Paying attention to attention in depression

Arielle S Keller, John E Leikauf, Bailey Holt-Gosselin, Brooke R Staveland, Leanne M Williams, Arielle S Keller, John E Leikauf, Bailey Holt-Gosselin, Brooke R Staveland, Leanne M Williams

Abstract

Attention is the gate through which sensory information enters our conscious experiences. Oftentimes, patients with major depressive disorder (MDD) complain of concentration difficulties that negatively impact their day-to-day function, and these attention problems are not alleviated by current first-line treatments. In spite of attention's influence on many aspects of cognitive and emotional functioning, and the inclusion of concentration difficulties in the diagnostic criteria for MDD, the focus of depression as a disease is typically on mood features, with attentional features considered less of an imperative for investigation. Here, we summarize the breadth and depth of findings from the cognitive neurosciences regarding the neural mechanisms supporting goal-directed attention in order to better understand how these might go awry in depression. First, we characterize behavioral impairments in selective, sustained, and divided attention in depressed individuals. We then discuss interactions between goal-directed attention and other aspects of cognition (cognitive control, perception, and decision-making) and emotional functioning (negative biases, internally-focused attention, and interactions of mood and attention). We then review evidence for neurobiological mechanisms supporting attention, including the organization of large-scale neural networks and electrophysiological synchrony. Finally, we discuss the failure of current first-line treatments to alleviate attention impairments in MDD and review evidence for more targeted pharmacological, brain stimulation, and behavioral interventions. By synthesizing findings across disciplines and delineating avenues for future research, we aim to provide a clearer outline of how attention impairments may arise in the context of MDD and how, mechanistically, they may negatively impact daily functioning across various domains.

Conflict of interest statement

L.M.W. has received consultant fees from BlackThorn Therapeutics and scientific advisory board fees from Psyberguide of the One Mind Institute, for work unrelated to this review. The remaining authors declare no conflict of interests.

References

    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5™. 5th edn. Arlington, VA: American Psychiatric Publishing, Inc.; 2013. DSM-5 Task Force.
    1. Zuckerman H, et al. Recognition and treatment of cognitive dysfunction in major depressive disorder. Front. Psychiatry. 2018;9:655. doi: 10.3389/fpsyt.2018.00655.
    1. Fehnel SE, et al. Patient-centered assessment of cognitive symptoms of depression. CNS Spectr. 2016;21:43–52. doi: 10.1017/S1092852913000643.
    1. Cotrena C, Branco LD, Shansis FM, Fonseca RP. Executive function impairments in depression and bipolar disorder: association with functional impairment and quality of life. J. Affect. Disord. 2016;190:744–753. doi: 10.1016/j.jad.2015.11.007.
    1. Majer M, et al. Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychological Med. 2004;34:1453–1463. doi: 10.1017/S0033291704002697.
    1. Insel TR. The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am. J. Psychiatry. 2014;171:395–397. doi: 10.1176/appi.ajp.2014.14020138.
    1. National Institute of Mental Health. Research Domain Criteria (RDoC): RDoC Constructs: Domain: Cognitive Systems. [Internet]. Retrieved Aug 2019. Available from:
    1. Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol. Med. 2014;44:2029–2040. doi: 10.1017/S0033291713002535.
    1. Katsuki F, Constantinidis C. Bottom-up and top-down attention: different processes and overlapping neural systems. Neuroscientist. 2014;20:509–521. doi: 10.1177/1073858413514136.
    1. Fried EI, Nesse RM. Depression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR*D study. J. Affect. Disord. 2015;172:96–102. doi: 10.1016/j.jad.2014.10.010.
    1. James W. The Principles of Psychology. New York, NY: H. Holt and company; 1890.
    1. Ibos G, Freedman DJ. Interaction between spatial and feature attention in posterior parietal cortex. Neuron. 2016;91:931–943. doi: 10.1016/j.neuron.2016.07.025.
    1. Patzwahl DR, Treue S. Combining spatial and feature-based attention within the receptive field of MT neurons. Vis. Res. 2009;49:1188–1193. doi: 10.1016/j.visres.2009.04.003.
    1. Giesbrecht B, Woldorff MG, Song AW, Mangun GR. Neural mechanisms of top-down control during spatial and feature attention. Neuroimage. 2003;19:496–512. doi: 10.1016/S1053-8119(03)00162-9.
    1. Galashan D, Siemann J. Differences and similarities for spatial and feature-based selective attentional orienting. Front. Neurosci. 2017;11:283. doi: 10.3389/fnins.2017.00283.
