Metabolic Syndrome: Updates on Pathophysiology and Management in 2021

Gracia Fahed, Laurence Aoun, Morgan Bou Zerdan, Sabine Allam, Maroun Bou Zerdan, Youssef Bouferraa, Hazem I Assi, Gracia Fahed, Laurence Aoun, Morgan Bou Zerdan, Sabine Allam, Maroun Bou Zerdan, Youssef Bouferraa, Hazem I Assi

Abstract

Metabolic syndrome (MetS) forms a cluster of metabolic dysregulations including insulin resistance, atherogenic dyslipidemia, central obesity, and hypertension. The pathogenesis of MetS encompasses multiple genetic and acquired entities that fall under the umbrella of insulin resistance and chronic low-grade inflammation. If left untreated, MetS is significantly associated with an increased risk of developing diabetes and cardiovascular diseases (CVDs). Given that CVDs constitute by far the leading cause of morbidity and mortality worldwide, it has become essential to investigate the role played by MetS in this context to reduce the heavy burden of the disease. As such, and while MetS relatively constitutes a novel clinical entity, the extent of research about the disease has been exponentially growing in the past few decades. However, many aspects of this clinical entity are still not completely understood, and many questions remain unanswered to date. In this review, we provide a historical background and highlight the epidemiology of MetS. We also discuss the current and latest knowledge about the histopathology and pathophysiology of the disease. Finally, we summarize the most recent updates about the management and the prevention of this clinical syndrome.

Keywords: insulin resistance; metabolic syndrome; nutraceuticals.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Mechanisms highlighting MetS pathophysiology.
Figure 2
Figure 2
Mechanism of action of butyrate.
Figure 3
Figure 3
The effect of butyrate on adipose tissue, intestinal cells, skeletal muscle, pancreatic islets, hepatocytes, and blood vessels.

References

    1. Reaven G.M. Banting Lecture 1988. Role of insulin resistance in human disease. Nutrition. 1997;13:65. doi: 10.2337/diabetes.37.12.1595.
    1. Cheng T.O. Cardiac syndrome X versus metabolic syndrome X. Int. J. Cardiol. 2006;119:137–138. doi: 10.1016/j.ijcard.2006.06.062.
    1. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727.
    1. Saklayen M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018;20:1–8. doi: 10.1007/s11906-018-0812-z.
    1. Eckel R.H., Alberti K.G., Grundy S.M., Zimmet P.Z. The metabolic syndrome. Lancet. 2010;375:181–183. doi: 10.1016/S0140-6736(09)61794-3.
    1. McCracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018;36:14–20. doi: 10.1016/j.clindermatol.2017.09.004.
    1. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) JAMA. 2001;285:2486–2497. doi: 10.1001/jama.285.19.2486.
    1. Balkau B., Charles M.-A. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR) Diabet. Med. A J. Br. Diabet. Assoc. 1999;16:442–443.
    1. Ross R., Neeland I.J., Yamashita S., Shai I., Seidell J., Magni P., Santos R.D., Arsenault B., Cuevas A., Hu F.B., et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020;16:177–189. doi: 10.1038/s41574-019-0310-7.
    1. Neeland I.J., Poirier P., Després J.-P. Cardiovascular and metabolic heterogeneity of obesity: Clinical challenges and implications for management. Circulation. 2018;137:1391–1406. doi: 10.1161/CIRCULATIONAHA.117.029617.
    1. Neeland I.J., Ross R., Després J.-P., Matsuzawa Y., Yamashita S., Shai I., Seidell J., Magni P., Santos R.D., Arsenault B. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019;7:715–725. doi: 10.1016/S2213-8587(19)30084-1.
    1. Nauli A.M., Matin S. Why do men accumulate abdominal visceral fat? Front. Physiol. 2019;10:1486. doi: 10.3389/fphys.2019.01486.
    1. Liu J., Fox C.S., Hickson D., Bidulescu A., Carr J.J., Taylor H.A. Fatty liver, abdominal visceral fat, and cardiometabolic risk factors: The Jackson Heart Study. Arterioscler. Thromb. Vasc. Biol. 2011;31:2715–2722. doi: 10.1161/ATVBAHA.111.234062.
    1. Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.-C., James W.P.T., Loria C.M., Smith S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120:1640–1645.
    1. Ashwell M., Gunn P., Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012;13:275–286. doi: 10.1111/j.1467-789X.2011.00952.x.
    1. Moore J.X., Chaudhary N., Akinyemiju T. Peer reviewed: Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 2017;14:E24. doi: 10.5888/pcd14.160287.
    1. Swarup S., Goyal A., Grigorova Y., Zeltser R. Metabolic Syndrome. StatPearls; Treasure Island, FL, USA: 2020.
    1. Fathi Dizaji B. The investigations of genetic determinants of the metabolic syndrome. Diabetes Metab. Syndr. 2018;12:783–789. doi: 10.1016/j.dsx.2018.04.009.
    1. Matsuzawa Y., Funahashi T., Nakamura T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 2011;18:629–639. doi: 10.5551/jat.7922.
    1. Pekgor S., Duran C., Berberoglu U., Eryilmaz M.A. The Role of Visceral Adiposity Index Levels in Predicting the Presence of Metabolic Syndrome and Insulin Resistance in Overweight and Obese Patients. Metab. Syndr. Relat. Disord. 2019;17:296–302. doi: 10.1089/met.2019.0005.
    1. Boden G., Shulman G.I. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. Eur. J. Clin. Investig. 2002;32:14–23. doi: 10.1046/j.1365-2362.32.s3.3.x.
    1. Griffin M.E., Marcucci M.J., Cline G.W., Bell K., Barucci N., Lee D., Goodyear L.J., Kraegen E.W., White M.F., Shulman G.I. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999;48:1270–1274. doi: 10.2337/diabetes.48.6.1270.
    1. Unger R.H., Zhou Y.T. Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes. 2001;50((Suppl. 1)):S118–S121. doi: 10.2337/diabetes.50.2007.S118.
    1. Patel P., Abate N. Body fat distribution and insulin resistance. Nutrients. 2013;5:2019–2027. doi: 10.3390/nu5062019.
    1. Murakami T., Michelagnoli S., Longhi R., Gianfranceschi G., Pazzucconi F., Calabresi L., Sirtori C.R., Franceschini G. Triglycerides are major determinants of cholesterol esterification/transfer and HDL remodeling in human plasma. Arter. Thromb. Vasc. Biol. 1995;15:1819–1828. doi: 10.1161/01.ATV.15.11.1819.
    1. Eisenberg S., Gavish D., Oschry Y., Fainaru M., Deckelbaum R.J. Abnormalities in very low, low and high density lipoproteins in hypertriglyceridemia. Reversal toward normal with bezafibrate treatment. J. Clin. Investig. 1984;74:470–482. doi: 10.1172/JCI111444.
    1. Tripathy D., Mohanty P., Dhindsa S., Syed T., Ghanim H., Aljada A., Dandona P. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52:2882–2887. doi: 10.2337/diabetes.52.12.2882.
    1. Esler M., Rumantir M., Wiesner G., Kaye D., Hastings J., Lambert G. Sympathetic nervous system and insulin resistance: From obesity to diabetes. Am. J. Hypertens. 2001;14:304S–309S. doi: 10.1016/S0895-7061(01)02236-1.
    1. Juhan-Vague I., Alessi M.C., Mavri A., Morange P.E. Plasminogen activator inhibitor-1, inflammation, obesity, insulin resistance and vascular risk. J. Thromb. Haemost. 2003;1:1575–1579. doi: 10.1046/j.1538-7836.2003.00279.x.
    1. Duncan M., Singh B., Wise P.H., Carter G., Alaghband-Zadeh J. A simple measure of insulin resistance. Lancet (Lond. Engl.) 1995;346:120–121. doi: 10.1016/S0140-6736(95)92143-5.
    1. Hřebíček J.i., Janout V.r., Malinčíková J., Horáková D., Čízžek L.k. Detection of insulin resistance by simple quantitative insulin sensitivity check index QUICKI for epidemiological assessment and prevention. J. Clin. Endocrinol. Metab. 2002;87:144–147. doi: 10.1210/jc.87.1.144.
    1. Matthews D.R., Hosker J., Rudenski A., Naylor B., Treacher D., Turner R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Mondal N., Singh V., Saxena V. Determining the interaction between groundwater and saline water through groundwater major ions chemistry. J. Hydrol. 2010;388:100–111. doi: 10.1016/j.jhydrol.2010.04.032.
    1. Motamed N., Miresmail S.J.H., Rabiee B., Keyvani H., Farahani B., Maadi M., Zamani F. Optimal cutoff points for HOMA-IR and QUICKI in the diagnosis of metabolic syndrome and non-alcoholic fatty liver disease: A population based study. J. Diabetes Complicat. 2016;30:269–274. doi: 10.1016/j.jdiacomp.2015.11.019.
    1. Mohamed-Ali V., Pinkney J.H., Coppack S.W. Adipose tissue as an endocrine and paracrine organ. Int. J. Obes. Relat. Metab. Disord. 1998;22:1145–1158. doi: 10.1038/sj.ijo.0800770.
    1. Trayhurn P., Wood I.S. Adipokines: Inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 2004;92:347–355. doi: 10.1079/BJN20041213.
    1. Considine R.V., Sinha M.K., Heiman M.L., Kriauciunas A., Stephens T.W., Nyce M.R., Ohannesian J.P., Marco C.C., McKee L.J., Bauer T.L., et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996;334:292–295. doi: 10.1056/NEJM199602013340503.
