Phase 3, Randomized, 20-Month Study of the Efficacy and Safety of Bimatoprost Implant in Patients with Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 2)

Jason Bacharach, Andrew Tatham, Gloria Ferguson, Sandra Belalcázar, Hagen Thieme, Margot L Goodkin, Michelle Y Chen, Qiang Guo, Jeen Liu, Michael R Robinson, Marina Bejanian, David L Wirta, ARTEMIS 2 Study Group, Arturo Alezzandrini, Gabriel Bercovich, Pablo Deromedis, Federico Furno Sola, Carolina Gentile, Simon Lerner, Anahi Lupinacci, Carlos Zeolite, Catherine Birt, Andrew Crichton, Sebastien Gagne, Michael Giunta, Paul Harasymowycz, Delan Jinapriya, Marcelo Nicolela, Donald Nixon, Patrick Saurel, David Yan, Darana Yuen, Santiago Arango, Sandra Belalcázar, Alexander Martinez, Juan Camilo Parra Restrepo, Vladimir Korda, Jana Kadlecova, Jitka Svacinova, Hany Khairy, Hani El Ibiary, Zeinab El Sanabary, Katharina Bell, Roman Greslechner, Jöerg Koch, Katrin Lorenz, Isabel Oberacher-Velten, Stefanie Schmickler, Claudie Schuart, Hagen Thieme, Francesco Bandello, Carlos Cagini, Michele Figus, Leonardo Mastropasqua, Luca Rossetti, Maurizio Giacinto Uva, Sandragasu Thayanithi, Anthony Wells, Rahat Husain, Victor Koh, Dawn Lim, Aung Tin, Petrus Gous, Lynette Venter, Changwon Kee, Michael Kook, Ki-Ho Park, Muhsin Eraslan, Ozcan Kayikcioglu, Nilgun Yildirim, Rupert Bourne, Anshoo Choudhary, Francesca Cordeiro, Vincent Dubois, James Kirwan, Sheng Lim, Keith Martin, Antony Nithy, Avinash Prabhu, Andrew Tatham, Ahmad Amir, Jason Bacharach, Howard Barnebey, Allen Beck, Lance Bergstrom, Navaneet Borisuth, James D Branch, Jonathan Briggs, Stephen Bylsma, Peter Chang, William Christie, Frank Cotter, Michael Depenbusch, Damien F Goldberg, Jack Greiner, Shailesh Gupta, Ron Gutmark, Ying Han, Sebastian Heersink, Malik Kahook, Albert Khouri, Joshua Kim, Howard Kushnick, Christopher Lin, Jodi Luchs, Arindel Maharaj, Steven L Mansberger, Frank Mares, Eydie Miller-Ellis, Satish Modi, Matthew Paul, Ian Pitha, Robert Saltzmann, Michelle Sato, Michael Savestsky, Bruce Segal, Zachary Segal, Janet Serle, Mark Sherwood, Inder Singh, Stephen E Smith, Julia Song, Robert Sorenson, Lawrence Tenkman, Navin Tekwani, Carl Tubbs, Farrell Tyson, Gianmarco Vizzeri, Steven Vold, Qui Vu, Kimberly S Warren, David Wirta, Jason Bacharach, Andrew Tatham, Gloria Ferguson, Sandra Belalcázar, Hagen Thieme, Margot L Goodkin, Michelle Y Chen, Qiang Guo, Jeen Liu, Michael R Robinson, Marina Bejanian, David L Wirta, ARTEMIS 2 Study Group, Arturo Alezzandrini, Gabriel Bercovich, Pablo Deromedis, Federico Furno Sola, Carolina Gentile, Simon Lerner, Anahi Lupinacci, Carlos Zeolite, Catherine Birt, Andrew Crichton, Sebastien Gagne, Michael Giunta, Paul Harasymowycz, Delan Jinapriya, Marcelo Nicolela, Donald Nixon, Patrick Saurel, David Yan, Darana Yuen, Santiago Arango, Sandra Belalcázar, Alexander Martinez, Juan Camilo Parra Restrepo, Vladimir Korda, Jana Kadlecova, Jitka Svacinova, Hany Khairy, Hani El Ibiary, Zeinab El Sanabary, Katharina Bell, Roman Greslechner, Jöerg Koch, Katrin Lorenz, Isabel Oberacher-Velten, Stefanie Schmickler, Claudie Schuart, Hagen Thieme, Francesco Bandello, Carlos Cagini, Michele Figus, Leonardo Mastropasqua, Luca Rossetti, Maurizio Giacinto Uva, Sandragasu Thayanithi, Anthony Wells, Rahat Husain, Victor Koh, Dawn Lim, Aung Tin, Petrus Gous, Lynette Venter, Changwon Kee, Michael Kook, Ki-Ho Park, Muhsin Eraslan, Ozcan Kayikcioglu, Nilgun Yildirim, Rupert Bourne, Anshoo Choudhary, Francesca Cordeiro, Vincent Dubois, James Kirwan, Sheng Lim, Keith Martin, Antony Nithy, Avinash Prabhu, Andrew Tatham, Ahmad Amir, Jason Bacharach, Howard Barnebey, Allen Beck, Lance Bergstrom, Navaneet Borisuth, James D Branch, Jonathan Briggs, Stephen Bylsma, Peter Chang, William Christie, Frank Cotter, Michael Depenbusch, Damien F Goldberg, Jack Greiner, Shailesh Gupta, Ron Gutmark, Ying Han, Sebastian Heersink, Malik Kahook, Albert Khouri, Joshua Kim, Howard Kushnick, Christopher Lin, Jodi Luchs, Arindel Maharaj, Steven L Mansberger, Frank Mares, Eydie Miller-Ellis, Satish Modi, Matthew Paul, Ian Pitha, Robert Saltzmann, Michelle Sato, Michael Savestsky, Bruce Segal, Zachary Segal, Janet Serle, Mark Sherwood, Inder Singh, Stephen E Smith, Julia Song, Robert Sorenson, Lawrence Tenkman, Navin Tekwani, Carl Tubbs, Farrell Tyson, Gianmarco Vizzeri, Steven Vold, Qui Vu, Kimberly S Warren, David Wirta