    1. Kertzman S, et al. Stroop performance in major depression: selective attention impairment or psychomotor slowness? J. Affect. Disord. 2010;122:167–173. doi: 10.1016/j.jad.2009.08.009.
    1. Holmes AJ, Pizzagalli DA. Response conflict and frontocingulate dysfunction in unmedicated participants with major depression. Neuropsychologia. 2008;46:2904–2913. doi: 10.1016/j.neuropsychologia.2008.05.028.
    1. Cataldo MG, Nobile M, Lorusso ML, Battaglia M, Molteni M. Impulsivity in depressed children and adolescents: a comparison between behavioral and neuropsychological data. Psychiatry Res. 2005;136:123–133. doi: 10.1016/j.psychres.2004.12.012.
    1. Degl’Innocenti A, Ågren H, Bäckman L. Executive deficits in major depression. Acta Psychiatr. Scand. 1998;97:182–188. doi: 10.1111/j.1600-0447.1998.tb09985.x.
    1. Keller, A. S., Ball, T. M. & Williams, L. M. Deep phenotyping of attention impairments and the “Inattention Biotype” in major depressive disorder. Psychol. Med. 1–10 (2019). 10.1017/S0033291719002290.
    1. Ladouceur CD, et al. Altered error-relaed brain activity in youth with major depression. Developmental Cogn. Neurosci. 2012;2:351–362. doi: 10.1016/j.dcn.2012.01.005.
    1. Olvet DM, Klein DN, Hajcak G. Depression symptom severity and error-related brain activity. Psychiatry Res. 2010;179:30–37. doi: 10.1016/j.psychres.2010.06.008.
    1. Kemp AH, et al. Fronto-temporal alterations within the first 200 ms during an attentional task distinguish major depression, non-clinical participants with depressed mood, and healthy controls: a potential biomarker? Hum. Brain Mapp. 2009;30:602–614. doi: 10.1002/hbm.20528.
    1. Tenke CE, et al. Hemispatial PCA dissociates temporal from parietal ERP generator patterns: CSD components in healthy adults and depressed patients during a dichotic oddball task. Int. J. Psychophysiol. 2008;67:1–16. doi: 10.1016/j.ijpsycho.2007.09.001.
    1. Gyurak A, et al. Frontoparietal activation during response inhibition predicts remission to antidepressants in patients with major depression. Biol. Psychiatry. 2016;79:274–281. doi: 10.1016/j.biopsych.2015.02.037.
    1. Li X, Wu H, Lou C, Xing B, Yu E. Study on the executive function of attention in depression patients based on SPECT technology. Int J. Clin. Exp. Med. 2014;7:1110–1115.
    1. Li Y, et al. Depression-related brain connectivity analyzed by EEG event-related phase synchrony measure. Front. Human Neurosci. 2016;10:1–15.
    1. van Vugt MK, van der Velde M, ESM-MERGE Investigators. How does rumination impact cognition? A first mechanistic model. Top. Cogn. Sci. 2018;10:175–191. doi: 10.1111/tops.12318.
    1. Cherry EC. Some experiments on the recognition of speech, with one and with two ears. J. Acoust. Soc. Am. 1953;25:975–979. doi: 10.1121/1.1907229.
    1. McMains SA, Somers DC. Processing efficiency of divided spatial attention mechanisms in human visual cortex. J. Neurosci. 2005;25:9444–9448. doi: 10.1523/JNEUROSCI.2647-05.2005.
    1. Godefroy O, Rousseaux M. Divided and focused attention in patients with lesion of the prefrontal cortex. Brain Cogn. 1996;30:155–174. doi: 10.1006/brcg.1996.0010.
    1. Richer F, et al. Target detection deficits in frontal lobectomy. Brain Cogn. 1993;21:203–211. doi: 10.1006/brcg.1993.1016.
    1. Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW. Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions, or amygdalo-hippocampectomy in man. Neuropsychologia. 1991;29:993–1006. doi: 10.1016/0028-3932(91)90063-E.
    1. Lautenbacher S, Spernal J, Krieg J-C. Divided and selective attention in panic disorder: a comparative study of patients with panic disorder, major depression and healthy controls. Eur. Arch. Psychiatry Clin. Neurosci. 2002;252:210–213. doi: 10.1007/s00406-002-0382-5.
    1. Thomas P, Goudemand M, Rousseaux M. Divided attention in major depression. Psychiatry Res. 1998;81:309–322. doi: 10.1016/S0165-1781(98)00123-1.