    1. Berglund E.D., Vianna C.R., Donato J., Jr., Kim M.H., Chuang J.C., Lee C.E., Lauzon D.A., Lin P., Brule L.J., Scott M.M., et al. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J. Clin. Investig. 2012;122:1000–1009. doi: 10.1172/JCI59816.
    1. Obradovic M., Sudar-Milovanovic E., Soskic S., Essack M., Arya S., Stewart A.J., Gojobori T., Isenovic E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. (Lausanne) 2021;12:585887. doi: 10.3389/fendo.2021.585887.
    1. Lord G.M., Matarese G., Howard J.K., Baker R.J., Bloom S.R., Lechler R.I. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394:897–901. doi: 10.1038/29795.
    1. Patel S.B., Reams G.P., Spear R.M., Freeman R.H., Villarreal D. Leptin: Linking obesity, the metabolic syndrome, and cardiovascular disease. Curr. Hypertens. Rep. 2008;10:131–137. doi: 10.1007/s11906-008-0025-y.
    1. Yamauchi T., Kamon J., Waki H., Imai Y., Shimozawa N., Hioki K., Uchida S., Ito Y., Takakuwa K., Matsui J., et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J. Biol. Chem. 2003;278:2461–2468. doi: 10.1074/jbc.M209033200.
    1. Esteve E., Ricart W., Fernandez-Real J.M. Adipocytokines and insulin resistance: The possible role of lipocalin-2, retinol binding protein-4, and adiponectin. Diabetes Care. 2009;32:S362–S367. doi: 10.2337/dc09-S340.
    1. Wulster-Radcliffe M.C., Ajuwon K.M., Wang J., Christian J.A., Spurlock M.E. Adiponectin differentially regulates cytokines in porcine macrophages. BioChem Biophys. Res. Commun. 2004;316:924–929. doi: 10.1016/j.bbrc.2004.02.130.
    1. Yamauchi T., Kamon J., Waki H., Terauchi Y., Kubota N., Hara K., Mori Y., Ide T., Murakami K., Tsuboyama-Kasaoka N., et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001;7:941–946. doi: 10.1038/90984.
    1. Ouchi N., Kihara S., Arita Y., Nishida M., Matsuyama A., Okamoto Y., Ishigami M., Kuriyama H., Kishida K., Nishizawa H., et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001;103:1057–1063. doi: 10.1161/01.CIR.103.8.1057.
    1. Ouchi N., Kihara S., Arita Y., Maeda K., Kuriyama H., Okamoto Y., Hotta K., Nishida M., Takahashi M., Nakamura T., et al. Novel modulator for endothelial adhesion molecules: Adipocyte-derived plasma protein adiponectin. Circulation. 1999;100:2473–2476. doi: 10.1161/01.CIR.100.25.2473.
    1. Pischon T., Girman C.J., Hotamisligil G.S., Rifai N., Hu F.B., Rimm E.B. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004;291:1730–1737. doi: 10.1001/jama.291.14.1730.
    1. Hotta K., Funahashi T., Arita Y., Takahashi M., Matsuda M., Okamoto Y., Iwahashi H., Kuriyama H., Ouchi N., Maeda K., et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arter. Thromb. Vasc. Biol. 2000;20:1595–1599. doi: 10.1161/01.ATV.20.6.1595.
    1. Chow W.S., Cheung B.M., Tso A.W., Xu A., Wat N.M., Fong C.H., Ong L.H., Tam S., Tan K.C., Janus E.D., et al. Hypoadiponectinemia as a predictor for the development of hypertension: A 5-year prospective study. Hypertension. 2007;49:1455–1461. doi: 10.1161/HYPERTENSIONAHA.107.086835.
    1. Kondo H., Shimomura I., Matsukawa Y., Kumada M., Takahashi M., Matsuda M., Ouchi N., Kihara S., Kawamoto T., Sumitsuji S., et al. Association of adiponectin mutation with type 2 diabetes: A candidate gene for the insulin resistance syndrome. Diabetes. 2002;51:2325–2328. doi: 10.2337/diabetes.51.7.2325.
    1. Buechler C., Feder S., Haberl E.M., Aslanidis C. Chemerin Isoforms and Activity in Obesity. Int. J. Mol. Sci. 2019;20:1128. doi: 10.3390/ijms20051128.
    1. Helfer G., Wu Q.F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018;238:R79–R94. doi: 10.1530/JOE-18-0174.
    1. Jialal I., Devaraj S., Kaur H., Adams-Huet B., Bremer A.A. Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome. J. Clin. Endocrinol. Metab. 2013;98:E514–E517. doi: 10.1210/jc.2012-3673.
    1. Wang D., Yuan G.Y., Wang X.Z., Jia J., Di L.L., Yang L., Chen X., Qian F.F., Chen J.J. Plasma chemerin level in metabolic syndrome. Genet. Mol. Res. 2013;12:5986–5991. doi: 10.4238/2013.November.26.8.
    1. Dong B., Ji W., Zhang Y. Elevated serum chemerin levels are associated with the presence of coronary artery disease in patients with metabolic syndrome. Intern. Med. 2011;50:1093–1097. doi: 10.2169/internalmedicine.50.5025.
    1. Bozaoglu K., Bolton K., McMillan J., Zimmet P., Jowett J., Collier G., Walder K., Segal D. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148:4687–4694. doi: 10.1210/en.2007-0175.
    1. Chu S.H., Lee M.K., Ahn K.Y., Im J.A., Park M.S., Lee D.C., Jeon J.Y., Lee J.W. Chemerin and adiponectin contribute reciprocally to metabolic syndrome. PLoS ONE. 2012;7:e34710. doi: 10.1371/journal.pone.0034710.
    1. Shafer-Eggleton J., Adams-Huet B., Jialal I. Chemerin Ratios to HDL-cholesterol and Adiponectin as Biomarkers of Metabolic Syndrome. Endocr. Res. 2020;45:241–245. doi: 10.1080/07435800.2020.1811724.
    1. Saiki A., Ohira M., Endo K., Koide N., Oyama T., Murano T., Watanabe H., Miyashita Y., Shirai K. Circulating angiotensin II is associated with body fat accumulation and insulin resistance in obese subjects with type 2 diabetes mellitus. Metabolism. 2009;58:708–713. doi: 10.1016/j.metabol.2009.01.013.
    1. Rajagopalan S., Kurz S., Munzel T., Tarpey M., Freeman B.A., Griendling K.K., Harrison D.G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Investig. 1996;97:1916–1923. doi: 10.1172/JCI118623.
    1. Lassegue B., Sorescu D., Szocs K., Yin Q., Akers M., Zhang Y., Grant S.L., Lambeth J.D., Griendling K.K. Novel gp91(phox) homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 2001;88:888–894. doi: 10.1161/hh0901.090299.
    1. Li D.Y., Zhang Y.C., Philips M.I., Sawamura T., Mehta J.L. Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ. Res. 1999;84:1043–1049. doi: 10.1161/01.RES.84.9.1043.
    1. Zafari A.M., Ushio-Fukai M., Akers M., Yin Q., Shah A., Harrison D.G., Taylor W.R., Griendling K.K. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension. 1998;32:488–495. doi: 10.1161/01.HYP.32.3.488.
    1. Mehta P.K., Griendling K.K. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 2007;292:C82–C97. doi: 10.1152/ajpcell.00287.2006.
    1. Kopp H.P., Kopp C.W., Festa A., Krzyzanowska K., Kriwanek S., Minar E., Roka R., Schernthaner G. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arter. Thromb. Vasc. Biol. 2003;23:1042–1047. doi: 10.1161/01.ATV.0000073313.16135.21.
    1. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485.
    1. Weisberg S.P., McCann D., Desai M., Rosenbaum M., Leibel R.L., Ferrante A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003;112:1796–1808. doi: 10.1172/JCI200319246.
    1. Kanemaki T., Kitade H., Kaibori M., Sakitani K., Hiramatsu Y., Kamiyama Y., Ito S., Okumura T. Interleukin 1beta and interleukin 6, but not tumor necrosis factor alpha, inhibit insulin-stimulated glycogen synthesis in rat hepatocytes. Hepatology. 1998;27:1296–1303. doi: 10.1002/hep.510270515.
    1. Ridker P.M., Hennekens C.H., Buring J.E., Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 2000;342:836–843. doi: 10.1056/NEJM200003233421202.
    1. Burstein S.A., Peng J., Friese P., Wolf R.F., Harrison P., Downs T., Hamilton K., Comp P., Dale G.L. Cytokine-induced alteration of platelet and hemostatic function. Stem Cells. 1996;14:154–162. doi: 10.1002/stem.5530140720.
    1. Wassmann S., Stumpf M., Strehlow K., Schmid A., Schieffer B., Bohm M., Nickenig G. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ. Res. 2004;94:534–541. doi: 10.1161/01.RES.0000115557.25127.8D.
    1. Hotamisligil G.S., Arner P., Caro J.F., Atkinson R.L., Spiegelman B.M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Investig. 1995;95:2409–2415. doi: 10.1172/JCI117936.
    1. Hotamisligil G.S., Murray D.L., Choy L.N., Spiegelman B.M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc. Natl. Acad. Sci. USA. 1994;91:4854–4858. doi: 10.1073/pnas.91.11.4854.
    1. Zhang H.H., Halbleib M., Ahmad F., Manganiello V.C., Greenberg A.S. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes. 2002;51:2929–2935. doi: 10.2337/diabetes.51.10.2929.
    1. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010;11:373–384. doi: 10.1038/ni.1863.
