The role of drug transporters in the kidney: lessons from tenofovir

Darren M Moss, Megan Neary, Andrew Owen, Darren M Moss, Megan Neary, Andrew Owen

Abstract

Tenofovir disoproxil fumarate, the prodrug of nucleotide reverse transcriptase inhibitor tenofovir, shows high efficacy and relatively low toxicity in HIV patients. However, long-term kidney toxicity is now acknowledged as a modest but significant risk for tenofovir-containing regimens, and continuous use of tenofovir in HIV therapy is currently under question by practitioners and researchers. Co-morbidities (hepatitis C, diabetes), low body weight, older age, concomitant administration of potentially nephrotoxic drugs, low CD4 count, and duration of therapy are all risk factors associated with tenofovir-associated tubular dysfunction. Tenofovir is predominantly eliminated via the proximal tubules of the kidney, therefore drug transporters expressed in renal proximal tubule cells are believed to influence tenofovir plasma concentration and toxicity in the kidney. We review here the current evidence that the actions, pharmacogenetics, and drug interactions of drug transporters are relevant factors for tenofovir-associated tubular dysfunction. The use of creatinine and novel biomarkers for kidney damage, and the role that drug transporters play in biomarker disposition, are discussed. The lessons learnt from investigating the role of transporters in tenofovir kidney elimination and toxicity can be utilized for future drug development and clinical management programs.

Keywords: drug transporters; kidney; pharmacokinetics; tenofovir; toxicity.

Figures

FIGURE 1
FIGURE 1
Confirmed and potential transporters involved in active tubular secretion of tenofovir into urine. Tenofovir is removed from the circulating blood and enters the proximal tubule cells by the actions of basolaterally expressed SLC22A6 and, to a lesser extent, SLC22A8. Tenofovir is then removed into the tubular lumen by apically expressed ABCC4. ABCC2 does not transport tenofovir in vitro but pharacogenetics suggests ABCC2 has a role in tenofovir-induced renal toxicity. The orientation of ABCC10 in proximal tubule cells is unknown, but in vitro and pharmacogenetic data suggest that expression may be localized to the apical membrane, facilitating tenofovir secretion.

References

    1. Bakos E., Homolya L. (2007). Portrait of multifaceted transporter, the multidrug resistance-associated protein 1 (MRP1/ABCC1). Pflugers Arch. 453 621–641 10.1007/s00424-006-0160-8
    1. Ballabh P., Braun A., Nedergaard M. (2004). The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16 1–13 10.1016/j.nbd.2003.12.016
    1. Bam R. A., Yant S. R., Cihlar T. (2014). Tenofovir alafenamide is not a substrate for renal organic anion transporters (OATs) and does not exhibit OAT-dependent cytotoxicity. Antivir. Ther. 10.3851/IMP2770 [Epub ahead of print].
    1. Barditch-Crovo P., Deeks S. G., Collier A., Safrin S., Coakley D. F., Miller M., et al. (2001). Phase i/ii trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults. Antimicrob. Agents Chemother. 45 2733–2739 10.1128/AAC.45.10.2733-2739.2001
    1. Barone S., Amlal H., Xu J., Soleimani M. (2012). Deletion of the Cl-/HCO3- exchanger pendrin downregulates calcium-absorbing proteins in the kidney and causes calcium wasting. Nephrol. Dial. Transplant. 27 1368–1379 10.1093/ndt/gfr505
    1. Beery E., Rajnai Z., Abonyi T., Makai I., Bansaghi S., Erdo F., et al. (2011). ABCG2 modulates chlorothiazide permeability in vitro – characterization of the interaction. Drug Metab. Pharmacokinet. 27 349–353 10.2133/dmpk.DMPK-11-NT-068
    1. Bender B. S. (2013). Prophylactic tenofovir reduced HIV infection in injectable drug users. Ann. Intern. Med. 159 JC8. 10.7326/0003-4819-159-6-201309170-02008
    1. Berglund F., Killander J., Pompeius R. (1975). Effect of trimethoprim-sulfamethoxazole on the renal excretion of creatinine in man. J. Urol. 114 802–808.
    1. Bernard A. M., Vyskocil A., Mahieu P., Lauwerys R. (1987). Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin. Chem. 33 775–779.