    1. Mikoteit T, et al. Improved alertness is associated with early increase in serum brain-derived neurotrophic factor and antidepressant treatment outcome in major depression. Neuropsychobiology. 2015;72:16–28. doi: 10.1159/000437439.
    1. Kim SJ, et al. The relationship between poor performance on attention tasks and increased suicidal ideation in adolescents. Eur. Child Adolesc. Psychiatry. 2015;24:1361–1368. doi: 10.1007/s00787-015-0687-3.
    1. LeMoult J, Gotlib IH. Depression: a cognitive perspective. Clin. Psychol. Rev. 2019;69:51–66. doi: 10.1016/j.cpr.2018.06.008.
    1. Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychological Bull. 2013;139:81–132. doi: 10.1037/a0028727.
    1. National Institute of Mental Health. Research Domain Criteria (RDoC): Cognitive Systems: Workshop Proceedings. [Internet]. Retrieved Aug 2019. Available from:
    1. Chun MM, Golomb JD, Turk-Browne NB. A taxonomy of external and internal attention. Annu Rev. Psychol. 2011;62:73–101. doi: 10.1146/annurev.psych.093008.100427.
    1. Gratton G, Cooper P, Fabiani M, Carter CS, Karayanidis F. Dynamics of cognitive control: theoretical bases, paradigms, and a view for the future. Psychophysiology. 2018;55:1–29. doi: 10.1111/psyp.13224.
    1. Carrasco M, Barbot A. Spatial attention alters visual appearance. Curr. Opin. Psychol. 2019;29:56–64. doi: 10.1016/j.copsyc.2018.10.010.
    1. Liu T, Abrams J, Carrasco M. Voluntary attention enhances contrast appearance. Psychol. Sci. 2009;20:354–362. doi: 10.1111/j.1467-9280.2009.02300.x.
    1. Fuller S, Carrasco M. Exogenous attention and color perception: performance and appearance of saturation and hue. Vis. Res. 2006;46:4032–4047. doi: 10.1016/j.visres.2006.07.014.
    1. Störmer VS, Alvarez GA. Attention alters perceived attractiveness. Psychological Sci. 2016;27:563–571. doi: 10.1177/0956797616630964.
    1. Mishra MV, Srinivasan N. Exogenous attention intensifies perceived emotion expressions. Neurosci. Conscious. 2017;1:nix022.
    1. Bubl E, Kern E, Ebert D, Bach M, van Elst LT. Seeing gray when feeling blue? Depression can be measured in the eye of the diseased. Biol. Psychiatry. 2010;68:205–208. doi: 10.1016/j.biopsych.2010.02.009.
    1. Barbot A, Carrasco M. Emotion and anxiety potentiate the way attention alters visual appearance. Sci. Rep. 2018;8:5938. doi: 10.1038/s41598-018-23686-8.
    1. Krajbich I. Accounting for attention in sequential sampling models of decision making. Curr. Opin. Psychol. 2019;29:6–11. doi: 10.1016/j.copsyc.2018.10.008.
    1. Shimojo S, Simon C, Shimojo E, Scheier C. Gaze bias both reflects and influences preference. Nat. Neurosci. 2003;6:1317–1322. doi: 10.1038/nn1150.
    1. Chelazzi L, et al. Altering spatial priority maps via reward-based learning. J. Neurosci. 2014;34:8594–8604. doi: 10.1523/JNEUROSCI.0277-14.2014.
    1. Niv Y, et al. Reinforcement learning in multidimensional environments relies on attention mechanisms. J. Neurosci. 2015;35:8145–8157. doi: 10.1523/JNEUROSCI.2978-14.2015.
    1. Leong Y-C, Radulescu A, Daniel R, DeWoskin V, Niv Y. Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron. 2017;93:451–463. doi: 10.1016/j.neuron.2016.12.040.
    1. Huys QJM, Daw ND, Dayan P. Depression: a decision-theoretic analysis. Annu. Rev. Neurosci. 2015;38:1–23. doi: 10.1146/annurev-neuro-071714-033928.
    1. Macleod C, Mathews A, Tata P. Attentional bias in emotional disorders. J. Abnorm. Psychol. 1986;95:15–20. doi: 10.1037/0021-843X.95.1.15.
    1. Williams JM, Mathews A, MacLeod C. The emotional stroop task and psychopathology. Psychol. Bull. 1996;120:3–24. doi: 10.1037/0033-2909.120.1.3.