    1. Akira S., Takeda K., Kaisho T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat. Immunol. 2001;2:675–680. doi: 10.1038/90609.
    1. Shi H., Kokoeva M.V., Inouye K., Tzameli I., Yin H., Flier J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Investig. 2006;116:3015–3025. doi: 10.1172/JCI28898.
    1. Himes R.W., Smith C.W. Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J. 2010;24:731–739. doi: 10.1096/fj.09-141929.
    1. Jialal I., Huet B.A., Kaur H., Chien A., Devaraj S. Increased toll-like receptor activity in patients with metabolic syndrome. Diabetes Care. 2012;35:900–904. doi: 10.2337/dc11-2375.
    1. Hardy O.T., Kim A., Ciccarelli C., Hayman L.L., Wiecha J. Increased Toll-like receptor (TLR) mRNA expression in monocytes is a feature of metabolic syndrome in adolescents. Pediatr. Obes. 2013;8:e19–e23. doi: 10.1111/j.2047-6310.2012.00098.x.
    1. Lim P.S., Chang Y.K., Wu T.K. Serum Lipopolysaccharide-Binding Protein is Associated with Chronic Inflammation and Metabolic Syndrome in Hemodialysis Patients. Blood Purif. 2019;47:28–36. doi: 10.1159/000492778.
    1. Leber B., Tripolt N.J., Blattl D., Eder M., Wascher T.C., Pieber T.R., Stauber R., Sourij H., Oettl K., Stadlbauer V. The influence of probiotic supplementation on gut permeability in patients with metabolic syndrome: An open label, randomized pilot study. Eur. J. Clin. Nutr. 2012;66:1110–1115. doi: 10.1038/ejcn.2012.103.
    1. Perez-Sotelo D., Roca-Rivada A., Larrosa-Garcia M., Castelao C., Baamonde I., Baltar J., Crujeiras A.B., Seoane L.M., Casanueva F.F., Pardo M. Visceral and subcutaneous adipose tissue express and secrete functional alpha2hsglycoprotein (fetuin a) especially in obesity. Endocrine. 2017;55:435–446. doi: 10.1007/s12020-016-1132-1.
    1. Jialal I., Devaraj S., Bettaieb A., Haj F., Adams-Huet B. Increased adipose tissue secretion of Fetuin-A, lipopolysaccharide-binding protein and high-mobility group box protein 1 in metabolic syndrome. Atherosclerosis. 2015;241:130–137. doi: 10.1016/j.atherosclerosis.2015.04.814.
    1. Ix J.H., Shlipak M.G., Brandenburg V.M., Ali S., Ketteler M., Whooley M.A. Association between human fetuin-A and the metabolic syndrome: Data from the Heart and Soul Study. Circulation. 2006;113:1760–1767. doi: 10.1161/CIRCULATIONAHA.105.588723.
    1. Pan X., Wen S.W., Bestman P.L., Kaminga A.C., Acheampong K., Liu A. Fetuin-A in Metabolic syndrome: A systematic review and meta-analysis. PLoS ONE. 2020;15:e0229776. doi: 10.1371/journal.pone.0229776.
    1. Kalabay L., Chavin K., Lebreton J.P., Robinson K.A., Buse M.G., Arnaud P. Human recombinant alpha 2-HS glycoprotein is produced in insect cells as a full length inhibitor of the insulin receptor tyrosine kinase. Horm. Metab. Res. 1998;30:1–6. doi: 10.1055/s-2007-978822.
    1. Auberger P., Falquerho L., Contreres J.O., Pages G., Le Cam G., Rossi B., Le Cam A. Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell. 1989;58:631–640. doi: 10.1016/0092-8674(89)90098-6.
    1. Srinivas P.R., Wagner A.S., Reddy L.V., Deutsch D.D., Leon M.A., Goustin A.S., Grunberger G. Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Mol. Endocrinol. 1993;7:1445–1455. doi: 10.1210/mend.7.11.7906861.
    1. Mathews S.T., Singh G.P., Ranalletta M., Cintron V.J., Qiang X., Goustin A.S., Jen K.L., Charron M.J., Jahnen-Dechent W., Grunberger G. Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes. 2002;51:2450–2458. doi: 10.2337/diabetes.51.8.2450.
    1. Siegel-Axel D.I., Ullrich S., Stefan N., Rittig K., Gerst F., Klingler C., Schmidt U., Schreiner B., Randrianarisoa E., Schaller H.E., et al. Fetuin-A influences vascular cell growth and production of proinflammatory and angiogenic proteins by human perivascular fat cells. Diabetologia. 2014;57:1057–1066. doi: 10.1007/s00125-014-3177-0.
    1. Dasgupta S., Bhattacharya S., Biswas A., Majumdar S.S., Mukhopadhyay S., Ray S., Bhattacharya S. NF-kappaB mediates lipid-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. BioChem. J. 2010;429:451–462. doi: 10.1042/BJ20100330.
    1. Stefan N., Sun Q., Fritsche A., Machann J., Schick F., Gerst F., Jeppesen C., Joost H.G., Hu F.B., Boeing H., et al. Impact of the adipokine adiponectin and the hepatokine fetuin-A on the development of type 2 diabetes: Prospective cohort- and cross-sectional phenotyping studies. PLoS ONE. 2014;9:e92238. doi: 10.1371/journal.pone.0092238.
    1. Vionnet N., Hani E.H., Dupont S., Gallina S., Francke S., Dotte S., De Matos F., Durand E., Lepretre F., Lecoeur C., et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: Evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am. J. Hum. Genet. 2000;67:1470–1480. doi: 10.1086/316887.
    1. Kissebah A.H., Sonnenberg G.E., Myklebust J., Goldstein M., Broman K., James R.G., Marks J.A., Krakower G.R., Jacob H.J., Weber J., et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc. Natl. Acad. Sci. USA. 2000;97:14478–14483. doi: 10.1073/pnas.97.26.14478.
    1. Thakkinstian A., Chailurkit L., Warodomwichit D., Ratanachaiwong W., Yamwong S., Chanprasertyothin S., Attia J., Sritara P., Ongphiphadhanakul B. Causal relationship between body mass index and fetuin-A level in the asian population: A bidirectional Mendelian randomization study. Clin. Endocrinol. (Oxf) 2014;81:197–203. doi: 10.1111/cen.12303.
    1. Brookes P.S. Mitochondrial H(+) leak and ROS generation: An odd couple. Free Radic. Biol. Med. 2005;38:12–23. doi: 10.1016/j.freeradbiomed.2004.10.016.
    1. Wang B., Van Veldhoven P.P., Brees C., Rubio N., Nordgren M., Apanasets O., Kunze M., Baes M., Agostinis P., Fransen M. Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic. Biol. Med. 2013;65:882–894. doi: 10.1016/j.freeradbiomed.2013.08.173.
    1. Andreyev A.Y., Kushnareva Y.E., Starkov A.A. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Moscow) 2005;70:200–214. doi: 10.1007/s10541-005-0102-7.
    1. Bhatti J.S., Bhatti G.K., Reddy P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863:1066–1077. doi: 10.1016/j.bbadis.2016.11.010.
    1. Masschelin P.M., Cox A.R., Chernis N., Hartig S.M. The Impact of Oxidative Stress on Adipose Tissue Energy Balance. Front. Physiol. 2019;10:1638. doi: 10.3389/fphys.2019.01638.
    1. Kowaltowski A.J., Vercesi A.E. Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 1999;26:463–471. doi: 10.1016/S0891-5849(98)00216-0.
    1. Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., Nakayama O., Makishima M., Matsuda M., Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004;114:1752–1761. doi: 10.1172/JCI21625.
    1. Burkart A.M., Tan K., Warren L., Iovino S., Hughes K.J., Kahn C.R., Patti M.E. Insulin Resistance in Human iPS Cells Reduces Mitochondrial Size and Function. Sci. Rep. 2016;6:22788. doi: 10.1038/srep22788.
    1. Handschin C., Spiegelman B.M. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 2006;27:728–735. doi: 10.1210/er.2006-0037.
    1. Canto C., Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 2009;20:98–105. doi: 10.1097/MOL.0b013e328328d0a4.
    1. Scarpulla R.C., Vega R.B., Kelly D.P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 2012;23:459–466. doi: 10.1016/j.tem.2012.06.006.
    1. Barshad G., Marom S., Cohen T., Mishmar D. Mitochondrial DNA Transcription and Its Regulation: An Evolutionary Perspective. Trends Genet. 2018;34:682–692. doi: 10.1016/j.tig.2018.05.009.
    1. Vega R.B., Huss J.M., Kelly D.P. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell Biol. 2000;20:1868–1876. doi: 10.1128/MCB.20.5.1868-1876.2000.
    1. Olmos Y., Valle I., Borniquel S., Tierrez A., Soria E., Lamas S., Monsalve M. Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes. J. Biol. Chem. 2009;284:14476–14484. doi: 10.1074/jbc.M807397200.
    1. Valle I., Alvarez-Barrientos A., Arza E., Lamas S., Monsalve M. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 2005;66:562–573. doi: 10.1016/j.cardiores.2005.01.026.
    1. Vandenbeek R., Khan N.P., Estall J.L. Linking Metabolic Disease With the PGC-1alpha Gly482Ser Polymorphism. Endocrinology. 2018;159:853–865. doi: 10.1210/en.2017-00872.
    1. Komen J.C., Thorburn D.R. Turn up the power—Pharmacological activation of mitochondrial biogenesis in mouse models. Br. J. Pharmacol. 2014;171:1818–1836. doi: 10.1111/bph.12413.