Abstract

Objective: To evaluate the intraocular pressure (IOP)-lowering efficacy and safety of 10 and 15 µg bimatoprost implant in patients with open-angle glaucoma (OAG) or ocular hypertension (OHT).

Methods: This randomized, 20-month, multicenter, masked, parallel-group, phase 3 trial enrolled 528 patients with OAG or OHT and an open iridocorneal angle inferiorly in the study eye. Study eyes were administered 10 or 15 µg bimatoprost implant on day 1, week 16, and week 32, or twice-daily topical timolol maleate 0.5%. Primary endpoints were IOP and IOP change from baseline through week 12. Safety measures included treatment-emergent adverse events (TEAEs) and corneal endothelial cell density (CECD).

Results: Both 10 and 15 µg bimatoprost implant met the primary endpoint of noninferiority to timolol in IOP lowering through 12 weeks. Mean IOP reductions from baseline ranged from 6.2-7.4, 6.5-7.8, and 6.1-6.7 mmHg through week 12 in the 10 µg implant, 15 µg implant, and timolol groups, respectively. IOP lowering was similar after the second and third implant administrations. Probabilities of requiring no IOP-lowering treatment for 1 year after the third administration were 77.5% (10 µg implant) and 79.0% (15 µg implant). The most common TEAE was conjunctival hyperemia, typically temporally associated with the administration procedure. Corneal TEAEs of interest (primarily corneal endothelial cell loss, corneal edema, and corneal touch) were more frequent with the 15 than the 10 µg implant and generally were reported after repeated administrations. Loss in mean CECD from baseline to month 20 was ~ 5% in 10 µg implant-treated eyes and ~ 1% in topical timolol-treated eyes. Visual field progression (change in the mean deviation from baseline) was reduced in the 10 µg implant group compared with the timolol group.

Conclusions: The results corroborated the previous phase 3 study of the bimatoprost implant. The bimatoprost implant met the primary endpoint and effectively lowered IOP. The majority of patients required no additional treatment for 12 months after the third administration. The benefit-risk assessment favored the 10 over the 15 µg implant. Studies evaluating other administration regimens with reduced risk of corneal events are ongoing. The bimatoprost implant has the potential to improve adherence and reduce treatment burden in glaucoma. CLINICALTRIALS.

Gov identifier: NCT02250651.