    1. Gotlib IH, Joormann J. Cognition and depression: current status and future directions. Annu Rev. Clin. Psychol. 2010;6:285–312. doi: 10.1146/annurev.clinpsy.121208.131305.
    1. Kircanski K, Gotlib IH. Processing of emotional information in major depressive disorder: toward a dimensional understanding. Emot. Rev. 2015;7:256–264. doi: 10.1177/1754073915575402.
    1. Lang PJ, Davis M. (2006). Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog. Brain Res. 2006;156:3–29. doi: 10.1016/S0079-6123(06)56001-7.
    1. Clasen PC, Wells TT, Ellis AJ, Beevers CG. Attentional biases and the persistence of sad mood in major depressive disorder. J. Abnorm Psychol. 2013;122:74–85. doi: 10.1037/a0029211.
    1. Vanlessen N, De Raedt R, Koster EHW, Pourtois G. Happy heart, smiling eyes: a systematic review of positive mood effects on broadening of visuospatial attention. Neurosci. Biobehav. Rev. 2016;68:816–837. doi: 10.1016/j.neubiorev.2016.07.001.
    1. Meeten F, Davey GCL. Mood-as-input hypothesis and perseverative psychopathologies. Clin. Psychol. Rev. 2011;31:1259–1275. doi: 10.1016/j.cpr.2011.08.002.
    1. Fredrickson B. The role of positive emotions in positive psychology: the broaden-and-build theory of positive emotions. Am. Psychol. 2001;56:218–226. doi: 10.1037/0003-066X.56.3.218.
    1. Isen AM, Daubman KA, Nowicki GP. Positive affect facilitates creative problem-solving. J. Pers. Soc. Psychol. 1987;52:1122–1131. doi: 10.1037/0022-3514.52.6.1122.
    1. Isen AM, Daubman KA. The influence of affect on categorization. J. Personal. Soc. Psychol. 1984;47:1206–1217. doi: 10.1037/0022-3514.47.6.1206.
    1. Derryberry, D, Tucker, D. M, Neidenthal, P. M. & Kitayama, S. Motivating the focus of attention. In The Heart’s Eye: Emotional Influences in Perception and Attention. (eds Niedenthal, P. M. & Kitayama, S.) 167–196 (Academic: San Diego, CA, 1994).
    1. Easterbrook J. The effect of emotion on cue utilization and the organization of behavior. Psychological Rev. 1959;66:183–201. doi: 10.1037/h0047707.
    1. Loftus E. Eyewitness Testimony. London, UK: Harvard University Press; 1979.
    1. Brand N, Verspui L, Oving A. Induced mood and selective attention. Percept. Mot. Skills. 1997;84:455–463. doi: 10.2466/pms.1997.84.2.455.
    1. Storbeck J, Clore GL. Affective arousal as information: how affective arousal influences judgments, learning, and memory. Soc. Personal. Psychol. Compass. 2008;2:1824–1843. doi: 10.1111/j.1751-9004.2008.00138.x.
    1. Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron. 1999;22:751–761. doi: 10.1016/S0896-6273(00)80734-5.
    1. Corbetta M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? PNAS. 1998;95:831–838. doi: 10.1073/pnas.95.3.831.
    1. Nobre AC, et al. Functional localization of the system for visuospatial attention using positron emission tomography. Brain. 1997;120:515–533. doi: 10.1093/brain/120.3.515.
    1. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002;3:201–215. doi: 10.1038/nrn755.
    1. Falkenberg LE, Specht K, Westerhausen R. Attention and cognitive control networks assessed in a dichotic listening fmri study. Brain Cogn. 2011;76:276–285. doi: 10.1016/j.bandc.2011.02.006.
    1. Bassett DS, et al. Dynamic reconfiguration of human brain networks during learning. PNAS. 2011;108:7641–7646. doi: 10.1073/pnas.1018985108.
    1. Gu S, et al. Controllability of structural brain networks. Nat. Commun. 2015;6:8414. doi: 10.1038/ncomms9414.
    1. Gu S, et al. Optimal trajectories of brain state transitions. NeuroImage. 2017;148:305–317. doi: 10.1016/j.neuroimage.2017.01.003.
    1. Qin J, et al. Abnormal brain anatomical topological organization of the cognitive-emotional and the frontoparietal circuitry in major depressive disorder. Magn. Reson. Med. 2014;72:1397–1407. doi: 10.1002/mrm.25036.