    1. Wu Z., Boss O. Targeting PGC-1 alpha to control energy homeostasis. Expert Opin. Targets. 2007;11:1329–1338. doi: 10.1517/14728222.11.10.1329.
    1. Fortuño A., San José G., Moreno M.U., Beloqui O., Díez J., Zalba G. Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome. Diabetes. 2006;55:209–215. doi: 10.2337/diabetes.55.01.06.db05-0751.
    1. Jialal I., Devaraj S., Adams-Huet B., Chen X., Kaur H. Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome. J. Clin. Endocrinol. Metab. 2012;97:E1844–E1850. doi: 10.1210/jc.2012-2498.
    1. Avogaro A., Pagnin E., Calò L. Monocyte NADPH oxidase subunit p22phox and inducible hemeoxygenase-1 gene expressions are increased in type II diabetic patients: Relationship with oxidative stress. J. Clin. Endocrinol. Metab. 2003;88:1753–1759. doi: 10.1210/jc.2002-021025.
    1. Friedman R.C., Farh K.K., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108.
    1. Selbach M., Schwanhausser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455:58–63. doi: 10.1038/nature07228.
    1. Li M., Zhang J. Circulating MicroRNAs: Potential and Emerging Biomarkers for Diagnosis of Cardiovascular and Cerebrovascular Diseases. BioMed Res. Int. 2015;2015:730535. doi: 10.1155/2015/730535.
    1. Zhao Y., Song Y., Yao L., Song G., Teng C. Circulating microRNAs: Promising Biomarkers Involved in Several Cancers and Other Diseases. DNA Cell Biol. 2017;36:77–94. doi: 10.1089/dna.2016.3426.
    1. Deiuliis J.A. MicroRNAs as regulators of metabolic disease: Pathophysiologic significance and emerging role as biomarkers and therapeutics. Int. J. Obes. 2016;40:88–101. doi: 10.1038/ijo.2015.170.
    1. Calderari S., Diawara M.R., Garaud A., Gauguier D. Biological roles of microRNAs in the control of insulin secretion and action. Physiol. Genom. 2017;49:1–10. doi: 10.1152/physiolgenomics.00079.2016.
    1. Heneghan H.M., Miller N., McAnena O.J., O’Brien T., Kerin M.J. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J. Clin. Endocrinol. Metab. 2011;96:E846–E850. doi: 10.1210/jc.2010-2701.
    1. Martinelli R., Nardelli C., Pilone V., Buonomo T., Liguori R., Castano I., Buono P., Masone S., Persico G., Forestieri P., et al. miR-519d overexpression is associated with human obesity. Obesity (Silver Spring) 2010;18:2170–2176. doi: 10.1038/oby.2009.474.
    1. Poy M.N., Eliasson L., Krutzfeldt J., Kuwajima S., Ma X., Macdonald P.E., Pfeffer S., Tuschl T., Rajewsky N., Rorsman P., et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–230. doi: 10.1038/nature03076.
    1. Frost R.J., Olson E.N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl. Acad. Sci. USA. 2011;108:21075–21080. doi: 10.1073/pnas.1118922109.
    1. Wang Y.T., Tsai P.C., Liao Y.C., Hsu C.Y., Juo S.H. Circulating microRNAs have a sex-specific association with metabolic syndrome. J. BioMed Sci. 2013;20:72. doi: 10.1186/1423-0127-20-72.
    1. Sharma S., Eghbali M. Influence of sex differences on microRNA gene regulation in disease. Biol. Sex Differ. 2014;5:3. doi: 10.1186/2042-6410-5-3.
    1. Ramzan F., D’Souza R.F., Durainayagam B.R., Milan A.M., Markworth J.F., Miranda-Soberanis V., Sequeira I.R., Roy N.C., Poppitt S.D., Mitchell C.J., et al. Circulatory miRNA biomarkers of metabolic syndrome. Acta Diabetol. 2020;57:203–214. doi: 10.1007/s00592-019-01406-6.
    1. Backes C., Kehl T., Stockel D., Fehlmann T., Schneider L., Meese E., Lenhof H.P., Keller A. miRPathDB: A new dictionary on microRNAs and target pathways. Nucleic. Acids Res. 2017;45:D90–D96. doi: 10.1093/nar/gkw926.
    1. Sliwinska A., Kasinska M.A., Drzewoski J. MicroRNAs and metabolic disorders—Where are we heading? Arch. Med. Sci. 2017;13:885–896. doi: 10.5114/aoms.2017.65229.
    1. Chen Y., Tian L., Wan S., Xie Y., Chen X., Ji X., Zhao Q., Wang C., Zhang K., Hock J.M., et al. MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation. Mol. Cell Endocrinol. 2016;437:213–223. doi: 10.1016/j.mce.2016.08.037.
    1. Sun L.L., Jiang B.G., Li W.T., Zou J.J., Shi Y.Q., Liu Z.M. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res. Clin. Pract. 2011;91:94–100. doi: 10.1016/j.diabres.2010.11.006.
    1. Kamalden T.A., Macgregor-Das A.M., Kannan S.M., Dunkerly-Eyring B., Khaliddin N., Xu Z., Fusco A.P., Yazib S.A., Chow R.C., Duh E.J., et al. Exosomal MicroRNA-15a Transfer from the Pancreas Augments Diabetic Complications by Inducing Oxidative Stress. Antioxid. Redox Signal. 2017;27:913–930. doi: 10.1089/ars.2016.6844.
    1. Rawal S., Munasinghe P.E., Nagesh P.T., Lew J.K.S., Jones G.T., Williams M.J.A., Davis P., Bunton D., Galvin I.F., Manning P., et al. Down-regulation of miR-15a/b accelerates fibrotic remodelling in the Type 2 diabetic human and mouse heart. Clin. Sci. (Lond.) 2017;131:847–863. doi: 10.1042/CS20160916.
    1. Banikazemi Z., Haji H.A., Mohammadi M., Taheripak G., Iranifar E., Poursadeghiyan M., Moridikia A., Rashidi B., Taghizadeh M., Mirzaei H. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes. J. Cell BioChem. 2018;119:185–196. doi: 10.1002/jcb.26244.
    1. Marsetti P.S., Milagro F.I., Zulet M.A., Martinez J.A., Lorente-Cebrian S. Changes in miRNA expression with two weight-loss dietary strategies in a population with metabolic syndrome. Nutrition. 2021;83:111085. doi: 10.1016/j.nut.2020.111085.
    1. Hermsdorff H.H., Zulet M.A., Abete I., Martinez J.A. Discriminated benefits of a Mediterranean dietary pattern within a hypocaloric diet program on plasma RBP4 concentrations and other inflammatory markers in obese subjects. Endocrine. 2009;36:445–451. doi: 10.1007/s12020-009-9248-1.
    1. Van Horn L., Carson J.A., Appel L.J., Burke L.E., Economos C., Karmally W., Lancaster K., Lichtenstein A.H., Johnson R.K., Thomas R.J., et al. Recommended Dietary Pattern to Achieve Adherence to the American Heart Association/American College of Cardiology (AHA/ACC) Guidelines: A Scientific Statement From the American Heart Association. Circulation. 2016;134:e505–e529. doi: 10.1161/CIR.0000000000000462.
    1. Rome S. Use of miRNAs in biofluids as biomarkers in dietary and lifestyle intervention studies. Genes Nutr. 2015;10:483. doi: 10.1007/s12263-015-0483-1.
    1. Cook S., Weitzman M., Auinger P., Nguyen M., Dietz W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003;157:821–827. doi: 10.1001/archpedi.157.8.821.
    1. Reinehr T., de Sousa G., Toschke A.M., Andler W. Comparison of metabolic syndrome prevalence using eight different definitions: A critical approach. Arch. Dis. Child. 2007;92:1067–1072. doi: 10.1136/adc.2006.104588.
    1. Nagrani R., Foraita R., Gianfagna F., Iacoviello L., Marild S., Michels N., Molnar D., Moreno L., Russo P., Veidebaum T., et al. Common genetic variation in obesity, lipid transfer genes and risk of Metabolic Syndrome: Results from IDEFICS/I.Family study and meta-analysis. Sci. Rep. 2020;10:7189. doi: 10.1038/s41598-020-64031-2.
    1. Ahrens W., Bammann K., Siani A., Buchecker K., De Henauw S., Iacoviello L., Hebestreit A., Krogh V., Lissner L., Marild S., et al. The IDEFICS cohort: Design, characteristics and participation in the baseline survey. Int. J. Obes. 2011;35:S3–S15. doi: 10.1038/ijo.2011.30.
    1. Ahrens W., Siani A., Adan R., De Henauw S., Eiben G., Gwozdz W., Hebestreit A., Hunsberger M., Kaprio J., Krogh V., et al. Cohort Profile: The transition from childhood to adolescence in European children-how I. Family extends the IDEFICS cohort. Int. J. Epidemiol. 2017;46:1394–1395j. doi: 10.1093/ije/dyw317.
    1. Zhu Y., Zhang D., Zhou D., Li Z., Li Z., Fang L., Yang M., Shan Z., Li H., Chen J., et al. Susceptibility loci for metabolic syndrome and metabolic components identified in Han Chinese: A multi-stage genome-wide association study. J. Cell Mol. Med. 2017;21:1106–1116. doi: 10.1111/jcmm.13042.