    1. Bhutia Y. D., Hung S. W., Patel B., Lovin D., Govindarajan R. (2011). CNT1 expression influences proliferation and chemosensitivity in drug-resistant pancreatic cancer cells. Cancer Res. 71 1825–1835 10.1158/0008-5472.CAN-10-2736
    1. Bickel M., Khaykin P., Stephan C., Schmidt K., Buettner M., Amann K., et al. (2013). Acute kidney injury caused by tenofovir disoproxil fumarate and diclofenac co-administration. HIV Med. 14 633–638 10.1111/hiv.12072
    1. Bleasby K., Castle J. C., Roberts C. J., Cheng C., Bailey W. J., Sina J. F., et al. (2006). Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica 36 963–988 10.1080/00498250600861751
    1. Boffito M., Pozniak A., Kearney B. P., Higgs C., Mathias A., Zhong L., et al. (2005). Lack of pharmacokinetic drug interaction between tenofovir disoproxil fumarate and nelfinavir mesylate. Antimicrob. Agents Chemother. 49 4386–4389 10.1128/AAC.49.10.4386-4389.2005
    1. Braun D., Wirth E. K., Wohlgemuth F., Reix N., Klein M. O., Gruters A., et al. (2011). Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8. Biochem. J. 439 249–255 10.1042/BJ20110759
    1. Calza L., Trapani F., Salvadori C., Magistrelli E., Manfredi R., Colangeli V., et al. (2013). Incidence of renal toxicity in HIV-infected, antiretroviral-naive patients starting tenofovir/emtricitabine associated with efavirenz, atazanavir/ritonavir, or lopinavir/ritonavir. Scand. J. Infect. Dis. 45 147–154 10.3109/00365548.2012.712213
    1. Calza L., Trapani F., Tedeschi S., Piergentili B., Manfredi R., Colangeli V., et al. (2011). Tenofovir-induced renal toxicity in 324 HIV-infected, antiretroviral-naive patients. Scand. J. Infect. Dis. 43 656–660 10.3109/00365548.2011.572906
    1. Cha S. H., Sekine T., Kusuhara H., Yu E., Kim J. Y., Kim D. K., et al. (2000). Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J. Biol. Chem. 275 4507–4512 10.1074/jbc.275.6.4507
    1. Chen Y., Zhang S., Sorani M., Giacomini K. M. (2007). Transport of paraquat by human organic cation transporters and multidrug and toxic compound extrusion family. J. Pharmacol. Exp. Ther. 322 695–700 10.1124/jpet.107.123554
    1. Chen Z. S., Hopper-Borge E., Belinsky M. G., Shchaveleva I., Kotova E., Kruh G. D. (2003). Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol. Pharmacol. 63 351–358 10.1124/mol.63.2.351
    1. Choi M. K., Kim M. H., Maeng H. J., Song I. S. (2014). Contribution of CNT1 and ENT1 to ribavirin uptake in human hepatocytes. Arch. Pharm. Res. 10.1007/s12272-014-0437-y [Epub ahead of print].
    1. Choudhury D., Ahmed Z. (2006). Drug-associated renal dysfunction and injury. Nat. Clin. Pract. Nephrol. 2 80–91 10.1038/ncpneph0076
    1. Christiansen-Weber T. A., Voland J. R., Wu Y., Ngo K., Roland B. L., Nguyen S., et al. (2000). Functional loss of ABCA1 in mice causes severe placental malformation, aberrant lipid distribution, and kidney glomerulonephritis as well as high-density lipoprotein cholesterol deficiency. Am. J. Pathol. 157 1017–1029 10.1016/S0002-9440(10)64614-7
    1. Ciarimboli G., Lancaster C. S., Schlatter E., Franke R. M., Sprowl J. A., Pavenstadt H., et al. (2012). Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin. Cancer Res. 18 1101–1108 10.1158/1078-0432.CCR-11-2503
    1. Cihlar T., Ray A. S., Laflamme G., Vela J. E., Tong L., Fuller M. D., et al. (2007). Molecular assessment of the potential for renal drug interactions between tenofovir and HIV protease inhibitors. Antivir. Ther. 12 267–272.
    1. Cooper R. D., Wiebe N., Smith N., Keiser P., Naicker S., Tonelli M. (2010). Systematic review and meta-analysis: renal safety of tenofovir disoproxil fumarate in HIV-infected patients. Clin. Infect. Dis. 51 496–505 10.1086/655681
    1. Cote H. C., Magil A. B., Harris M., Scarth B. J., Gadawski I., Wang N., et al. (2006). Exploring mitochondrial nephrotoxicity as a potential mechanism of kidney dysfunction among HIV-infected patients on highly active antiretroviral therapy. Antivir. Ther. 11 79–86.
    1. Cundy K. C., Petty B. G., Flaherty J., Fisher P. E., Polis M. A., Wachsman M., et al. (1995). Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 39 1247–1252 10.1128/AAC.39.6.1247
    1. Daniel H., Kottra G. (2004). The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch. 447 610–618 10.1007/s00424-003-1101-4
    1. Dawson P. A., Beck L., Markovich D. (2003). Hyposulfatemia, growth retardation, reduced fertility, and seizures in mice lacking a functional NaSi-1 gene. Proc. Natl. Acad. Sci. U.S.A. 100 13704–13709 10.1073/pnas.2231298100
    1. Dawson P. A., Russell C. S., Lee S., Mcleay S. C., Van Dongen J. M., Cowley D. M., et al. (2010). Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J. Clin. Invest. 120 706–712 10.1172/JCI31474
    1. de Geus H. R., Betjes M. G., Bakker J. (2012). Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin. Kidney J. 5 102–108 10.1093/ckj/sfs008
    1. De Lannoy I. A., Koren G., Klein J., Charuk J., Silverman M. (1992). Cyclosporin and quinidine inhibition of renal digoxin excretion: evidence for luminal secretion of digoxin. Am. J. Physiol. 263 F613–F622.
    1. Deeley R. G., Westlake C., Cole S. P. (2006). Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol. Rev. 86 849–899 10.1152/physrev.00035.2005
    1. DeGorter M. K., Xia C. Q., Yang J. J., Kim R. B. (2012). Drug transporters in drug efficacy and toxicity. Annu. Rev. Pharmacol. Toxicol. 52 249–273 10.1146/annurev-pharmtox-010611-134529
    1. Del Palacio M., Romero S., Casado J. L. (2012). Proximal tubular renal dysfunction or damage in HIV-infected patients. AIDS Rev. 14 179–187.
