Epoetin Beta and C-Terminal Fibroblast Growth Factor 23 in Patients With Chronic Heart Failure and Chronic Kidney Disease

Michele F Eisenga, Mireille E Emans, Karien van der Putten, Maarten J Cramer, Adry Diepenbroek, Birgitta K Velthuis, Pieter A Doevendans, Marianne C Verhaar, Jaap A Joles, Stephan J L Bakker, Ilja M Nolte, Branko Braam, Carlo A J M Gaillard, Michele F Eisenga, Mireille E Emans, Karien van der Putten, Maarten J Cramer, Adry Diepenbroek, Birgitta K Velthuis, Pieter A Doevendans, Marianne C Verhaar, Jaap A Joles, Stephan J L Bakker, Ilja M Nolte, Branko Braam, Carlo A J M Gaillard

Abstract

Background In patients with chronic heart failure and chronic kidney disease, correction of anemia with erythropoietin-stimulating agents targeting normal hemoglobin levels is associated with an increased risk of cardiovascular morbidity and mortality. Emerging data suggest a direct effect of erythropoietin on fibroblast growth factor 23 (FGF23), elevated levels of which have been associated with adverse outcomes. We investigate effects of erythropoietin-stimulating agents in patients with both chronic heart failure and chronic kidney disease focusing on FGF23. Methods and Results In the EPOCARES (Erythropoietin in CardioRenal Syndrome) study, we randomized 56 anemic patients (median age 74 [interquartile range 69-80] years, 66% male) with both chronic heart failure and chronic kidney disease into 3 groups, of which 2 received epoetin beta 50 IU/kg per week for 50 weeks, and the third group served as control. Measurements were performed at baseline and after 2, 26, and 50 weeks. Data were analyzed using linear mixed-model analysis. After 50 weeks of erythropoietin-stimulating agent treatment, hematocrit and hemoglobin levels increased. Similarly, C-terminal FGF23 levels, in contrast to intact FGF23 levels, rose significantly due to erythropoietin-stimulating agents as compared with the controls. During median follow-up for 5.7 (2.0-5.7) years, baseline C-terminal FGF23 levels were independently associated with increased risk of mortality (hazard ratio 2.20; 95% CI, 1.35-3.59; P=0.002). Conclusions Exogenous erythropoietin increases C-terminal FGF23 levels markedly over a period of 50 weeks, elevated levels of which, even at baseline, are significantly associated with an increased risk of mortality. The current results, in a randomized trial setting, underline the strong relationship between erythropoietin and FGF23 physiology in patients with chronic heart failure and chronic kidney disease. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00356733.

Keywords: chronic kidney disease; erythropoietin; fibroblast growth factor.

Figures

Figure 1
Figure 1
Effect of erythropoietin on C‐terminal fibroblast growth factor 23 and intact fibroblast growth factor 23. Median levels with interquartile range of both cFGF23 and iFGF23 levels are shown over time. cFGF23 indicates C‐terminal fibroblast growth factor 23; EPO, erythropoietin; Hb, hemoglobin; iFGF23, intact fibroblast growth factor 23.