    1. Luo Q, et al. Frequency dependent topological alterations of intrinsic functional connectome in major depressive disorder. Sci. Rep. 2015;5:9710. doi: 10.1038/srep09710.
    1. He Y, et al. Reconfiguration of cortical networks in MDD uncovered by multiscale community detection with fMRI. Cereb. Cortex. 2018;28:1383–1395. doi: 10.1093/cercor/bhx335.
    1. Gratton C, Sun H, Petersen SE. Control networks and hubs. Psychophysiology. 2018;55:e13032. doi: 10.1111/psyp.13032.
    1. Dixon ML, et al. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. PNAS. 2018;115:E1598–E1607. doi: 10.1073/pnas.1715766115.
    1. Ahrens M-M, Veniero D, Freund IM, Harvey M, Thut G. Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation. Cortex. 2019;117:168–181. doi: 10.1016/j.cortex.2019.02.031.
    1. Liu Y, et al. Deciding where to attend: large-scale network mechanisms underlying attention and intention revealed by graph-theoretic analysis. NeuroImage. 2017;157:45–60. doi: 10.1016/j.neuroimage.2017.05.048.
    1. Fiebelkorn IC, Pinsk MA, Kastner S. A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron. 2018;99:842–853. doi: 10.1016/j.neuron.2018.07.038.
    1. Michalka SW, Kong L, Rosen ML, Shinn-Cunningham BG, Somers DC. Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks. Neuron. 2015;87:882–892. doi: 10.1016/j.neuron.2015.07.028.
    1. Noyce AL, Cestero N, Michalka SW, Shinn-Cunningham BG, Somers DC. Sensory-biased and multiple-demand processing in human lateral frontal cortex. J. Neurosci. 2017;37:8755–8766. doi: 10.1523/JNEUROSCI.0660-17.2017.
    1. Pfurtscheller G, Stancák A, Jr, Neuper C. Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review. Int J. Psychophysiol. 1996;24:39–46. doi: 10.1016/S0167-8760(96)00066-9.
    1. Payne L, Sekuler R. On the importance of ignoring: alpha oscillations protect selective processing. Curr. Directions Psychological Sci. 2014;23:171–177. doi: 10.1177/0963721414529145.
    1. Mazaheri A, et al. Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. Neuroimage. 2014;87:356–362. doi: 10.1016/j.neuroimage.2013.10.052.
    1. Kelly SP, Lalor EC, Reilly RB, Foxe JJ. Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J. Neurophysiol. 2006;95:3844–3851. doi: 10.1152/jn.01234.2005.
    1. Romei V, Rihs T, Brodbeck V, Thut G. Resting electroencephalogram alpha- power over posterior sites indexes baseline visual cortex excitability. NeuroReport. 2008;19:203–208. doi: 10.1097/WNR.0b013e3282f454c4.
    1. Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014;18:414–421. doi: 10.1016/j.tics.2014.04.012.
    1. Cavanagh JF, Zambrano-Vazquez L, Allen JJB. Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiology. 2011;49:220–238. doi: 10.1111/j.1469-8986.2011.01293.x.
    1. Keller AS, Payne L, Sekuler R. Characterizing the roles of alpha and theta oscillations in multisensory attention. Neuropsychologia. 2017;99:48–63. doi: 10.1016/j.neuropsychologia.2017.02.021.
    1. Fellrath J, Mottaz A, Schnider A, Guggisberg AG, Ptak R. Theta-band functional connectivity in the dorsal fronto-parietal network predicts goal-directed attention. Neuropsychologia. 2016;92:20–30. doi: 10.1016/j.neuropsychologia.2016.07.012.
    1. Shilyansky C, et al. Effect of antidepressant treatment on cognitive impairments associated with depression: a randomised longitudinal study. Lancet Psychiatry. 2016;3:425–435. doi: 10.1016/S2215-0366(16)00012-2.
    1. Luo LL, et al. A distinct pattern of memory and attention deficiency in patients with depression. Chin. Med. J. 2013;126:1144–1149.
    1. Reppermund S, et al. Persistent cognitive impairment in depression: the role of psychopathology and altered hypothalamic-pituitary-adrenocortical (HPA) system regulation. Biol. Psychiatry. 2007;62:400–406. doi: 10.1016/j.biopsych.2006.09.027.
    1. Knorr U, Madsen JM, Kessing LV. The effect of selective serotonin reuptake inhibitors in healthy subjects revisited: a systematic review of the literature. Exp. Clin. Psychopharmacol. 2019;27:413–432. doi: 10.1037/pha0000264.
