6 enzyme activity as measured by a caffeine test and unique distribution of CYP2A6 variant alleles in Ethiopian population. OMICS. 2014;18:446–453. doi: 10.1089/omi.2013.0140.
    1. Djordjevic N., Carrillo J.A., van den Broek M.P., Kishikawa J., Roh H.K., Bertilsson L., Aklillu E. Comparisons of CYP2A6 genotype and enzyme activity between Swedes and Koreans. Drug Metab. Pharmacokinet. 2013;28:93–97. doi: 10.2133/dmpk.DMPK-12-RG-029.
    1. Kadlubar S., Anderson J.P., Sweeney C., Gross M.D., Lang N.P., Kadlubar F.F., Anderson K.E. Phenotypic CYP2A6 variation and the risk of pancreatic cancer. JOP. 2009;10:263–270.
    1. Nowell S., Sweeney C., Hammons G., Kadlubar F.F., Lang N.P. CYP2A6 activity determined by caffeine phenotyping: Association with colorectal cancer risk. Cancer Epidemiol. Biomark. Prev. 2002;11:377–383.
    1. Rodriguez-Morato J., Robledo P., Tanner J.A., Boronat A., Perez-Mana C., Oliver Chen C.Y., Tyndale R.F., de la Torre R. CYP2D6 and CYP2A6 biotransform dietary tyrosol into hydroxytyrosol. Food Chem. 2017;217:716–725. doi: 10.1016/j.foodchem.2016.09.026.
    1. Carrasco-Pancorbo A., Cerretani L., Bendini A., Segura-Carretero A., Del Carlo M., Gallina-Toschi T., Lercker G., Compagnone D., Fernandez-Gutierrez A. Evaluation of the antioxidant capacity of individual phenolic compounds in virgin olive oil. J. Agric. Food Chem. 2005;53:8918–8925. doi: 10.1021/jf0515680.

Source: PubMed

3
Suscribir