    1. Devarajan P. (2008). Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand. J. Clin. Lab. Invest. 68 89–94 10.1080/00365510802150158
    1. Dickson L. E., Wagner M. C., Sandoval R. M., Molitoris B. A. (2014). The proximal tubule and albuminuria: really! J. Am. Soc. Nephrol. 25 443–453 10.1681/ASN.2013090950
    1. Ding R., Tayrouz Y., Riedel K. D., Burhenne J., Weiss J., Mikus G., et al. (2004). Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin. Pharmacol. Ther. 76 73–84 10.1016/j.clpt.2004.02.008
    1. Dresser M. J., Leabman M. K., Giacomini K. M. (2001). Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci. 90 397–421 10.1002/1520-6017(200104)90:4<397::AID-JPS1000>;2-D
    1. El-Sheikh A. A., Van Den Heuvel J. J., Koenderink J. B., Russel F. G. (2007). Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J. Pharmacol. Exp. Ther. 320 229–235 10.1124/jpet.106.110379
    1. Endres C. J., Moss A. M., Ke B., Govindarajan R., Choi D. S., Messing R. O., et al. (2009). The role of the equilibrative nucleoside transporter 1 (ENT1) in transport and metabolism of ribavirin by human and wild-type or Ent1–/– mouse erythrocytes. J. Pharmacol. Exp. Ther. 329 387–398 10.1124/jpet.108.145854
    1. Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Cha S. H., et al. (2002). Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417 447–452 10.1038/nature742
    1. Eraly S. A., Vallon V., Rieg T., Gangoiti J. A., Wikoff W. R., Siuzdak G., et al. (2008). Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol. Genomics 33 180–192 10.1152/physiolgenomics.00207.2007
    1. Eraly S. A., Vallon V., Vaughn D. A., Gangoiti J. A., Richter K., Nagle M., et al. (2006). Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J. Biol. Chem. 281 5072–5083 10.1074/jbc.M508050200
    1. Estrella M. M., Fine D. M. (2010). Screening for chronic kidney disease in HIV-infected patients. Adv. Chronic Kidney Dis. 17 26–35 10.1053/j.ackd.2009.07.014
    1. Estudante M., Morais J. G., Soveral G., Benet L. Z. (2013). Intestinal drug transporters: an overview. Adv. Drug Deliv. Rev. 65 1340–1356 10.1016/j.addr.2012.09.042
    1. Faber K. N., Muller M., Jansen P. L. (2003). Drug transport proteins in the liver. Adv. Drug Deliv. Rev. 55 107–124 10.1016/S0169-409X(02)00173-4
    1. Fassett R. G., Venuthurupalli S. K., Gobe G. C., Coombes J. S., Cooper M. A., Hoy W. E. (2011). Biomarkers in chronic kidney disease: a review. Kidney Int. 80 806–821 10.1038/ki.2011.198
    1. Feliubadalo L., Arbones M. L., Manas S., Chillaron J., Visa J., Rodes M., et al. (2003). Slc7a9-deficient mice develop cystinuria non-I and cystine urolithiasis. Hum. Mol. Genet. 12 2097–2108 10.1093/Hmg/Ddg228
    1. Fenster P. E., Powell J. R., Graves P. E., Conrad K. A., Hager W. D., Goldman S., et al. (1980). Digitoxin-quinidine interaction: pharmacokinetic evaluation. Ann. Intern. Med. 93 698–701 10.7326/0003-4819-93-5-698
    1. Fenton R. A., Chou C. L., Stewart G. S., Smith C. P., Knepper M. A. (2004). Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proc. Natl. Acad. Sci. U.S.A. 101 7469–7474 10.1073/pnas.0401704101
    1. Fernandez-Fernandez B., Montoya-Ferrer A., Sanz A. B., Sanchez-Nino M. D., Izquierdo M. C., Poveda J., et al. (2011). Tenofovir nephrotoxicity: 2011 update. AIDS Res. Treat. 2011:354908 10.1155/2011/354908
    1. Ford J., Khoo S. H., Back D. J. (2004). The intracellular pharmacology of antiretroviral protease inhibitors. J. Antimicrob. Chemother. 54 982–990 10.1093/jac/dkh487
    1. Ganapathy M. E., Brandsch M., Prasad P. D., Ganapathy V., Leibach F. H. (1995). Differential recognition of beta-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J. Biol. Chem. 270 25672–25677 10.1074/jbc.270.43.25672
    1. Ganapathy M. E., Huang W., Wang H., Ganapathy V., Leibach F. H. (1998). Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. 246 470–475 10.1006/bbrc.1998.8628
    1. German P., Liu H. C., Szwarcberg J., Hepner M., Andrews J., Kearney B. P., et al. (2012). Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. J. Acquir. Immune Defic. Syndr. 61 32–40 10.1097/QAI.0b013e3182645648
    1. Goicoechea M., Liu S., Best B., Sun S., Jain S., Kemper C., et al. (2008). Greater tenofovir-associated renal function decline with protease inhibitor-based versus nonnucleoside reverse-transcriptase inhibitor-based therapy. J. Infect. Dis. 197 102–108 10.1086/524061
    1. Gorboulev V., Ulzheimer J. C., Akhoundova A., Ulzheimer-Teuber I., Karbach U., Quester S., et al. (1997). Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 16 871–881 10.1089/dna.1997.16.871
    1. Goren M. P., Wright R. K., Horowitz M. E. (1986). Cumulative renal tubular damage associated with cisplatin nephrotoxicity. Cancer Chemother. Pharmacol. 18 69–73 10.1007/BF00253068
    1. Grundemann D., Liebich G., Kiefer N., Koster S., Schomig E. (1999). Selective substrates for non-neuronal monoamine transporters. Mol. Pharmacol. 56 1–10.