    1. Mahableshwarkar AR, Zajecka J, Jacobson W, Chen Y, Keefe RS. A randomized, placebo-controlled, active-reference, double-blind, flexible-dose study of the efficacy of vortioxetine on cognitive function in major depressive disorder. Neuropsychopharmacology. 2015;40:2025–2037. doi: 10.1038/npp.2015.52.
    1. McIntyre RS, et al. Efficacy of vortioxetine on cognitive functioning in working patients with major depressive disorder. J. Clin. psychiatry. 2017;78:115–121. doi: 10.4088/JCP.16m10744.
    1. Arnsten AF. Catecholamine influences on dorsolateral prefrontal cortical networks. Biol. Psychiatry. 2011;69:e89–e99. doi: 10.1016/j.biopsych.2011.01.027.
    1. Corp SA, Gitlin MJ, Altshuler LL. A review of the use of stimulants and stimulant alternatives in treating bipolar depression and major depressive disorder. J. Clin. Psychiatry. 2014;75:1010–1018. doi: 10.4088/JCP.13r08851.
    1. Tamminga HG, Reneman L, Huizenga HM, Geurts HM. Effects of methylphenidate on executive functioning in attention-deficit/hyperactivity disorder across the lifespan: a meta-regression analysis. Psychol. Med. 2016;46:1791–1807. doi: 10.1017/S0033291716000350.
    1. Linssen AM, Sambeth A, Vuurman EF, Riedel WJ. Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies. Int J. Neuropsychopharmacol. 2014;17:961–977. doi: 10.1017/S1461145713001594.
    1. Rapoport JL, et al. Dextroamphetamine. Its cognitive and behavioral effects in normal and hyperactive boys and normal men. Arch. Gen. Psychiatry. 1980;37:933–943. doi: 10.1001/archpsyc.1980.01780210091010.
    1. MacQueen DA. Amphetamine improves mouse and human attention in the 5-choice continuous performance test. Neuropharmacology. 2018;138:87–96. doi: 10.1016/j.neuropharm.2018.05.034.
    1. Paton K, et al. Methylphenidate improves some but not all measures of attention, as measured by the TEA-Ch in medication-naive children with ADHD. Child Neuropsychol. 2014;20:303–318. doi: 10.1080/09297049.2013.790358.
    1. ter Huurne N. Methylphenidate alters selective attention by amplifying salience. Psychopharmacol. (Berl.) 2015;232:4317–4323. doi: 10.1007/s00213-015-4059-y.
    1. Servan-Schreiber D, Carter CS, Bruno RM, Cohen JD. Dopamine and the mechanisms of cognition: Part II. D-amphetamine effects in human subjects performing a selective attention task. Biol. Psychiatry. 1998;43:723–729. doi: 10.1016/S0006-3223(97)00449-6.
    1. Conners CK, et al. Bupropion hydrochloride in attention deficit disorder with hyperactivity. J. Am. Acad. Child Adolesc. Psychiatry. 1996;35:1314–1321. doi: 10.1097/00004583-199610000-00018.
    1. Acheson A, de Wit H. Bupropion improves attention but does not affect impulsive behavior in healthy young adults. Exp. Clin. Psychopharmacol. 2008;16:113–123. doi: 10.1037/1064-1297.16.2.113.
    1. Cope ZA, et al. Modafinil improves attentional performance in healthy, non-sleep deprived humans at doses not inducing hyperarousal across species. Neuropharmacology. 2017;125:254–262. doi: 10.1016/j.neuropharm.2017.07.031.
    1. Ikeda Y, et al. Modafinil enhances alerting-related brain activity in attention networks. Psychopharmacol. (Berl.) 2017;234:2077–2089. doi: 10.1007/s00213-017-4614-9.
    1. Turner DC, Clark L, Dowson J, Robbins TW, Sahakian BJ. Modafinil improves cognition and response inhibition in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2004;55:1031–1040. doi: 10.1016/j.biopsych.2004.02.008.
    1. DeBattista C, Lembke A, Solvason HB, Ghebremichael R, Poirier J. A prospective trial of modafinil as an adjunctive treatment of major depression. J. Clin. Psychopharmacol. 2004;24:87–90. doi: 10.1097/01.jcp.0000104910.75206.b9.
    1. Jung KY, et al. Sternberg working memory performance following treatment with pramipexole in patients with moderate-to-severe restless legs syndrome. Sleep. Med. 2015;16:703–708. doi: 10.1016/j.sleep.2014.10.025.