References

    1. Kalra PR, Bolger AP, Francis DP, Genth‐Zotz S, Sharma R, Ponikowski PP, Poole‐Wilson PA, Coats AJ, Anker SD. Effect of anemia on exercise tolerance in chronic heart failure in men. Am J Cardiol. 2003;91:888–891.
    1. van der Putten K, Braam B, Jie KE, Gaillard CA. Mechanisms of disease: erythropoietin resistance in patients with both heart and kidney failure. Nat Clin Pract Nephrol. 2008;4:47–57.
    1. van der Meer P, Lok DJ, Januzzi JL, de la Porte PW, Lipsic E, van Wijngaarden J, Voors AA, van Gilst WH, van Veldhuisen DJ. Adequacy of endogenous erythropoietin levels and mortality in anaemic heart failure patients. Eur Heart J. 2008;29:1510–1515.
    1. Westenbrink BD, Voors AA, de Boer RA, Schuringa JJ, Klinkenberg T, van der Harst P, Vellenga E, van Veldhuisen DJ, van Gilst WH. Bone marrow dysfunction in chronic heart failure patients. Eur J Heart Fail. 2010;12:676–684.
    1. Drueke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D, Burger HU, Scherhag A; CREATE Investigators . Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006;355:2071–2084.
    1. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, Reddan D; CHOIR Investigators . Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355:2085–2098.
    1. Swedberg K, Young JB, Anand IS, Cheng S, Desai AS, Diaz R, Maggioni AP, McMurray JJ, O'Connor C, Pfeffer MA, Solomon SD, Sun Y, Tendera M, van Veldhuisen DJ; RED‐HF Committees, RED‐HF Investigators . Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med. 2013;368:1210–1219.
    1. Clinkenbeard EL, Hanudel MR, Stayrook KR, Appaiah HN, Farrow EG, Cass TA, Summers LJ, Ip CS, Hum JM, Thomas JC, Ivan M, Richine BM, Chan RJ, Clemens TL, Schipani E, Sabbagh Y, Xu L, Srour EF, Alvarez MB, Kacena MA, Salusky IB, Ganz T, Nemeth E, White KE. Erythropoietin stimulates murine and human fibroblast growth factor‐23, revealing novel roles for bone and bone marrow. Haematologica. 2017;102:e427–e430.
    1. Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, Iijima K, Fujita T, Yamashita T, Fukumoto S, Shimada T. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early‐stage chronic kidney disease. Kidney Int. 2010;78:975–980.
    1. Rabadi S, Udo I, Leaf DE, Waikar S, Christov M. Acute blood loss stimulates fibroblast growth factor 23 production. Am J Physiol Renal Physiol. 2018;314:F132–F139.
    1. Flamme I, Ellinghaus P, Urrego D, Kruger T. FGF23 expression in rodents is directly induced via erythropoietin after inhibition of hypoxia inducible factor proline hydroxylase. PLoS One. 2017;12:e0186979.
    1. Toro L, Barrientos V, Leon P, Rojas M, Gonzalez M, Gonzalez‐Ibanez A, Illanes S, Sugikawa K, Abarzua N, Bascunan C, Arcos K, Fuentealba C, Tong AM, Elorza AA, Pinto ME, Alzamora R, Romero C, Michea L. Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury. Kidney Int. 2018;93:1131–1141.
    1. Hanudel MR, Eisenga MF, Rappaport M, Chua K, Qiao B, Jung G, Gabayan V, Gales B, Ramos G, de Jong MA, van Zanden JJ, de Borst MH, Bakker SJL, Nemeth E, Salusky IB, Gaillard CAJM, Ganz T. Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol Dial Transplant. 2018; Jul 10. Available at: . [Epub ahead of print].
    1. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon‐Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro‐O M, Kusek JW, Keane MG, Wolf M. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121:4393–4408.
    1. Silswal N, Touchberry CD, Daniel DR, McCarthy DL, Zhang S, Andresen J, Stubbs JR, Wacker MJ. FGF23 directly impairs endothelium‐dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am J Physiol Endocrinol Metab. 2014;307:E426–E436.
    1. Souma N, Isakova T, Lipiszko D, Sacco RL, Elkind MS, DeRosa JT, Silverberg SJ, Mendez AJ, Dong C, Wright CB, Wolf M. Fibroblast growth factor 23 and cause‐specific mortality in the general population: the Northern Manhattan Study. J Clin Endocrinol Metab. 2016;101:3779–3786.
    1. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutierrez OM, Steigerwalt S, He J, Schwartz S, Lo J, Ojo A, Sondheimer J, Hsu CY, Lash J, Leonard M, Kusek JW, Feldman HI, Wolf M; Chronic Renal Insufficiency Cohort (CRIC) Study Group . Fibroblast growth factor 23 and risks of mortality and end‐stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432–2439.
    1. Poelzl G, Trenkler C, Kliebhan J, Wuertinger P, Seger C, Kaser S, Mayer G, Pirklbauer M, Ulmer H, Griesmacher A. FGF23 is associated with disease severity and prognosis in chronic heart failure. Eur J Clin Invest. 2014;44:1150–1158.
