Vitamin C and Immune Function

Anitra C Carr, Silvia Maggini, Anitra C Carr, Silvia Maggini

Abstract

Vitamin C is an essential micronutrient for humans, with pleiotropic functions related to its ability to donate electrons. It is a potent antioxidant and a cofactor for a family of biosynthetic and gene regulatory enzymes. Vitamin C contributes to immune defense by supporting various cellular functions of both the innate and adaptive immune system. Vitamin C supports epithelial barrier function against pathogens and promotes the oxidant scavenging activity of the skin, thereby potentially protecting against environmental oxidative stress. Vitamin C accumulates in phagocytic cells, such as neutrophils, and can enhance chemotaxis, phagocytosis, generation of reactive oxygen species, and ultimately microbial killing. It is also needed for apoptosis and clearance of the spent neutrophils from sites of infection by macrophages, thereby decreasing necrosis/NETosis and potential tissue damage. The role of vitamin C in lymphocytes is less clear, but it has been shown to enhance differentiation and proliferation of B- and T-cells, likely due to its gene regulating effects. Vitamin C deficiency results in impaired immunity and higher susceptibility to infections. In turn, infections significantly impact on vitamin C levels due to enhanced inflammation and metabolic requirements. Furthermore, supplementation with vitamin C appears to be able to both prevent and treat respiratory and systemic infections. Prophylactic prevention of infection requires dietary vitamin C intakes that provide at least adequate, if not saturating plasma levels (i.e., 100-200 mg/day), which optimize cell and tissue levels. In contrast, treatment of established infections requires significantly higher (gram) doses of the vitamin to compensate for the increased inflammatory response and metabolic demand.

Keywords: ascorbate; ascorbic acid; immune system; immunity; infection; lymphocytes; microbial killing; neutrophil function; vitamin C.

Conflict of interest statement

S.M. is employed by Bayer Consumer Care Ltd., a manufacturer of multivitamins, and wrote the section on ‘Vitamin C insufficiency conditions’. A.C.C. has received funding, as a Key Opinion Leader, from Bayer Consumer Care Ltd.

Figures

Figure 1
Figure 1
The enzyme cofactor activities of vitamin C. Vitamin C is a cofactor of a family of biosynthetic and gene regulatory monooxygenase and dioxygenase enzymes. These enzymes are involved in the synthesis of collagen, carnitine, catecholamine hormones, e.g., norepinephrine, and amidated peptide hormones, e.g., vasopressin. These enzymes also hydroxylate transcription factors, e.g., hypoxia-inducible factor 1α, and methylated DNA and histones, thus playing a role in gene transcription and epigenetic regulation. ↑ indicates an increase and ↓ indicates a decrease.
Figure 2
Figure 2
Role of vitamin C in phagocyte function. Vitamin C has been shown to: (a) enhance neutrophil migration in response to chemoattractants (chemotaxis), (b) enhance engulfment (phagocytosis) of microbes, and (c) stimulate reactive oxygen species (ROS) generation and killing of microbes. (d) Vitamin C supports caspase-dependent apoptosis, enhancing uptake and clearance by macrophages, and inhibits necrosis, including NETosis, thus supporting resolution of the inflammatory response and attenuating tissue damage.