    1. Gupta S. K., Anderson A. M., Ebrahimi R., Fralich T., Graham H., Scharen-Guivel V., et al. (2014). Fanconi syndrome accompanied by renal function decline with tenofovir disoproxil fumarate: a prospective, case-control study of predictors and resolution in HIV-infected patients. PLoS ONE 9:e92717 10.1371/journal.pone.0092717
    1. Hagos Y., Stein D., Ugele B., Burckhardt G., Bahn A. (2007). Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J. Am. Soc. Nephrol. 18 430–439 10.1681/ASN.2006040415
    1. Hagos Y., Wolff N. A. (2010). Assessment of the role of renal organic anion transporters in drug-induced nephrotoxicity. Toxins (Basel) 2 2055–2082 10.3390/toxins2082055
    1. Hall A. M., Hendry B. M., Nitsch D., Connolly J. O. (2011). Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence. Am. J. Kidney Dis. 57 773–780 10.1053/j.ajkd.2011.01.022
    1. Han W. K., Bailly V., Abichandani R., Thadhani R., Bonventre J. V. (2002). Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 62 237–244 10.1046/j.1523-1755.2002.00433.x
    1. Herget-Rosenthal S., Marggraf G., Hüsing J., Göring F., Pietruck F., Janssen O., et al. (2004). Early detection of acute renal failure by serum cystatin C. Kidney Int. 66 1115–1122 10.1111/j.1523-1755.2004.00861.x
    1. Hill G., Cihlar T., Oo C., Ho E. S., Prior K., Wiltshire H., et al. (2002). The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion-correlation of in vivo and in vitro studies. Drug Metab. Dispos. 30 13–19 10.1124/dmd.30.1.13
    1. Ho E. S., Lin D. C., Mendel D. B., Cihlar T. (2000). Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J. Am. Soc. Nephrol. 11 383–393.
    1. Hopper-Borge E., Xu X., Shen T., Shi Z., Chen Z. S., Kruh G. D. (2009). Human multidrug resistance protein 7 (ABCC10) is a resistance factor for nucleoside analogues and epothilone B. Cancer Res. 69 178–184 10.1158/0008-5472.CAN-08-1420
    1. Imaoka T., Kusuhara H., Adachi M., Schuetz J. D., Takeuchi K., Sugiyama Y. (2007). Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol. Pharmacol. 71 619–627 10.1124/mol.106.028233
    1. Izzedine H., Hulot J. S., Villard E., Goyenvalle C., Dominguez S., Ghosn J., et al. (2006). Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J. Infect. Dis. 194 1481–1491 10.1086/508546
    1. Izzedine H., Kheder-Elfekih R., Housset P., Sarkozy C., Brocheriou I., Deray G. (2009). Adefovir dipivoxil-induced acute tubular necrosis and Fanconi syndrome in a renal transplant patient. AIDS 23 544–545 10.1097/QAD.0b013e32832407f7
    1. Jani M., Szabo P., Kis E., Molnar E., Glavinas H., Krajcsi P. (2009). Kinetic characterization of sulfasalazine transport by human ATP-binding cassette G2. Biol. Pharm. Bull. 32 497–499 10.1248/bpb.32.497
    1. Johnson D. J., Owen A., Plant N., Bray P. G., Ward S. A. (2008). Drug-regulated expression of Plasmodium falciparum P-glycoprotein homologue 1: a putative role for nuclear receptors. Antimicrob. Agents Chemother. 52 1438–1445 10.1128/AAC.01392-07
    1. Jonker J. W., Wagenaar E., Van Eijl S., Schinkel A. H. (2003). Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol. Cell. Biol. 23 7902–7908 10.1128/MCB.23.21.7902-7908.2003
    1. Juhasz V., Beery E., Nagy Z., Bui A., Molnar E., Zolnerciks J. K., et al. (2013). Chlorothiazide is a substrate for the human uptake transporters OAT1 and OAT3. J. Pharm. Sci. 102 1683–1687 10.1002/jps.23491
    1. Kage K., Tsukahara S., Sugiyama T., Asada S., Ishikawa E., Tsuruo T., et al. (2002). Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int. J. Cancer 97 626–630 10.1002/ijc.10100
    1. Kamal M. A., Keep R. F., Smith D. E. (2008). Role and relevance of PEPT2 in drug disposition, dynamics, and toxicity. Drug Metab. Pharmacokinet. 23 236–242 10.2133/dmpk.23.236