    1. Khella M.S., Hamdy N.M., Amin A.I., El-Mesallamy H.O. The (FTO) gene polymorphism is associated with metabolic syndrome risk in Egyptian females: A case- control study. BMC Med. Genet. 2017;18:101. doi: 10.1186/s12881-017-0461-0.
    1. Dina C., Meyre D., Gallina S., Durand E., Korner A., Jacobson P., Carlsson L.M., Kiess W., Vatin V., Lecoeur C., et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 2007;39:724–726. doi: 10.1038/ng2048.
    1. Zeggini E., Weedon M.N., Lindgren C.M., Frayling T.M., Elliott K.S., Lango H., Timpson N.J., Perry J.R., Rayner N.W., Freathy R.M., et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–1341. doi: 10.1126/science.1142364.
    1. Gerken T., Girard C.A., Tung Y.C., Webby C.J., Saudek V., Hewitson K.S., Yeo G.S., McDonough M.A., Cunliffe S., McNeill L.A., et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318:1469–1472. doi: 10.1126/science.1151710.
    1. Mizuno T.M. Fat Mass and Obesity Associated (FTO) Gene and Hepatic Glucose and Lipid Metabolism. Nutrients. 2018;10:1600. doi: 10.3390/nu10111600.
    1. Romero-Nava R., Garcia N., Aguayo-Ceron K.A., Sanchez Munoz F., Huang F., Hong E., Villafana S. Modifications in GPR21 and GPR82 genes expression as a consequence of metabolic syndrome etiology. J. Recept. Signal Transduct. Res. 2021;41:38–44. doi: 10.1080/10799893.2020.1784228.
    1. Ruiz-Hernandez A., Sanchez-Munoz F., Rodriguez J., Calderon-Zamora L., Romero-Nava R., Huang F., Hong E., Villafana S. Expression of orphan receptors GPR22 and GPR162 in streptozotocin-induced diabetic rats. J. Recept. Signal Transduct. Res. 2015;35:46–53. doi: 10.3109/10799893.2014.926926.
    1. Uhlenbrock K., Gassenhuber H., Kostenis E. Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal. 2002;14:941–953. doi: 10.1016/S0898-6568(02)00041-4.
    1. Osborn O., Oh D.Y., McNelis J., Sanchez-Alavez M., Talukdar S., Lu M., Li P., Thiede L., Morinaga H., Kim J.J., et al. G protein-coupled receptor 21 deletion improves insulin sensitivity in diet-induced obese mice. J. Clin. Investig. 2012;122:2444–2453. doi: 10.1172/JCI61953.
    1. Bresnick J.N., Skynner H.A., Chapman K.L., Jack A.D., Zamiara E., Negulescu P., Beaumont K., Patel S., McAllister G. Identification of signal transduction pathways used by orphan g protein-coupled receptors. Assay Drug Dev. Technol. 2003;1:239–249. doi: 10.1089/15406580360545053.
    1. Molkentin J.D., Dorn G.W., 2nd Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 2001;63:391–426. doi: 10.1146/annurev.physiol.63.1.391.
    1. Edwards R.M., Trizna W., Kinter L.B. Renal microvascular effects of vasopressin and vasopressin antagonists. Am. J. Physiol. 1989;256:F274–F278. doi: 10.1152/ajprenal.1989.256.2.F274.
    1. Engel K.M., Schrock K., Teupser D., Holdt L.M., Tonjes A., Kern M., Dietrich K., Kovacs P., Krugel U., Scheidt H.A., et al. Reduced food intake and body weight in mice deficient for the G protein-coupled receptor GPR82. PLoS ONE. 2011;6:e29400. doi: 10.1371/journal.pone.0029400.
    1. Lee J.H., Friso S., Choi S.W. Epigenetic mechanisms underlying the link between non-alcoholic fatty liver diseases and nutrition. Nutrients. 2014;6:3303–3325. doi: 10.3390/nu6083303.
    1. Del Campo J.A., Gallego-Duran R., Gallego P., Grande L. Genetic and Epigenetic Regulation in Nonalcoholic Fatty Liver Disease (NAFLD) Int. J. Mol. Sci. 2018;19:911. doi: 10.3390/ijms19030911.
    1. Michael M.D., Kulkarni R.N., Postic C., Previs S.F., Shulman G.I., Magnuson M.A., Kahn C.R. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell. 2000;6:87–97. doi: 10.1016/S1097-2765(05)00015-8.
    1. Cohen S.E., Kokkotou E., Biddinger S.B., Kondo T., Gebhardt R., Kratzsch J., Mantzoros C.S., Kahn C.R. High circulating leptin receptors with normal leptin sensitivity in liver-specific insulin receptor knock-out (LIRKO) mice. J. Biol. Chem. 2007;282:23672–23678. doi: 10.1074/jbc.M704053200.
    1. De Jesus D.F., Orime K., Kaminska D., Kimura T., Basile G., Wang C.H., Haertle L., Riemens R., Brown N.K., Hu J., et al. Parental metabolic syndrome epigenetically reprograms offspring hepatic lipid metabolism in mice. J. Clin. Investig. 2020;130:2391–2407. doi: 10.1172/JCI127502.
    1. Wang Q., Jiang L., Wang J., Li S., Yu Y., You J., Zeng R., Gao X., Rui L., Li W., et al. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology. 2009;49:1166–1175. doi: 10.1002/hep.22774.
    1. Paliwal S., Shi J., Dhru U., Zhou Y., Schuger L. P311 binds to the latency associated protein and downregulates the expression of TGF-beta1 and TGF-beta2. BioChem Biophys Res. Commun. 2004;315:1104–1109. doi: 10.1016/j.bbrc.2004.01.171.
    1. Lent-Schochet D., McLaughlin M., Ramakrishnan N., Jialal I. Exploratory metabolomics of metabolic syndrome: A status report. World J. Diabetes. 2019;10:23–36. doi: 10.4239/wjd.v10.i1.23.
    1. Yamada J., Tomiyama H., Yambe M., Koji Y., Motobe K., Shiina K., Yamamoto Y., Yamashina A. Elevated serum levels of alanine aminotransferase and gamma glutamyltransferase are markers of inflammation and oxidative stress independent of the metabolic syndrome. Atherosclerosis. 2006;189:198–205. doi: 10.1016/j.atherosclerosis.2005.11.036.
    1. Velasquez M.T., Ramezani A., Manal A., Raj D.S. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins. 2016;8:326. doi: 10.3390/toxins8110326.
    1. Tang W.H., Hazen S.L. Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl. Res. 2017;179:108–115. doi: 10.1016/j.trsl.2016.07.007.
    1. Hart L.M., Vogelzangs N., Mook-Kanamori D.O., Brahimaj A., Nano J., van der Heijden A., Willems van Dijk K., Slieker R.C., Steyerberg E.W., Ikram M.A., et al. Blood Metabolomic Measures Associate With Present and Future Glycemic Control in Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2018;103:4569–4579. doi: 10.1210/jc.2018-01165.
    1. Adams S.H. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv. Nutr. 2011;2:445–456. doi: 10.3945/an.111.000737.
    1. Chen T., Zheng X., Ma X., Bao Y., Ni Y., Hu C., Rajani C., Huang F., Zhao A., Jia W., et al. Tryptophan Predicts the Risk for Future Type 2 Diabetes. PLoS ONE. 2016;11:e0162192. doi: 10.1371/journal.pone.0162192.
    1. Oxenkrug G., van der Hart M., Summergrad P. Elevated anthranilic acid plasma concentrations in type 1 but not type 2 diabetes mellitus. Integr. Mol. Med. 2015;2:365–368. doi: 10.15761/IMM.1000169.
    1. Feng R.N., Niu Y.C., Sun X.W., Li Q., Zhao C., Wang C., Guo F.C., Sun C.H., Li Y. Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: A randomised controlled trial. Diabetologia. 2013;56:985–994. doi: 10.1007/s00125-013-2839-7.
    1. Iida M., Harada S., Kurihara A., Fukai K., Kuwabara K., Sugiyama D., Takeuchi A., Okamura T., Akiyama M., Nishiwaki Y., et al. Profiling of plasma metabolites in postmenopausal women with metabolic syndrome. Menopause. 2016;23:749–758. doi: 10.1097/GME.0000000000000630.
    1. Kennedy A.J., Ellacott K.L., King V.L., Hasty A.H. Mouse models of the metabolic syndrome. Dis. Model. Mech. 2010;3:156–166. doi: 10.1242/dmm.003467.
    1. Ingalls A.M., Dickie M.M., Shell G. Obese, a new mutation in the house mouse. J. Hered. 1950;41:317–318. doi: 10.1093/oxfordjournals.jhered.a106073.
    1. Hummel K.P., Dickie M.M., Coleman D.L. Diabetes, a new mutafton in the mouse. Science. 1966;153:1127–1128. doi: 10.1126/science.153.3740.1127.
    1. Dickie M.M. Mutations at the agouti locus in the mouse. J. Hered. 1969;60:20–25. doi: 10.1093/oxfordjournals.jhered.a107920.
    1. Huszar D., Lynch C.A., Fairchild-Huntress V., Dunmore J.H., Fang Q., Berkemeier L.R., Gu W., Kesterson R.A., Boston B.A., Cone R.D., et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997;88:131–141. doi: 10.1016/S0092-8674(00)81865-6.
    1. Ishibashi S., Brown M.S., Goldstein J.L., Gerard R.D., Hammer R.E., Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Investig. 1993;92:883–893. doi: 10.1172/JCI116663.