Conflict of interest statement

Jason Bacharach is a consultant, and is on the speaker’s bureau, for Allergan (an AbbVie company). Andrew Tatham is a consultant for Allergan (an AbbVie company), has received research support from Alcon and Allergan (an AbbVie company), and is a speaker for Alcon, Allergan (an AbbVie company), Glaukos, Heidelberg Engineering, and Santen. Gloria Ferguson and Hagen Thieme have no financial interests to disclose. Sandra Belalcázar has been a speaker for Allergan (an AbbVie company). Margot L. Goodkin, Qiang Guo, Michael R. Robinson, and Marina Bejanian are employees of AbbVie Inc, and may hold AbbVie stock. Michelle Y. Chen and Jeen Liu were Allergan employees at the time of this work. David L. Wirta is a consultant for Allergan (an AbbVie company) and Eyenovia, and has received research support from Aerpio, Allergan (an AbbVie company), Annexon, Dompe, Eyenovia, Mallinckrodt, Nicox, Novaliq, Novartis, Santen, and SilkTech.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Patient flow through the study. Adm administration, BID twice daily, Bim bimatoprost, pts patients
Fig. 2
Fig. 2
Gonioscopic photographs of the study eye iridocorneal angle in a representative patient in the 10 μg bimatoprost implant treatment group. Photographs were taken at week 2, week 52, and month 20. Implants #1, #2, and #3 were administered at day 1, week 16, and week 32, respectively
Fig. 3
Fig. 3
Primary endpoint of mean IOP through week 12. a LS mean IOP in study eyes at hours 0 and 2 at weeks 2, 6, and 12. b The 95% CIs of the between-group differences show that both the 10 and 15 µg bimatoprost implants met the prespecified criteria for statistical and clinical noninferiority to timolol BID. BID twice daily, Bim bimatoprost, CI confidence interval, IOP intraocular pressure, LS least-squares
Fig. 4
Fig. 4
Primary endpoint of mean change in IOP from baseline through week 12. a LS mean change in IOP from baseline in study eyes at hours 0 and 2 at weeks 2, 6, and 12. b The 95% CIs of the between-group differences show that both the 10 and 15 µg bimatoprost implants met the prespecified criteria for statistical and clinical noninferiority to timolol BID. BID twice daily, Bim bimatoprost, CI confidence interval, IOP intraocular pressure, LS least-squares
Fig. 5
Fig. 5
Kaplan-Meier survival analysis of time to initial use of additional IOP-lowering treatment in the study eye a after the last bimatoprost implant or sham administration and b after the third administration in patients who received three administrations. BID twice daily, IOP intraocular pressure
Fig. 6
Fig. 6
Mean CECD in study eyes in the 10 µg bimatoprost implant and timolol treatment groups. The timing of implant or sham administration is shown with arrows. Statistical comparisons are reported in Table 4. BID twice daily, Bim bimatoprost, BL baseline, CECD corneal endothelial cell density, M month, SEM standard error of the mean, W week
Fig. 7
Fig. 7
Mean change in the visual field MD from baseline by Humphrey perimetry in study eyes. Test results from eyes that had received rescue IOP-lowering treatment were excluded from the analysis. The number of eyes included in the analysis of change in MD from baseline at visits from week 28 to month 20 ranged from 101 to 143 in the 10 µg bimatoprost implant group, 102 to 143 in the 15 µg bimatoprost implant group, and 123 to 144 in the timolol BID group. *P ≤ 0.037 vs. timolol based on a mixed-effect model for repeated measures including treatment, visit, treatment-by-visit interaction, baseline MD, and visit-by-baseline interaction. BID twice daily, BL baseline, IOP intraocular pressure, MD mean deviation, SEM standard error of the mean