    1. Kelly M. D., Gibson A., Bartlett H., Rowling D., Patten J. (2013). Tenofovir-associated proteinuria. AIDS 27 479–481 10.1097/QAD.0b013e32835883bf
    1. Kimura H., Takeda M., Narikawa S., Enomoto A., Ichida K., Endou H. (2002). Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther. 301 293–298 10.1124/jpet.301.1.293
    1. Kis O., Robillard K., Chan G. N., Bendayan R. (2010). The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol. Sci. 31 22–35 10.1016/j.tips.2009.10.001
    1. Kiser J. J., Aquilante C. L., Anderson P. L., King T. M., Carten M. L., Fletcher C. V. (2008a). Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J. Acquir. Immune Defic. Syndr. 47 298–303 10.1097/QAI.0b013e31815e7478
    1. Kiser J. J., Carten M. L., Aquilante C. L., Anderson P. L., Wolfe P., King T. M., et al. (2008b). The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin. Pharmacol. Ther. 83 265–272 10.1038/sj.clpt.6100269
    1. Ko H., Cathcart K. S., Griffith D. L., Peters G. R., Adams W. J. (1989). Pharmacokinetics of intravenously administered cefmetazole and cefoxitin and effects of probenecid on cefmetazole elimination. Antimicrob. Agents Chemother. 33 356–361 10.1128/AAC.33.3.356
    1. Kobayashi Y., Ohshiro N., Sakai R., Ohbayashi M., Kohyama N., Yamamoto T. (2005). Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J. Pharm. Pharmacol. 57 573–578 10.1211/0022357055966
    1. Kohler J. J., Hosseini S. H., Green E., Abuin A., Ludaway T., Russ R., et al. (2011). Tenofovir renal proximal tubular toxicity is regulated by OAT1 and MRP4 transporters. Lab. Invest. 91 852–858 10.1038/labinvest.2011.48
    1. Kool M., Van Der Linden M., De Haas M., Baas F., Borst P. (1999a). Expression of human MRP6, a homologue of the multidrug resistance protein gene MRP1, in tissues and cancer cells. Cancer Res. 59 175–182.
    1. Kool M., van Der Linden M., de Haas M., Scheffer G. L., de Vree J. M., Smith A. J., et al. (1999b). MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl. Acad. Sci. U.S.A. 96 6914–6919 10.1073/pnas.96.12.6914
    1. Koteff J., Borland J., Chen S., Song I., Peppercorn A., Koshiba T., et al. (2013). A phase 1 study to evaluate the effect of dolutegravir on renal function via measurement of iohexol and para-aminohippurate clearance in healthy subjects. Br. J. Clin. Pharmacol. 75 990–996 10.1111/j.1365-2125.2012.04440.x
    1. Kusuhara H., Sekine T., Utsunomiya-Tate N., Tsuda M., Kojima R., Cha S. H., et al. (1999). Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J. Biol. Chem. 274 13675–13680 10.1074/jbc.274.19.13675
    1. Lalande L., Charpiat B., Leboucher G., Tod M. (2014). Consequences of renal failure on non-renal clearance of drugs. Clin. Pharmacokinet. 53 521–532 10.1007/s40262-014-0146-1
    1. Laskin O. L., De Miranda P., King D. H., Page D. A., Longstreth J. A., Rocco L., et al. (1982). Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob. Agents Chemother. 21 804–807 10.1128/AAC.21.5.804
    1. Lee H. W., Verlander J. W., Bishop J. M., Igarashi P., Handlogten M. E., Weiner I. D. (2009). Collecting duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia excretion. Am. J. Physiol. Renal Physiol. 296 F1364–F1375 10.1152/ajprenal.90667.2008
    1. Lepist E.-I., Zhang X., Hao J., Huang J., Kosaka A., Birkus G., et al. (2014). Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int. 86 350–357 10.1038/ki.2014.66
    1. Leviel F., Hubner C. A., Houillier P., Morla L., El Moghrabi S., Brideau G., et al. (2010). The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J. Clin. Invest. 120 1627–1635 10.1172/JCI40145
    1. Liang R., Fei Y. J., Prasad P. D., Ramamoorthy S., Han H., Yang-Feng T. L., et al. (1995). Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J. Biol. Chem. 270 6456–6463.