    1. Hasty A.H., Shimano H., Osuga J.-I., Namatame I., Takahashi A., Yahagi N., Perrey S., Iizuka Y., Tamura Y., Amemiya-Kudo M., et al. Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. J. Biol. Chem. 2001;276:37402–37408. doi: 10.1074/jbc.M010176200.
    1. Plump A.S., Smith J.D., Hayek T., Aalto-Setälä K., Walsh A., Verstuyft J.G., Rubin E.M., Breslow J.L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71:343–353.
    1. Gruen M.L., Plummer M.R., Zhang W., Posey K.A., Linton M., Fazio S., Hasty A.H. Persistence of high density lipoprotein particles in obese mice lacking apolipoprotein AI. J. Lipid Res. 2005;46:2007–2014. doi: 10.1194/jlr.M500181-JLR200.
    1. Coenen K.R., Hasty A.H. Obesity potentiates development of fatty liver and insulin resistance, but not atherosclerosis, in high-fat diet-fed agouti LDLR-deficient mice. Am. J. Physiol.-Endocrinol. Metab. 2007;293:E492–E499. doi: 10.1152/ajpendo.00171.2007.
    1. Chang G.-R., Chiu Y.-S., Wu Y.-Y., Chen W.-Y., Liao J.-W., Chao T.-H., Mao F.C. Rapamycin protects against high fat diet–induced obesity in C57BL/6J mice. J. Pharmacol. Sci. 2009;109:496–503. doi: 10.1254/jphs.08215FP.
    1. Aizawa-Abe M., Ogawa Y., Masuzaki H., Ebihara K., Satoh N., Iwai H., Matsuoka N., Hayashi T., Hosoda K., Inoue G., et al. Pathophysiological role of leptin in obesity-related hypertension. J. Clin. Investig. 2000;105:1243–1252. doi: 10.1172/JCI8341.
    1. Lloyd D.J., McCormick J., Helmering J., Kim K.W., Wang M., Fordstrom P., Kaufman S.A., Lindberg R.A., Véniant M.M. Generation and characterization of two novel mouse models exhibiting the phenotypes of the metabolic syndrome: Apob48−/− Lepob/ob mice devoid of ApoE or Ldlr. Am. J. Physiol.-Endocrinol. Metab. 2008;294:E496–E505. doi: 10.1152/ajpendo.00509.2007.
    1. King V.L., Hatch N.W., Chan H.W., De Beer M.C., De Beer F.C., Tannock L.R. A murine model of obesity with accelerated atherosclerosis. Obesity. 2010;18:35–41. doi: 10.1038/oby.2009.176.
    1. Ryan M.J., McLemore G.R., Jr., Hendrix S.T. Insulin resistance and obesity in a mouse model of systemic lupus erythematosus. Hypertension. 2006;48:988–993. doi: 10.1161/01.HYP.0000243612.02929.df.
    1. Kastorini C.M., Milionis H.J., Esposito K., Giugliano D., Goudevenos J.A., Panagiotakos D.B. The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011;57:1299–1313. doi: 10.1016/j.jacc.2010.09.073.
    1. Esposito K., Kastorini C.M., Panagiotakos D.B., Giugliano D. Mediterranean diet and metabolic syndrome: An updated systematic review. Rev. Endocr. Metab. Disord. 2013;14:255–263. doi: 10.1007/s11154-013-9253-9.
    1. Esposito K., Ciotola M., Giugliano D. Mediterranean diet and the metabolic syndrome. Mol. Nutr. Food Res. 2007;51:1268–1274. doi: 10.1002/mnfr.200600297.
    1. Dai J., Jones D.P., Goldberg J., Ziegler T.R., Bostick R.M., Wilson P.W., Manatunga A.K., Shallenberger L., Jones L., Vaccarino V. Association between adherence to the Mediterranean diet and oxidative stress. Am. J. Clin. Nutr. 2008;88:1364–1370.
    1. Pitsavos C., Panagiotakos D.B., Tzima N., Chrysohoou C., Economou M., Zampelas A., Stefanadis C. Adherence to the Mediterranean diet is associated with total antioxidant capacity in healthy adults: The ATTICA study. Am. J. Clin. Nutr. 2005;82:694–699. doi: 10.1093/ajcn/82.3.694.
    1. Giugliano D., Esposito K. Mediterranean diet and metabolic diseases. Curr. Opin. Lipidol. 2008;19:63–68. doi: 10.1097/MOL.0b013e3282f2fa4d.
    1. Salas-Salvadó J., Guasch-Ferré M., Lee C.-H., Estruch R., Clish C.B., Ros E. Protective effects of the Mediterranean diet on type 2 diabetes and metabolic syndrome. J. Nutr. 2015;146:920S–927S. doi: 10.3945/jn.115.218487.
    1. Rochlani Y., Pothineni N.V., Kovelamudi S., Mehta J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Adv. Cardiovasc. Dis. 2017;11:215–225. doi: 10.1177/1753944717711379.
    1. Aggarwal B.B. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu. Rev. Nutr. 2010;30:173–199. doi: 10.1146/annurev.nutr.012809.104755.
    1. Xu J., Fu Y., Chen A. Activation of peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;285:G20–G30. doi: 10.1152/ajpgi.00474.2002.
    1. Reinhart K.M., Talati R., White C.M., Coleman C.I. The impact of garlic on lipid parameters: A systematic review and meta-analysis. Nutr. Res. Rev. 2009;22:39–48. doi: 10.1017/S0954422409350003.
    1. Yang J., Yin J., Gao H., Xu L., Wang Y., Xu L., Li M. Berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokines profile in human preadipocytes and metabolic syndrome patients. Evid. Based Complement Altern. Med. 2012;2012:363845. doi: 10.1155/2012/363845.
    1. Pérez-Rubio K.G., González-Ortiz M., Martínez-Abundis E., Robles-Cervantes J.A., Espinel-Bermúdez M.C. Effect of berberine administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab. Syndr. Relat. Disord. 2013;11:366–369. doi: 10.1089/met.2012.0183.
    1. Bhat M., Kothiwale S.K., Tirmale A.R., Bhargava S.Y., Joshi B.N. Antidiabetic Properties of Azardiracta indica and Bougainvillea spectabilis: In Vivo Studies in Murine Diabetes Model. Evid. Based Complement Altern. Med. 2011;2011:561625. doi: 10.1093/ecam/nep033.
    1. Mollace V., Ragusa S., Sacco I., Muscoli C., Sculco F., Visalli V., Palma E., Muscoli S., Mondello L., Dugo P., et al. The protective effect of bergamot oil extract on lecitine-like oxyLDL receptor-1 expression in balloon injury-related neointima formation. J. Cardiovasc. Pharm. 2008;13:120–129. doi: 10.1177/1074248407313821.
    1. Bremer A.A. Resveratrol use in metabolic syndrome. Metab. Syndr. Relat. Disord. 2014;12:493–495. doi: 10.1089/met.2014.1505.
    1. Méndez-del Villar M., González-Ortiz M., Martínez-Abundis E., Pérez-Rubio K.G., Lizárraga-Valdez R. Effect of resveratrol administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab. Syndr. Relat. Disord. 2014;12:497–501. doi: 10.1089/met.2014.0082.
    1. Rivera L., Morón R., Sánchez M., Zarzuelo A., Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring) 2008;16:2081–2087. doi: 10.1038/oby.2008.315.
    1. Gillies P.J., Bhatia S.K., Belcher L.A., Hannon D.B., Thompson J.T., Vanden Heuvel J.P. Regulation of inflammatory and lipid metabolism genes by eicosapentaenoic acid-rich oil. J. Lipid Res. 2012;53:1679–1689. doi: 10.1194/jlr.M022657.
    1. Wu L., Juurlink B.H. The impaired glutathione system and its up-regulation by sulforaphane in vascular smooth muscle cells from spontaneously hypertensive rats. J. Hypertens. 2001;19:1819–1825. doi: 10.1097/00004872-200110000-00016.
    1. Castellino G., Nikolic D., Magán-Fernández A., Malfa G.A., Chianetta R., Patti A.M., Amato A., Montalto G., Toth P.P., Banach M., et al. Altilix® Supplement Containing Chlorogenic Acid and Luteolin Improved Hepatic and Cardiometabolic Parameters in Subjects with Metabolic Syndrome: A 6 Month Randomized, Double-Blind, Placebo-Controlled Study. Nutrients. 2019;11:2580. doi: 10.3390/nu11112580.
    1. Fogacci F., Banach M., Mikhailidis D.P., Bruckert E., Toth P.P., Watts G.F., Reiner Ž., Mancini J., Rizzo M., Mitchenko O., et al. Safety of red yeast rice supplementation: A systematic review and meta-analysis of randomized controlled trials. Pharm. Res. 2019;143:1–16. doi: 10.1016/j.phrs.2019.02.028.
    1. Roy C.C., Kien C.L., Bouthillier L., Levy E. Short-chain fatty acids: Ready for prime time? Nutr. Clin. Pract. 2006;21:351–366. doi: 10.1177/0115426506021004351.
    1. Zhang X., Shen D., Fang Z., Jie Z., Qiu X., Zhang C., Chen Y., Ji L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE. 2013;8:e71108.
    1. Vrieze A., Van Nood E., Holleman F., Salojärvi J., Kootte R.S., Bartelsman J.F., Dallinga–Thie G.M., Ackermans M.T., Serlie M.J., Oozeer R., et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–916.e7. doi: 10.1053/j.gastro.2012.06.031.
    1. Canani R.B., Di Costanzo M., Leone L., Pedata M., Meli R., Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. WJG. 2011;17:1519. doi: 10.3748/wjg.v17.i12.1519.