    1. Faraone SV, et al. Atomoxetine and stroop task performance in adult attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 2005;15:664–670. doi: 10.1089/cap.2005.15.664.
    1. Tian Y, et al. Venlafaxine treatment reduces the deficit of executive control of attention in patients with major depressive disorder. Sci. Rep. 2016;6:28028. doi: 10.1038/srep28028.
    1. Gualtieri CT, Johnson LG. Bupropion normalizes cognitive performance in patients with depression. MedGenMed. 2007;9:22.
    1. Siepmann T, et al. The effects of venlafaxine on cognitive functions and quantitative EEG in healthy volunteers. Pharmacopsychiatry. 2008;41:146–150. doi: 10.1055/s-2008-1076724.
    1. Greer TL, Dunderajan P, Grannemann BD, Kurian BT, Trivedi MH. Does duloxetine improve cognitive function independently of its antidepressant effect in patients with major depressive disorder and subjective reports of cognitive dysfunction? Depress Res. Treat. 2014;2014:1–13. doi: 10.1155/2014/627863.
    1. Taylor FB, Russo J. Comparing guanfacine and dextroamphetamine for the treatment of adult attention-deficit/hyperactivity disorder. J. Clin. Psychopharmacol. 2001;21:223–228. doi: 10.1097/00004714-200104000-00015.
    1. Arnsten AF. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat. Neurosci. 2015;18:1376–1385. doi: 10.1038/nn.4087.
    1. Berridge CW, Arnsten AF. Psychostimulants and motivated behavior: arousal and cognition. Neurosci. Biobehav Rev. 2013;37(9 Pt A):1976–1984. doi: 10.1016/j.neubiorev.2012.11.005.
    1. van Belkum SM, Bosker FJ, Kortekaas R, Beersma DG, Schoevers RA. Treatment of depression with low-strength transcranial pulsed electromagnetic fields: a mechanistic point of view. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016;71:137–143. doi: 10.1016/j.pnpbp.2016.07.006.
    1. Marek S, Dosenbach NUF. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin. Neurosci. 2018;20:133–140.
    1. Hwang JH, Kim SH, Park CS, Bang SA, Kim SE. Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Res. 2010;1329:152–158. doi: 10.1016/j.brainres.2010.03.013.
    1. Levkovitz Y. Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimul. 2009;2:188–200. doi: 10.1016/j.brs.2009.08.002.
    1. Naim-Feil J, et al. Neuromodulation of attentional control in major depression: a Pilot DeepTMS study. Neural plasticity. 2016;2016:5760141. doi: 10.1155/2016/5760141.
    1. Vanderhasselt MA, De Raedt R, Baeken C, Leyman L, D’haenen H. A single session of rTMS over the left dorsolateral prefrontal cortex influences attentional control in depressed patients. World J. Biol. Psychiatry. 2009;10:34–42. doi: 10.1080/15622970701816514.
    1. Loo CK, et al. Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. Br. J. Psychiatry. 2012;200:52–59. doi: 10.1192/bjp.bp.111.097634.
    1. Iimori T, et al. Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer’s disease: a systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2019;88:31–40. doi: 10.1016/j.pnpbp.2018.06.014.
    1. Martin DM, McClintock SM, Forster J, Loo CK. Does therapeutic repetitive transcranial magnetic stimulation cause cognitive enhancing effects in patients with neuropsychiatric conditions? A systematic review and meta-analysis of randomized controlled trials. Neuropsychol. Rev. 2016;26:295–309. doi: 10.1007/s11065-016-9325-1.
    1. Demirtas-Tatlidede A, Vhabzadeh-Hagh AM, Pascual-Leone A. Can non-invasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology. 2012;64:566–578. doi: 10.1016/j.neuropharm.2012.06.020.
    1. Deslandes AC, et al. Effect of aerobic training on EEG alpha asymmetry and depressive symptoms in the elderly: a 1-year follow-up study. Braz. J. Med. Biol. Res. 2010;43:585–592. doi: 10.1590/S0100-879X2010007500041.
    1. Smith PJ, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom. Med. 2010;72:239–252. doi: 10.1097/PSY.0b013e3181d14633.
    1. Kubesch S, et al. Aerobic endurance exercise improves executive functions in depressed patients. J. Clin. Psychiatry. 2003;64:1005–1012. doi: 10.4088/JCP.v64n0905.