    1. Liptrott N. J., Pushpakom S., Wyen C., Fatkenheuer G., Hoffmann C., Mauss S., et al. (2012). Association of ABCC10 polymorphisms with nevirapine plasma concentrations in the German Competence Network for HIV/AIDS. Pharmacogenet. Genomics 22 10–19 10.1097/FPC.0b013e32834dd82e
    1. Markowitz M., Zolopa A., Squires K., Ruane P., Coakley D., Kearney B., et al. (2014). Phase I/II study of the pharmacokinetics, safety and antiretroviral activity of tenofovir alafenamide, a new prodrug of the HIV reverse transcriptase inhibitor tenofovir, in HIV-infected adults. J. Antimicrob. Chemother. 69 1362–1369 10.1093/jac/dkt532
    1. Martin P., Riley R., Back D. J., Owen A. (2008). Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br. J. Pharmacol. 153 805–819 10.1038/sj.bjp.0707601
    1. Martinez-Guerrero L. J., Wright S. H. (2013). Substrate-dependent inhibition of human MATE1 by cationic ionic liquids. J. Pharmacol. Exp. Ther. 346 495–503 10.1124/jpet.113.204206
    1. Masuda S., Terada T., Yonezawa A., Tanihara Y., Kishimoto K., Katsura T., et al. (2006). Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol. 17 2127–2135 10.1681/ASN.2006030205
    1. Morris M. E., Lee H. J., Predko L. M. (2003). Gender differences in the membrane transport of endogenous and exogenous compounds. Pharmacol. Rev. 55 229–240 10.1124/pr.55.2.1
    1. Morrissey K. M., Stocker S. L., Wittwer M. B., Xu L., Giacomini K. M. (2013). Renal transporters in drug development. Annu. Rev. Pharmacol. Toxicol. 53 503–529 10.1146/annurev-pharmtox-011112-140317
    1. Moss D. M., Kwan W. S., Liptrott N. J., Smith D. L., Siccardi M., Khoo S. H., et al. (2011). Raltegravir is a substrate for SLC22A6: a putative mechanism for the interaction between raltegravir and tenofovir. Antimicrob. Agents Chemother. 55 879–887 10.1128/AAC.00623-10
    1. Motohashi H., Inui K.-I. (2013). Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J. 15 581–588 10.1208/s12248-013-9465-7
    1. Nagai K., Nagasawa K., Koma M., Hotta A., Fujimoto S. (2006). Cytidine is a novel substrate for wild-type concentrative nucleoside transporter 2. Biochem. Biophys. Res. Commun. 347 439–443 10.1016/j.bbrc.2006.06.103
    1. Neumanova Z., Cerveny L., Ceckova M., Staud F. (2014). Interactions of tenofovir and tenofovir disoproxil fumarate with drug efflux transporters ABCB1, ABCG2, and ABCC2; role in transport across the placenta. AIDS 28 9–17 10.1097/QAD.0000000000000112
    1. Nies A. T., Koepsell H., Damme K., Schwab M. (2011). Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb. Exp. Pharmacol. 201 105–167 10.1007/978-3-642-14541-4_3
    1. Nishijima T., Komatsu H., Higasa K., Takano M., Tsuchiya K., Hayashida T., et al. (2012). Single nucleotide polymorphisms in ABCC2 associate with tenofovir-induced kidney tubular dysfunction in Japanese patients with HIV-1 infection: a pharmacogenetic study. Clin. Infect. Dis. 55 1558–1567 10.1093/cid/cis772
    1. Ocheltree S. M., Shen H., Hu Y., Keep R. F., Smith D. E. (2005). Role and relevance of peptide transporter 2 (PEPT2) in the kidney and choroid plexus: in vivo studies with glycylsarcosine in wild-type and PEPT2 knockout mice. J. Pharmacol. Exp. Ther. 315 240–247 10.1124/jpet.105.089359
    1. Ohana E., Shcheynikov N., Moe O. W., Muallem S. (2013). SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J. Am. Soc. Nephrol. 24 1617–1626 10.1681/ASN.2013010080
    1. Ohi A., Hanabusa E., Ueda O., Segawa H., Horiba N., Kaneko I., et al. (2011). Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter Npt2b(+)/(–) mice. Am. J. Physiol. Renal Physiol. 301 F1105–F1113 10.1152/ajprenal.00663.2010
    1. Ohta K. Y., Inoue K., Hayashi Y., Yuasa H. (2006). Molecular identification and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab. Dispos. 34 1868–1874 10.1124/dmd.106.010876
    1. Ortiz A., Justo P., Sanz A., Melero R., Caramelo C., Guerrero M. F., et al. (2005). Tubular cell apoptosis and cidofovir-induced acute renal failure. Antivir. Ther. 10 185–190.
    1. Owen A., Chandler B., Back D. J., Khoo S. H. (2004). Expression of pregnane-X-receptor transcript in peripheral blood mononuclear cells and correlation with MDR1 mRNA. Antivir. Ther. 9 819–821.
    1. Preitner F., Bonny O., Laverriere A., Rotman S., Firsov D., Da Costa A., et al. (2009). Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc. Natl. Acad. Sci. U.S.A. 106 15501–15506 10.1073/pnas.0904411106
    1. Pushpakom S. P., Liptrott N. J., Rodriguez-Novoa S., Labarga P., Soriano V., Albalater M., et al. (2011). Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J. Infect. Dis. 204 145–153 10.1093/infdis/jir215
    1. Quan H., Athirakul K., Wetsel W. C., Torres G. E., Stevens R., Chen Y. T., et al. (2004). Hypertension and impaired glycine handling in mice lacking the orphan transporter XT2. Mol. Cell. Biol. 24 4166–4173 10.1128/MCB.24.10.4166-4173.2004