    1. Gao Q., Zhang L. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis. J. Plant Physiol. 2008;165:138–148. doi: 10.1016/j.jplph.2007.04.002.
    1. Hara T., Kimura I., Inoue D., Ichimura A., Hirasawa A. Free fatty acid receptors and their role in regulation of energy metabolism. Rev. Physiol. Biochem. Pharmacol. 2013;164:77–116.
    1. Gao Z., Yin J., Zhang J., Ward R.E., Martin R.J., Lefevre M., Cefalu W.T., Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58:1509–1517. doi: 10.2337/db08-1637.
    1. Steinert R.E., Feinle-Bisset C., Asarian L., Horowitz M., Beglinger C., Geary N. Ghrelin, CCK, GLP-1, and PYY (3–36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 2017;97:411–463. doi: 10.1152/physrev.00031.2014.
    1. Matheus V., Monteiro L., Oliveira R., Maschio D., Collares-Buzato C. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Exp. Biol. Med. 2017;242:1214–1226. doi: 10.1177/1535370217708188.
    1. Keenan M.J., Zhou J., McCutcheon K.L., Raggio A.M., Bateman H.G., Todd E., Jones C.K., Tulley R.T., Melton S., Martin R.J. Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity. 2006;14:1523–1534. doi: 10.1038/oby.2006.176.
    1. Yan H., Ajuwon K.M. Mechanism of butyrate stimulation of triglyceride storage and adipokine expression during adipogenic differentiation of porcine stromovascular cells. PLoS ONE. 2015;10:e0145940.
    1. Hafidi M.E., Buelna-Chontal M., Sánchez-Muñoz F., Carbó R. Adipogenesis: A necessary but harmful strategy. Int. J. Mol. Sci. 2019;20:3657. doi: 10.3390/ijms20153657.
    1. Marcil V., Delvin E., Garofalo C., Levy E. Butyrate impairs lipid transport by inhibiting microsomal triglyceride transfer protein in Caco-2 cells. J. Nutr. 2003;133:2180–2183. doi: 10.1093/jn/133.7.2180.
    1. Chen Y., Xu C., Huang R., Song J., Li D., Xia M. Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice. J. Nutr. Biochem. 2018;56:175–182. doi: 10.1016/j.jnutbio.2018.02.011.
    1. Khan S., Jena G. Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: A comparative study with metformin. Chem. Biol. Interact. 2016;254:124–134. doi: 10.1016/j.cbi.2016.06.007.
    1. Chriett S., Zerzaihi O., Vidal H., Pirola L. The histone deacetylase inhibitor sodium butyrate improves insulin signalling in palmitate-induced insulin resistance in L6 rat muscle cells through epigenetically-mediated up-regulation of Irs1. Mol. Cell. Endocrinol. 2017;439:224–232. doi: 10.1016/j.mce.2016.09.006.
    1. Khan S., Jena G. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: Study in juvenile diabetic rat. Chem. Biol. Interact. 2014;213:1–12. doi: 10.1016/j.cbi.2014.02.001.
    1. Roshanravan N., Mahdavi R., Alizadeh E., Jafarabadi M.A., Hedayati M., Ghavami A., Alipour S., Alamdari N.M., Barati M., Ostadrahimi A. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: A randomized double-blind, placebo-controlled trial. Horm. Metab. Res. 2017;49:886–891. doi: 10.1055/s-0043-119089.
    1. Cook S., Sellin J. Short chain fatty acids in health and disease. Aliment. Pharmacol. Ther. 1998;12:499–507. doi: 10.1046/j.1365-2036.1998.00337.x.
    1. Rephaeli A., Rabizadeh E., Aviram A., Shaklai M., Ruse M., Nudelman A. Derivatives of butyric acid as potential anti-neoplastic agents. Int. J. Cancer. 1991;49:66–72. doi: 10.1002/ijc.2910490113.
    1. Patnaik A., Rowinsky E.K., Villalona M.A., Hammond L.A., Britten C.D., Siu L.L., Goetz A., Felton S.A., Burton S., Valone F.H., et al. A phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies. Clin. Cancer Res. 2002;8:2142–2148.
    1. Kim S.W., Hooker J.M., Otto N., Win K., Muench L., Shea C., Carter P., King P., Reid A.E., Volkow N.D., et al. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nucl. Med. Biol. 2013;40:912–918. doi: 10.1016/j.nucmedbio.2013.06.007.
    1. Krokowicz L., Stojcev Z., Kaczmarek B.F., Kociemba W., Kaczmarek E., Walkowiak J., Krokowicz P., Drews M., Banasiewicz T. Microencapsulated sodium butyrate administered to patients with diverticulosis decreases incidence of diverticulitis—a prospective randomized study. Int. J. Color. Dis. 2014;29:387–393. doi: 10.1007/s00384-013-1807-5.
    1. Sabatino A.D., Morera R., Ciccocioppo R., Cazzola P., Gotti S., Tinozzi F., Tinozzi S., Corazza G. Oral butyrate for mildly to moderately active Crohn’s disease. Aliment. Pharmacol. Ther. 2005;22:789–794. doi: 10.1111/j.1365-2036.2005.02639.x.
    1. Vernia P., Monteleone G., Grandinetti G., Villotti G., Di Giulio E., Frieri G., Marcheggiano A., Pallone F., Caprilli R., Torsoli A. Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis. Dig. Dis. Sci. 2000;45:976–981. doi: 10.1023/A:1005537411244.
    1. Krokowicz L., Kaczmarek B.F., Krokowicz P., Stojcev Z., Mackiewicz J., Walkowiak J., Drews M., Banasiewicz T. Sodium butyrate and short chain fatty acids in prevention of travellers’ diarrhoea: A randomized prospective study. Travel Med. Infect. Dis. 2014;12:183–188. doi: 10.1016/j.tmaid.2013.08.008.
    1. Bouter K., Bakker G., Levin E., Hartstra A., Kootte R., Udayappan S., Katiraei S., Bahler L., Gilijamse P., Tremaroli V., et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin. Transl. Gastroenterol. 2018;9:e155. doi: 10.1038/s41424-018-0025-4.
    1. Bäckhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., Almeida M., Arumugam M., Batto J.-M., Kennedy S., et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546. doi: 10.1038/nature12506.
    1. Cani P.D., Bibiloni R., Knauf C., Waget A., Neyrinck A.M., Delzenne N.M., Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes. 2008;57:1470–1481. doi: 10.2337/db07-1403.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Barreto F.M., Simão A.N.C., Morimoto H.K., Lozovoy M.A.B., Dichi I., da Silva Miglioranza L.H. Beneficial effects of Lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. Nutrition. 2014;30:939–942. doi: 10.1016/j.nut.2013.12.004.
    1. Stadlbauer V., Leber B., Lemesch S., Trajanoski S., Bashir M., Horvath A., Tawdrous M., Stojakovic T., Fauler G., Fickert P., et al. Lactobacillus casei Shirota supplementation does not restore gut microbiota composition and gut barrier in metabolic syndrome: A randomized pilot study. PLoS ONE. 2015;10:e0141399. doi: 10.1371/journal.pone.0141399.
    1. Tripolt N., Leber B., Blattl D., Eder M., Wonisch W., Scharnagl H., Stojakovic T., Obermayer-Pietsch B., Wascher T., Pieber T. Effect of supplementation with Lactobacillus casei Shirota on insulin sensitivity, β-cell function, and markers of endothelial function and inflammation in subjects with metabolic syndrome—A pilot study. J. Dairy Sci. 2013;96:89–95. doi: 10.3168/jds.2012-5863.
    1. Szulińska M., Łoniewski I., Skrypnik K., Sobieska M., Korybalska K., Suliburska J., Bogdański P. Multispecies probiotic supplementation favorably affects vascular function and reduces arterial stiffness in obese postmenopausal women—A 12-week placebo-controlled and randomized clinical study. Nutrients. 2018;10:1672. doi: 10.3390/nu10111672.
    1. Tenorio-Jiménez C., Martínez-Ramírez M.J., Gil Á. and Gómez-Llorente, C. Effects of Probiotics on Metabolic Syndrome: A Systematic Review of Randomized Clinical Trials. Nutrients. 2020;12:124. doi: 10.3390/nu12010124.
    1. Wallace C.J., Milev R.V. The efficacy, safety, and tolerability of probiotics on depression: Clinical results from an open-label pilot study. Front. Psychiatry. 2021;12:132. doi: 10.3389/fpsyt.2021.618279.
    1. Szulińska M., Łoniewski I., Van Hemert S., Sobieska M., Bogdański P. Dose-dependent effects of multispecies probiotic supplementation on the lipopolysaccharide (LPS) level and cardiometabolic profile in obese postmenopausal women: A 12-week randomized clinical trial. Nutrients. 2018;10:773. doi: 10.3390/nu10060773.
    1. Sahhaf Ebrahimi F., Homayouni Rad A., Mosen M., Abbasalizadeh F., Tabrizi A., Khalili L. Effect of L. acidophilus and B. lactis on blood glucose in women with gestational diabetes mellitus: A randomized placebo-controlled trial. Diabetol. Metab. Syndr. 2019;11:75–77. doi: 10.1186/s13098-019-0471-5.
    1. Tenorio-Jimenez C., Martinez-Ramirez M.J., Del Castillo-Codes I., Arraiza-Irigoyen C., Tercero-Lozano M., Camacho J., Chueca N., Garcia F., Olza J., Plaza-Diaz J., et al. Lactobacillus reuteri V3401 Reduces Inflammatory Biomarkers and Modifies the Gastrointestinal Microbiome in Adults with Metabolic Syndrome: The PROSIR Study. Nutrients. 2019;11:1761. doi: 10.3390/nu11081761.