References

    1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–2090. doi: 10.1016/j.ophtha.2014.05.013.
    1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e1221–e1234. doi: 10.1016/s2214-109x(17)30393-5.
    1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–267. doi: 10.1136/bjo.2005.081224.
    1. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017;390:2183–2193. doi: 10.1016/s0140-6736(17)31469-1.
    1. The AGIS Investigators The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–440. doi: 10.1016/s0002-9394(00)00538-9.
    1. Lichter PR, Musch DC, Gillespie BW, Guire KE, Janz NK, Wren PA, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–1953. doi: 10.1016/s0161-6420(01)00873-9.
    1. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–713. doi: 10.1001/archopht.120.6.701.
    1. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120:1268–1279. doi: 10.1001/archopht.120.10.1268.
    1. De Moraes CG, Demirel S, Gardiner SK, Liebmann JM, Cioffi GA, Ritch R, et al. Effect of treatment on the rate of visual field change in the ocular hypertension treatment study observation group. Invest Ophthalmol Vis Sci. 2012;53:1704–1709. doi: 10.1167/iovs.11-8186.
    1. Li T, Lindsley K, Rouse B, Hong H, Shi Q, Friedman DS, et al. Comparative effectiveness of first-line medications for primary open-angle glaucoma: a systematic review and network meta-analysis. Ophthalmology. 2016;123:129–140. doi: 10.1016/j.ophtha.2015.09.005.
    1. Alm A, Grierson I, Shields MB. Side effects associated with prostaglandin analog therapy. Surv Ophthalmol. 2008;53(Suppl 1):S93–105. doi: 10.1016/j.survophthal.2008.08.004.
    1. Sleath B, Blalock S, Covert D, Stone JL, Skinner AC, Muir K, et al. The relationship between glaucoma medication adherence, eye drop technique, and visual field defect severity. Ophthalmology. 2011;118:2398–2402. doi: 10.1016/j.ophtha.2011.05.013.
    1. Newman-Casey PA, Niziol LM, Gillespie BW, Janz NK, Lichter PR, Musch DC. The association between medication adherence and visual field progression in the Collaborative Initial Glaucoma Treatment Study. Ophthalmology. 2020;127:477–483. doi: 10.1016/j.ophtha.2019.10.022.
    1. Olthoff CM, Schouten JS, van de Borne BW, Webers CA. Noncompliance with ocular hypotensive treatment in patients with glaucoma or ocular hypertension an evidence-based review. Ophthalmology. 2005;112:953–961. doi: 10.1016/j.ophtha.2004.12.035.
    1. Newman-Casey PA, Robin AL, Blachley T, Farris K, Heisler M, Resnicow K, et al. The most common barriers to glaucoma medication adherence: a cross-sectional survey. Ophthalmology. 2015;122:1308–1316. doi: 10.1016/j.ophtha.2015.03.026.
    1. Yeaw J, Benner JS, Walt JG, Sian S, Smith DB. Comparing adherence and persistence across 6 chronic medication classes. J Manag Care Pharm. 2009;15:728–740. doi: 10.18553/jmcp.2009.15.9.728.
    1. Dreer LE, Girkin CA, Campbell L, Wood A, Gao L, Owsley C. Glaucoma medication adherence among African Americans: program development. Optom Vis Sci. 2013;90:883–897. doi: 10.1097/opx.0000000000000009.
    1. Mansouri K, Iliev ME, Rohrer K, Shaarawy T. Compliance and knowledge about glaucoma in patients at tertiary glaucoma units. Int Ophthalmol. 2011;31:369–376. doi: 10.1007/s10792-011-9468-2.
    1. Newman-Casey PA, Blachley T, Lee PP, Heisler M, Farris KB, Stein JD. Patterns of glaucoma medication adherence over four years of follow-up. Ophthalmology. 2015;122:2010–2021. doi: 10.1016/j.ophtha.2015.06.039.
    1. Schwartz GF, Hollander DA, Williams JM. Evaluation of eye drop administration technique in patients with glaucoma or ocular hypertension. Curr Med Res Opin. 2013;29:1515–1522. doi: 10.1185/03007995.2013.833898.
    1. Zimmerman TJ, Hahn SR, Gelb L, Tan H, Kim EE. The impact of ocular adverse effects in patients treated with topical prostaglandin analogs: changes in prescription patterns and patient persistence. J Ocul Pharmacol Ther. 2009;25:145–152. doi: 10.1089/jop.2008.0072.
    1. Lewis RA, Christie WC, Day DG, Craven ER, Walters T, Bejanian M, et al. Bimatoprost sustained-release implants for glaucoma therapy: 6-month results from a phase I/II clinical trial. Am J Ophthalmol. 2017;175:137–147. doi: 10.1016/j.ajo.2016.11.020.