    1. Ray A. S., Cihlar T., Robinson K. L., Tong L., Vela J. E., Fuller M. D., et al. (2006). Mechanism of active renal tubular efflux of tenofovir. Antimicrob. Agents Chemother. 50 3297–3304 10.1128/AAC.00251-06
    1. Ray A. S., Olson L., Fridland A. (2004). Role of purine nucleoside phosphorylase in interactions between 2′,3′-dideoxyinosine and allopurinol, ganciclovir, or tenofovir. Antimicrob. Agents Chemother. 48 1089–1095 10.1128/AAC.48.4.1089-1095.2004
    1. Reginato A. M., Mount D. B., Yang I., Choi H. K. (2012). The genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 8 610–621 10.1038/nrrheum.2012.144
    1. Robbins N., Koch S. E., Tranter M., Rubinstein J. (2012). The history and future of probenecid. Cardiovasc. Toxicol. 12 1–9 10.1007/s12012-011-9145-8
    1. Robertshaw M., Lai K., Swaminathan R. (1989). Prediction of creatinine clearance from plasma creatinine: comparison of five formulae. Br. J. Clin. Pharmacol. 28 275–280 10.1111/j.1365-2125.1989.tb05427.x
    1. Rodriguez-Novoa S., Alvarez E., Labarga P., Soriano V. (2010). Renal toxicity associated with tenofovir use. Expert Opin. Drug Saf. 9 545–559 10.1517/14740331003627458
    1. Rodriguez-Novoa S., Labarga P., Soriano V. (2009a). Pharmacogenetics of tenofovir treatment. Pharmacogenomics 10 1675–1685 10.2217/pgs.09.115
    1. Rodriguez-Novoa S., Labarga P., Soriano V., Egan D., Albalater M., Morello J., et al. (2009b). Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin. Infect. Dis. 48 e108–e116 10.1086/598507
    1. Sato K., Sai Y., Nishimura T., Chishu T., Shimpo S., Kose N., et al. (2009). Influx mechanism of 2′,3′-dideoxyinosine and uridine at the blood-placenta barrier. Placenta 30 263–269 10.1016/j.placenta.2008.11.022
    1. Sax P. E., Zolopa A., Brar I., Elion R., Ortiz R., Post F., et al. (2014). Tenofovir alafenamide vs. tenofovir disoproxil fumarate in single tablet regimens for initial HIV-1 therapy: a randomized phase 2 study. J. Acquir. Immune Defic. Syndr. 67 52–58 10.1097/QAI.0000000000000225
    1. Scheffer G. L., Kool M., De Haas M., De Vree J. M., Pijnenborg A. C., Bosman D. K., et al. (2002). Tissue distribution and induction of human multidrug resistant protein 3. Lab. Invest. 82 193–201 10.1038/labinvest.3780411
    1. Schipani A., Siccardi M., D’Avolio A., Baietto L., Simiele M., Bonora S., et al. (2010). Population pharmacokinetic modeling of the association between 63396C- > T pregnane X receptor polymorphism and unboosted atazanavir clearance. Antimicrob. Agents Chemother. 54 5242–5250 10.1128/AAC.00781-10
    1. Schultheis P. J., Clarke L. L., Meneton P., Miller M. L., Soleimani M., Gawenis L. R., et al. (1998). Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat. Genet. 19 282–285 10.1038/969
    1. Schwedhelm E., Böger R. H. (2011). The role of asymmetric and symmetric dimethylarginines in renal disease. Nat. Rev. Nephrol. 7 275–285 10.1038/nrneph.2011.31
    1. Shafiu M., Johnson R. J., Turner S. T., Langaee T., Gong Y., Chapman A. B., et al. (2012). Urate transporter gene SLC22A12 polymorphisms associated with obesity and metabolic syndrome in Caucasians with hypertension. Kidney Blood Press. Res. 35 477–482 10.1159/000337370
    1. Shen H., Smith D. E., Brosius F. C., III. (2001). Developmental expression of PEPT1 and PEPT2 in rat small intestine, colon, and kidney. Pediatr. Res. 49 789–795 10.1203/00006450-200106000-00013
    1. Shu C., Shen H., Hopfer U., Smith D. E. (2001). Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures. Drug Metab. Dispos. 29 1307–1315.
    1. Siccardi M., D’Avolio A., Baietto L., Gibbons S., Sciandra M., Colucci D., et al. (2008). Association of a single-nucleotide polymorphism in the pregnane X receptor (PXR 63396C– > T) with reduced concentrations of unboosted atazanavir. Clin. Infect. Dis. 47 1222–1225 10.1086/592304
    1. Smeets P. H., Van Aubel R. A., Wouterse A. C., Van Den Heuvel J. J., Russel F. G. (2004). Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J. Am. Soc. Nephrol. 15 2828–2835 10.1097/
    1. Solomon M. M., Lama J. R., Glidden D. V., Mulligan K., Mcmahan V., Liu A. Y., et al. (2014). Changes in renal function associated with oral emtricitabine/tenofovir disoproxil fumarate use for HIV pre-exposure prophylaxis. AIDS 28 851–859 10.1097/QAD.0000000000000156
    1. Somogyi A., Stockley C., Keal J., Rolan P., Bochner F. (1987). Reduction of metformin renal tubular secretion by cimetidine in man. Br. J. Clin. Pharmacol. 23 545–551 10.1111/j.1365-2125.1987.tb03090.x
    1. Sun Y. L., Chen J. J., Kumar P., Chen K., Sodani K., Patel A., et al. (2013). Reversal of MRP7 (ABCC10)-mediated multidrug resistance by tariquidar. PLoS ONE 8:e55576 10.1371/journal.pone.0055576
    1. Sun Y. L., Kumar P., Sodani K., Patel A., Pan Y., Baer M. R., et al. (2014). Ponatinib enhances anticancer drug sensitivity in MRP7-overexpressing cells. Oncol. Rep. 31 1605–1612 10.3892/or.2014.3002