    1. Clifton P. Metabolic syndrome—role of dietary fat type and quantity. Nutrients. 2019;11:1438. doi: 10.3390/nu11071438.
    1. Kang Y.J., Hwang K.M., Cheon S.Y., Lee H.J., Yoon H.S. Associations of obesity and dyslipidemia with intake of sodium, fat, and sugar among Koreans: A qualitative systematic review. Clin. Nutr. Res. 2016;5:290–304. doi: 10.7762/cnr.2016.5.4.290.
    1. Hoyas I., Leon-Sanz M. Nutritional challenges in metabolic syndrome. J. Clin. Med. 2019;8:1301. doi: 10.3390/jcm8091301.
    1. Sacks F.M., Lichtenstein A.H., Wu J.H., Appel L.J., Creager M.A., Kris-Etherton P.M., Miller M., Rimm E.B., Rudel L.L., Robinson J.G., et al. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation. 2017;136:e1–e23. doi: 10.1161/CIR.0000000000000510.
    1. Unger A.L., Torres-Gonzalez M., Kraft J. Dairy fat consumption and the risk of metabolic syndrome: An examination of the saturated fatty acids in dairy. Nutrients. 2019;11:2200. doi: 10.3390/nu11092200.
    1. Babu A.S., Veluswamy S.K., Arena R., Guazzi M., Lavie C.J. Virgin coconut oil and its potential cardioprotective effects. Postgrad. Med. 2014;126:76–83. doi: 10.3810/pgm.2014.11.2835.
    1. Boateng L., Ansong R., Owusu W., Steiner-Asiedu M. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Med. J. 2016;50:189–196. doi: 10.4314/gmj.v50i3.11.
    1. Eyres L., Eyres M.F., Chisholm A., Brown R.C. Coconut oil consumption and cardiovascular risk factors in humans. Nutr. Rev. 2016;74:267–280. doi: 10.1093/nutrit/nuw002.
    1. Sibal L., Agarwal S., Home P., Boger R. The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr. Cardiol. Rev. 2010;6:82–90. doi: 10.2174/157340310791162659.
    1. Palomo I., Contreras A., Alarcón L.M., Leiva E., Guzmán L., Mujica V., Icaza G., Díaz N., González D.R., Moore-Carrasco R. Elevated concentration of asymmetric dimethylarginine (ADMA) in individuals with metabolic syndrome. Nitric. Oxide. 2011;24:224–228. doi: 10.1016/j.niox.2011.03.002.
    1. Engeli S., Tsikas D., Lehmann A., Böhnke J., Haas V., Strauß A., Janke J., Gorzelniak K., Luft F., Jordan J. Influence of dietary fat ingestion on asymmetrical dimethylarginine in lean and obese human subjects. Nutr. Metab. Cardiovasc. Dis. 2012;22:720–726. doi: 10.1016/j.numecd.2011.01.002.
    1. Nikooei P., Hosseinzadeh-Attar M.J., Asghari S., Norouzy A., Yaseri M., Vasheghani-Farahani A. Effects of virgin coconut oil consumption on metabolic syndrome components and asymmetric dimethylarginine: A randomized controlled clinical trial. Nutr. Metab. Cardiovasc. Dis. 2021;31:939–949. doi: 10.1016/j.numecd.2020.11.020.
    1. Chattopadhyay I., Biswas K., Bandyopadhyay U., Banerjee R.K. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci. 2004:44–53.
    1. Hasanzadeh S., Read M.I., Bland A.R., Majeed M., Jamialahmadi T., Sahebkar A. Curcumin: An inflammasome silencer. Pharmacol. Res. 2020;159:104921. doi: 10.1016/j.phrs.2020.104921.
    1. Alidadi M., Sahebkar A., Eslami S., Vakilian F., Jarahi L., Alinezhad-Namaghi M., Arabi S.M., Vakili S., Tohidinezhad F., Nikooiyan Y., et al. The Effect of Curcumin Supplementation on Pulse Wave Velocity in Patients with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Adv. Exp. Med. Biol. 2021;1308:1–11. doi: 10.1007/978-3-030-64872-5_1.
    1. Panahi Y., Ahmadi Y., Teymouri M., Johnston T.P., Sahebkar A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J. Cell Physiol. 2018;233:141–152. doi: 10.1002/jcp.25756.
    1. Ejaz A., Wu D., Kwan P., Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr. 2009;139:919–925. doi: 10.3945/jn.108.100966.
    1. Giglio R.V., Patti A.M., Cicero A., Lippi G., Rizzo M., Toth P.P., Banach M. Polyphenols: Potential Use in the Prevention and Treatment of Cardiovascular Diseases. Curr Pharm Des. 2018;24:239–258. doi: 10.2174/1381612824666180130112652.
    1. Fleenor B.S., Sindler A.L., Marvi N.K., Howell K.L., Zigler M.L., Yoshizawa M., Seals D.R. Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp. Gerontol. 2013;48:269–276. doi: 10.1016/j.exger.2012.10.008.
    1. Velarde G.P., Choudhary N., Bravo-Jaimes K., Smotherman C., Sherazi S., Kraemer D.F. Effect of atorvastatin on lipogenic, inflammatory and thrombogenic markers in women with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2021;31:634–640. doi: 10.1016/j.numecd.2020.10.002.
    1. Ridker P.M., Rifai N., Pfeffer M.A., Sacks F.M., Moye L.A., Goldman S., Flaker G.C., Braunwald E. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Circulation. 1998;98:839–844. doi: 10.1161/01.CIR.98.9.839.
    1. Ridker P.M., Cannon C.P., Morrow D., Rifai N., Rose L.M., McCabe C.H., Pfeffer M.A., Braunwald E. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 2005;352:20–28. doi: 10.1056/NEJMoa042378.
    1. Grosso A.F., de Oliveira S.F., Higuchi Mde L., Favarato D., Dallan L.A., da Luz P.L. Synergistic anti-inflammatory effect: Simvastatin and pioglitazone reduce inflammatory markers of plasma and epicardial adipose tissue of coronary patients with metabolic syndrome. Diabetol. Metab. Syndr. 2014;6:47. doi: 10.1186/1758-5996-6-47.
    1. Shah Z., Pineda C., Kampfrath T., Maiseyeu A., Ying Z., Racoma I., Deiuliis J., Xu X., Sun Q., Moffatt-Bruce S., et al. Acute DPP-4 inhibition modulates vascular tone through GLP-1 independent pathways. Vascul. Pharmacol. 2011;55:2–9. doi: 10.1016/j.vph.2011.03.001.
    1. Ishii M., Shibata R., Kondo K., Kambara T., Shimizu Y., Tanigawa T., Bando Y.K., Nishimura M., Ouchi N., Murohara T. Vildagliptin stimulates endothelial cell network formation and ischemia-induced revascularization via an endothelial nitric-oxide synthase-dependent mechanism. J. Biol. Chem. 2014;289:27235–27245. doi: 10.1074/jbc.M114.557835.
    1. Lamers D., Famulla S., Wronkowitz N., Hartwig S., Lehr S., Ouwens D.M., Eckardt K., Kaufman J.M., Ryden M., Müller S., et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes. 2011;60:1917–1925. doi: 10.2337/db10-1707.
    1. Sell H., Blüher M., Klöting N., Schlich R., Willems M., Ruppe F., Knoefel W.T., Dietrich A., Fielding B.A., Arner P., et al. Adipose dipeptidyl peptidase-4 and obesity: Correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care. 2013;36:4083–4090. doi: 10.2337/dc13-0496.
    1. Prakash S., Rai U., Kosuru R., Tiwari V., Singh S. Amelioration of diet-induced metabolic syndrome and fatty liver with sitagliptin via regulation of adipose tissue inflammation and hepatic Adiponectin/AMPK levels in mice. Biochimie. 2020;168:198–209. doi: 10.1016/j.biochi.2019.11.005.
    1. Cicek F.A., Tokcaer-Keskin Z., Ozcinar E., Bozkus Y., Akcali K.C., Turan B. Di-peptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: Possible role of epigenetic regulation. Mol. Biol. Rep. 2014;41:4853–4863. doi: 10.1007/s11033-014-3674-8.
    1. Rizzo M., Nikolic D., Patti A.M., Mannina C., Montalto G., McAdams B.S., Rizvi A.A., Cosentino F. GLP-1 receptor agonists and reduction of cardiometabolic risk: Potential underlying mechanisms. Biochim. Biophys Acta Mol. Basis Dis. 2018;1864:2814–2821. doi: 10.1016/j.bbadis.2018.05.012.
    1. Nauck M.A., Quast D.R., Wefers J., Meier J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes—State-of-the-art. Mol Metab. 2021;46:101102. doi: 10.1016/j.molmet.2020.101102.
    1. Orchard T.J., Temprosa M., Goldberg R., Haffner S., Ratner R., Marcovina S., Fowler S., Diabetes Prevention Program Research Group The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: The Diabetes Prevention Program randomized trial. Ann. Intern. Med. 2005;142:611–619. doi: 10.7326/0003-4819-142-8-200504190-00009.
    1. Rizvi A.A., Stoian A.P., Rizzo M. Metabolic Syndrome: From Molecular Mechanisms to Novel Therapies. Int. J. Mol. Sci. 2021;22:10038. doi: 10.3390/ijms221810038.

Source: PubMed

3
Suscribir