    1. Camaschella C. Iron deficiency: new insights into diagnosis and treatment. Hematology Am Soc Hematol Educ Program. 2015;2015:8–13.
    1. Wolf M, Koch TA, Bregman DB. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res. 2013;28:1793–1803.
    1. Hanudel MR, Chua K, Rappaport M, Gabayan V, Valore E, Goltzman D, Ganz T, Nemeth E, Salusky IB. Effects of dietary iron intake and chronic kidney disease on fibroblast growth factor 23 metabolism in wild type and hepcidin knockout mice. Am J Physiol Renal Physiol. 2016;311:F1369–F1377.
    1. Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, Robling AG, Stayrook KR, Jideonwo V, Magers MJ, Garringer HJ, Vidal R, Chan RJ, Goodwin CB, Hui SL, Peacock M, White KE. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor‐23 (Fgf23) knock‐in mice. Proc Natl Acad Sci USA. 2011;108:E1146–E1155.
    1. Eisenga MF, van Londen M, Leaf DE, Nolte IM, Navis G, Bakker SJL, de Borst MH, Gaillard CAJM. C‐terminal fibroblast growth factor 23, iron deficiency, and mortality in renal transplant recipients. J Am Soc Nephrol. 2017;28:3639–3646.
    1. van der Putten K, Jie KE, Emans ME, Verhaar MC, Joles JA, Cramer MJ, Velthuis BK, Meiss L, Kraaijenhagen RJ, Doevendans PA, Braam B, Gaillard CA. Erythropoietin treatment in patients with combined heart and renal failure: objectives and design of the EPOCARES study. J Nephrol. 2010;23:363–368.
    1. van der Putten K, Jie KE, van den Broek D, Kraaijenhagen RJ, Laarakkers C, Swinkels DW, Braam B, Gaillard CA. Hepcidin‐25 is a marker of the response rather than resistance to exogenous erythropoietin in chronic kidney disease/chronic heart failure patients. Eur J Heart Fail. 2010;12:943–950.
    1. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW, Antman EM, Smith SC Jr, Adams CD, Anderson JL, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B; American College of Cardiology, American Heart Association Task Force on Practice Guidelines, American College of Chest Physicians, International Society for Heart and Lung Transplantation, Heart Rhythm Society . ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005;112:e154–e235.
    1. Emans ME, van der Putten K, van Rooijen KL, Kraaijenhagen RJ, Swinkels D, van Solinge WW, Cramer MJ, Doevendans PA, Braam B, Gaillard CA. Determinants of red cell distribution width (RDW) in cardiorenal patients: RDW is not related to erythropoietin resistance. J Card Fail. 2011;17:626–633.
    1. Wolf M, White KE. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr Opin Nephrol Hypertens. 2014;23:411–419.
    1. Edner M, Benson L, Dahlstrom U, Lund LH. Association between renin‐angiotensin system antagonist use and mortality in heart failure with severe renal insufficiency: a prospective propensity score‐matched cohort study. Eur Heart J. 2015;36:2318–2326.
    1. Van Wyck DB, Stivelman JC, Ruiz J, Kirlin LF, Katz MA, Ogden DA. Iron status in patients receiving erythropoietin for dialysis‐associated anemia. Kidney Int. 1989;35:712–716.
    1. Fishbane S, Besarab A. Mechanism of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin J Am Soc Nephrol. 2007;2:1274–1282.
    1. Gutierrez OM, Mannstadt M, Isakova T, Rauh‐Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, Wolf M. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359:584–592.
    1. Seiler S, Reichart B, Roth D, Seibert E, Fliser D, Heine GH. FGF‐23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant. 2010;25:3983–3989.
    1. Agoro R, Montagna A, Goetz R, Aligbe O, Singh G, Coe LM, Mohammadi M, Rivella S, Sitara D. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J. 2018;32:3752–3764.
    1. Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T, Shi M, Eliseenkova AV, Razzaque MS, Moe OW, Kuro‐o M, Mohammadi M. Isolated C‐terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23‐FGFR‐Klotho complex formation. Proc Natl Acad Sci USA. 2010;107:407–412.
    1. Courbebaisse M, Mehel H, Petit‐Hoang C, Ribeil JA, Sabbah L, Tuloup‐Minguez V, Bergerat D, Arlet JB, Stanislas A, Souberbielle JC, Le Clesiau H, Fischmeister R, Friedlander G, Prie D. Carboxy‐terminal fragment of fibroblast growth factor 23 induces heart hypertrophy in sickle cell disease. Haematologica. 2017;102:e33–e35.
    1. Isakova T, Cai X, Lee J, Xie D, Wang X, Mehta R, Allen NB, Scialla JJ, Pencina MJ, Anderson AH, Talierco J, Chen J, Fischer MJ, Steigerwalt SP, Leonard MB, Hsu CY, de Boer IH, Kusek JW, Feldman HI, Wolf M; Chronic Renal Insufficiency Cohort (CRIC) Study Investigators . Longitudinal FGF23 trajectories and mortality in patients with CKD. J Am Soc Nephrol. 2018;29:579–590.

Source: PubMed

3
Suscribir