    1. Medeiros FA, Walters TR, Kolko M, Coote M, Bejanian M, Goodkin ML, et al. Phase 3, randomized, 20-month study of bimatoprost implant in open-angle glaucoma and ocular hypertension (ARTEMIS 1) Ophthalmology. 2020;127:1627–1641. doi: 10.1016/j.ophtha.2020.06.018.
    1. Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27:2043–2053. doi: 10.1007/s11095-010-0159-x.
    1. Seal JR, Robinson MR, Burke J, Bejanian M, Coote M, Attar M. Intracameral sustained-release bimatoprost implant delivers bimatoprost to target tissues with reduced drug exposure to off-target tissues. J Ocul Pharmacol Ther. 2019;35:50–57. doi: 10.1089/jop.2018.0067.
    1. Craven ER, Walters T, Christie WC, Day DG, Lewis RA, Goodkin ML, et al. 24-Month phase I/II clinical trial of bimatoprost sustained-release implant (Bimatoprost SR) in glaucoma patients. Drugs. 2020;80:167–179. doi: 10.1007/s40265-019-01248-0.
    1. Lee SS, Dibas M, Almazan A, Robinson MR. Dose-response of intracameral bimatoprost sustained-release implant and topical bimatoprost in lowering intraocular pressure. J Ocul Pharmacol Ther. 2019;35:138–144. doi: 10.1089/jop.2018.0095.
    1. Weinreb RN, Robinson MR, Dibas M, Stamer WD. Matrix metalloproteinases and glaucoma treatment. J Ocul Pharmacol Ther. 2020;36:208–228. doi: 10.1089/jop.2019.0146.
    1. Lütjen-Drecoll E, Tamm E. Morphological study of the anterior segment of cynomolgus monkey eyes following treatment with prostaglandin F2 alpha. Exp Eye Res. 1988;47:761–769. doi: 10.1016/0014-4835(88)90043-7.
    1. Kim JW, Lindsey JD, Wang N, Weinreb RN. Increased human scleral permeability with prostaglandin exposure. Invest Ophthalmol Vis Sci. 2001;42:1514–1521.
    1. Weinreb RN, Lindsey JD. Metalloproteinase gene transcription in human ciliary muscle cells with latanoprost. Invest Ophthalmol Vis Sci. 2002;43:716–722.
    1. Richter M, Krauss AH, Woodward DF, Lutjen-Drecoll E. Morphological changes in the anterior eye segment after long-term treatment with different receptor selective prostaglandin agonists and a prostamide. Invest Ophthalmol Vis Sci. 2003;44:4419–4426. doi: 10.1167/iovs.02-1281.
    1. Oh DJ, Martin JL, Williams AJ, Russell P, Birk DE, Rhee DJ. Effect of latanoprost on the expression of matrix metalloproteinases and their tissue inhibitors in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2006;47:3887–3895. doi: 10.1167/iovs.06-0036.
    1. Wan Z, Woodward DF, Cornell CL, Fliri HG, Martos JL, Pettit SN, et al. Bimatoprost, prostamide activity, and conventional drainage. Invest Ophthalmol Vis Sci. 2007;48:4107–4115. doi: 10.1167/iovs.07-0080.
    1. Ooi YH, Oh DJ, Rhee DJ. Effect of bimatoprost, latanoprost, and unoprostone on matrix metalloproteinases and their inhibitors in human ciliary body smooth muscle cells. Invest Ophthalmol Vis Sci. 2009;50:5259–5265. doi: 10.1167/iovs.08-3356.
    1. Yamada H, Yoneda M, Gosho M, Kato T, Zako M. Bimatoprost, latanoprost, and tafluprost induce differential expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases. BMC Ophthalmol. 2016;16:26. doi: 10.1186/s12886-016-0202-8.
    1. Aptel F, Aryal-Charles N, Giraud JM, El Chehab H, Delbarre M, Chiquet C, et al. Progression of visual field in patients with primary open-angle glaucoma—ProgF study 1. Acta Ophthalmol. 2015;93:e615–e620. doi: 10.1111/aos.12788.
    1. Heijl A, Buchholz P, Norrgren G, Bengtsson B. Rates of visual field progression in clinical glaucoma care. Acta Ophthalmol. 2013;91:406–412. doi: 10.1111/j.1755-3768.2012.02492.x.
    1. Peters D, Bengtsson B, Heijl A. Lifetime risk of blindness in open-angle glaucoma. Am J Ophthalmol. 2013;156:724–730. doi: 10.1016/j.ajo.2013.05.027.
    1. Susanna R, Jr, De Moraes CG, Cioffi GA, Ritch R. Why do people (still) go blind from glaucoma? Transl Vis Sci Technol. 2015;4:1. doi: 10.1167/tvst.4.2.1.
    1. Yokoyama Y, Kawasaki R, Takahashi H, Maekawa S, Tsuda S, Omodaka K, et al. Effects of brimonidine and timolol on the progression of visual field defects in open-angle glaucoma: a single-center randomized trial. J Glaucoma. 2019;28:575–583. doi: 10.1097/ijg.0000000000001285.
    1. Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci. 2012;53:6939–6946. doi: 10.1167/iovs.12-10345.

Source: PubMed

3
Suscribir