    1. Vasques PE, Moraes H, Silveira H, Deslandes AC, Laks J. Acute exercise improves cognition in the depressed elderly: the effect of dual-tasks. Clinics. 2011;66:1553–1557. doi: 10.1590/S1807-59322011000900008.
    1. Greer TL, Furman JL, Trivedi MH. Evaluation of the benefits of exercise on cognition in major depressive disorder. Gen. Hospital Psychiatry. 2017;49:19–25. doi: 10.1016/j.genhosppsych.2017.06.002.
    1. Brondino N, et al. A systematic review of cognitive effects of exercise in depression. Acta Psychiatr. Scandinavica. 2017;135:285–295. doi: 10.1111/acps.12690.
    1. Baer RA. Mindfulness training as a clinical intervention: a conceptual and empirical review. Clin. Psychol.: Sci. Pract. 2003;10:125–143.
    1. Chiesa A, Calati R, Serretti A. Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clin. Psychol. Rev. 2011;31:449–464. doi: 10.1016/j.cpr.2010.11.003.
    1. Wielgosz J, Goldberg SB, Kral TRA, Dunne JD, Davidson RJ. Mindfulness meditation and psychopathology. Annu Rev. Clin. Psychol. 2019;15:285–316. doi: 10.1146/annurev-clinpsy-021815-093423.
    1. Goldberg SB, et al. Mindfulness-based cognitive therapy for the treatment of current depressive symptoms: a meta-analysis. Cogn. Behav. Ther. 2019;8:1–18.
    1. Kerr CE, et al. Effects of mindfulness meditation training on anticipatory alpha modulation in primary somatosensory cortex. Brain Res. Bull. 2011;85:96–103. doi: 10.1016/j.brainresbull.2011.03.026.
    1. Bhayee S, et al. Attentional and affective consequences of technology supported mindfulness training: a randomised, active control, efficacy trial. BMC Psychol. 2016;4:60. doi: 10.1186/s40359-016-0168-6.
    1. Anguera JA, et al. Video game training enhances cognitive control in older adults. Nature. 2013;501:97–101. doi: 10.1038/nature12486.
    1. Anguera JA, Gunning FM, Areán PA. Improving late life depression and cognitive control through the use of therapeutic video game technology: A proof‐of‐concept randomized trial. Depression Anxiety. 2017;34:508–517. doi: 10.1002/da.22588.
    1. Motter JN, et al. Computerized cognitive training and functional recovery in major depressive disorder: a meta-analysis. J. Affect. Disord. 2016;189:184–191. doi: 10.1016/j.jad.2015.09.022.
    1. Arean PA, et al. The use and effectiveness of mobile apps for depression: results from a fully remote clinical trial. J. Med. Internet Res. 2016;18:e330. doi: 10.2196/jmir.6482.
    1. Iwata M, Ota KT, Duman RS. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain, Behav., Immun. 2013;31:105–114. doi: 10.1016/j.bbi.2012.12.008.
    1. Burke HM, Davis MC, Otte C, Mohr DC. Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology. 2005;30:846–856. doi: 10.1016/j.psyneuen.2005.02.010.
    1. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry. 2000;57:925–935. doi: 10.1001/archpsyc.57.10.925.
    1. Wellman CL. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J. Neurobiol. 2001;49:245–253. doi: 10.1002/neu.1079.
    1. Hyman JM, Zilli EA, Paley AM, Hasselmo ME. Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates. Front. Integr. Neurosci. 2010;4:2.
    1. Yu JY, Frank LM. Hippocampal-cortical interaction in decision making. Neurobiol. Learn. Mem. 2015;117:34–41. doi: 10.1016/j.nlm.2014.02.002.
    1. Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol. Psychiatry. 2019;85:443–453. doi: 10.1016/j.biopsych.2018.09.031.
    1. Vertes RP. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience. 2006;142:1–20. doi: 10.1016/j.neuroscience.2006.06.027.
    1. Giollabhui NM, Olino TM, Nielsen J, Abramson LY, Alloy LB. Is worse attention a risk factor for or a consequence of depression, or are worse attention and depression better accounted for by stress? A prospective test of three hypotheses. Clin. Psychological Sci. 2019;7:93–109. doi: 10.1177/2167702618794920.
    1. Fernandes BS, et al. The new field of ‘precision psychiatry’. BMC Med. 2017;15:80. doi: 10.1186/s12916-017-0849-x.
    1. Williams LM. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry. 2016;3:472–480. doi: 10.1016/S2215-0366(15)00579-9.

Source: PubMed

3
Suscribir