    1. Tanigawara Y. (2000). Role of P-glycoprotein in drug disposition. Ther. Drug Monit. 22 137–140 10.1097/00007691-200002000-00029
    1. Tanihara Y., Masuda S., Sato T., Katsura T., Ogawa O., Inui K. (2007). Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem. Pharmacol. 74 359–371 10.1016/j.bcp.2007.04.010
    1. Thangaraju M., Ananth S., Martin P. M., Roon P., Smith S. B., Sterneck E., et al. (2006). c/ebp delta null mouse as a model for the double knock-out of slc5a8 and slc5a12 in kidney. J. Biol. Chem. 281 26769–26773 10.1074/jbc.C600189200
    1. Tong L., Phan T. K., Robinson K. L., Babusis D., Strab R., Bhoopathy S., et al. (2007). Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob. Agents Chemother. 51 3498–3504 10.1128/AAC.00671-07
    1. Trajkovic-Arsic M., Visser T. J., Darras V. M., Friesema E. C., Schlott B., Mittag J., et al. (2010). Consequences of monocarboxylate transporter 8 deficiency for renal transport and metabolism of thyroid hormones in mice. Endocrinology 151 802–809 10.1210/en.2009-1053
    1. Tramonti G., Xie P., Wallner E. I., Danesh F. R., Kanwar Y. S. (2006). Expression and functional characteristics of tubular transporters: P-glycoprotein, PEPT1, and PEPT2 in renal mass reduction and diabetes. Am. J. Physiol. Renal Physiol. 291 F972–F980 10.1152/ajprenal.00110.2006
    1. Tsuda M., Terada T., Ueba M., Sato T., Masuda S., Katsura T., et al. (2009). Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J. Pharmacol. Exp. Ther. 329 185–191 10.1124/jpet.108.147918
    1. Tzvetkov M. V., Dos Santos Pereira J. N., Meineke I., Saadatmand A. R., Stingl J. C., Brockmoller J. (2013). Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem. Pharmacol. 86 666–678 10.1016/j.bcp.2013.06.019
    1. Urakami Y., Kimura N., Okuda M., Inui K.-I. (2004). Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm. Res. 21 976–981 10.1023/B:
    1. Uwai Y., Ida H., Tsuji Y., Katsura T., Inui K. (2007). Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm. Res. 24 811–815 10.1007/s11095-006-9196-x
    1. Vallon V., Platt K. A., Cunard R., Schroth J., Whaley J., Thomson S. C., et al. (2011). SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 22 104–112 10.1681/ASN.2010030246
    1. Van Acker B., Koopman M., Arisz L., Koomen G., De Waart D. (1992). Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet 340 1326–1329 10.1016/0140-6736(92)92502-7
    1. van Gelder J., Deferme S., Naesens L., De Clercq E., Van Den Mooter G., Kinget R., et al. (2002). Intestinal absorption enhancement of the ester prodrug tenofovir disoproxil fumarate through modulation of the biochemical barrier by defined ester mixtures. Drug Metab. Dispos. 30 924–930 10.1124/dmd.30.8.924
    1. Vitart V., Rudan I., Hayward C., Gray N. K., Floyd J., Palmer C. N., et al. (2008). SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 40 437–442 10.1038/ng.106
    1. Wenning L. A., Friedman E. J., Kost J. T., Breidinger S. A., Stek J. E., Lasseter K. C., et al. (2008). Lack of a significant drug interaction between raltegravir and tenofovir. Antimicrob. Agents Chemother. 52 3253–3258 10.1128/AAC.00005-08
    1. Woodward O. M., Kottgen A., Coresh J., Boerwinkle E., Guggino W. B., Kottgen M. (2009). Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. U.S.A. 106 10338–10342 10.1073/pnas.0901249106
    1. Wyen C., Hendra H., Siccardi M., Platten M., Jaeger H., Harrer T., et al. (2011). Cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR) polymorphisms are associated with early discontinuation of efavirenz-containing regimens. J. Antimicrob. Chemother. 66 2092–2098 10.1093/jac/dkr272
    1. Xu J., Song P., Nakamura S., Miller M., Barone S., Alper S. L., et al. (2009). Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J. Biol. Chem. 284 29470–29479 10.1074/jbc.M109.044396
    1. Yamaguchi H., Sugie M., Okada M., Mikkaichi T., Toyohara T., Abe T., et al. (2010). Transport of estrone 3-sulfate mediated by organic anion transporter OATP4C1: estrone 3-sulfate binds to the different recognition site for digoxin in OATP4C1. Drug Metab. Pharmacokinet. 25 314–317 10.2133/dmpk.25.314
    1. Yasui-Furukori N., Uno T., Sugawara K., Tateishi T. (2005). Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin. Pharmacol. Ther. 77 17–23 10.1016/j.clpt.2004.08.026
    1. Young J., Schafer J., Fux C. A., Furrer H., Bernasconi E., Vernazza P., et al. (2012). Renal function in patients with HIV starting therapy with tenofovir and either efavirenz, lopinavir or atazanavir. AIDS 26 567–575 10.1097/QAD.0b013e32834f337c
    1. Zhou S. F., Wang L. L., Di Y. M., Xue C. C., Duan W., Li C. G., et al. (2008). Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr. Med. Chem. 15 1981–2039 10.2174/092986708785132870
    1. Zhu H. J., Appel D. I., Grundemann D., Markowitz J. S. (2010). Interaction of organic cation transporter 3 (SLC22A3) and amphetamine. J. Neurochem. 114 142–149 10.1111/j.1471-4159.2010.06738.x

Source: PubMed

3
Suscribir