References

    1. Parkin J., Cohen B. An overview of the immune system. Lancet. 2001;357:1777–1789. doi: 10.1016/S0140-6736(00)04904-7.
    1. Maggini S., Wintergerst E.S., Beveridge S., Hornig D.H. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br. J. Nutr. 2007;98:S29–S35. doi: 10.1017/S0007114507832971.
    1. Webb A.L., Villamor E. Update: Effects of antioxidant and non-antioxidant vitamin supplementation on immune function. Nutr. Rev. 2007;65:181. doi: 10.1111/j.1753-4887.2007.tb00298.x.
    1. Burns J.J. Missing step in man, monkey and guinea pig required for the biosynthesis of l-ascorbic acid. Nature. 1957;180:553. doi: 10.1038/180553a0.
    1. Nishikimi M., Fukuyama R., Minoshima S., Shimizu N., Yagi K. Cloning and chromosomal mapping of the human nonfunctional gene for l-gulono-gamma-lactone oxidase, the enzyme for l-ascorbic acid biosynthesis missing in man. J. Biol. Chem. 1994;269:13685–13688.
    1. Sauberlich H.E. A history of scurvy and vitamin C. In: Packer L., Fuchs J., editors. Vitamin C in Health and Disease. Marcel Dekker; New York, NY, USA: 1997. pp. 1–24.
    1. Hemila H. Vitamin C and Infections. Nutrients. 2017;9:339. doi: 10.3390/nu9040339.
    1. Carr A.C., McCall C. The role of vitamin C in the treatment of pain: New insights. J. Transl. Med. 2017;15:77. doi: 10.1186/s12967-017-1179-7.
    1. Krebs H.A. The Sheffield Experiment on the vitamin C requirement of human adults. Proc. Nutr. Soc. 1953;12:237–246. doi: 10.1079/PNS19530054.
    1. Institute of Medicine Panel on Dietary Antioxidants and Related Compounds . Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academies Press; Washington, DC, USA: 2000.
    1. Levine M., Dhariwal K.R., Welch R.W., Wang Y., Park J.B. Determination of optimal vitamin C requirements in humans. Am. J. Clin. Nutr. 1995;62:1347S–1356S.
    1. Carr A.C., Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am. J. Clin. Nutr. 1999;69:1086–1087.
    1. Schleicher R.L., Carroll M.D., Ford E.S., Lacher D.A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES) Am. J. Clin. Nutr. 2009;90:1252–1263. doi: 10.3945/ajcn.2008.27016.
    1. US Centers for Disease Control and Prevention . Second National Report on Biochemical Indicators of Diet and Nutrition in the US Population 2012. National Center for Environmental Health; Atlanta, GA, USA: 2012.
    1. Maggini S., Beveridge S., Sorbara J., Senatore G. Feeding the immune system: The role of micronutrients in restoring resistance to infections. CAB Rev. 2008;3:1–21. doi: 10.1079/PAVSNNR20083098.
    1. Huskisson E., Maggini S., Ruf M. The role of vitamins and minerals in energy metabolism and well-being. J. Int. Med. Res. 2007;35:277–289. doi: 10.1177/147323000703500301.
    1. Carr A., Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999;13:1007–1024.
    1. Mandl J., Szarka A., Banhegyi G. Vitamin C: Update on physiology and pharmacology. Br. J. Pharmacol. 2009;157:1097–1110. doi: 10.1111/j.1476-5381.2009.00282.x.
    1. Englard S., Seifter S. The biochemical functions of ascorbic acid. Annu. Rev. Nutr. 1986;6:365–406. doi: 10.1146/annurev.nu.06.070186.002053.
    1. Carr A.C., Shaw G.M., Fowler A.A., Natarajan R. Ascorbate-dependent vasopressor synthesis: A rationale for vitamin C administration in severe sepsis and septic shock? Crit. Care. 2015;19:e418. doi: 10.1186/s13054-015-1131-2.
    1. Kuiper C., Vissers M.C. Ascorbate as a co-factor for Fe- and 2-oxoglutarate dependent dioxygenases: Physiological activity in tumor growth and progression. Front. Oncol. 2014;4:359. doi: 10.3389/fonc.2014.00359.
    1. Young J.I., Zuchner S., Wang G. Regulation of the epigenome by vitamin C. Annu. Rev. Nutr. 2015;35:545–564. doi: 10.1146/annurev-nutr-071714-034228.
    1. Pullar J.M., Carr A.C., Vissers M.C.M. The roles of vitamin C in skin health. Nutrients. 2017;9:866. doi: 10.3390/nu9080866.
    1. Rhie G., Shin M.H., Seo J.Y., Choi W.W., Cho K.H., Kim K.H., Park K.C., Eun H.C., Chung J.H. Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J. Investig. Dermatol. 2001;117:1212–1217. doi: 10.1046/j.0022-202x.2001.01469.x.
    1. Shindo Y., Witt E., Han D., Epstein W., Packer L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J. Investig. Dermatol. 1994;102:122–124. doi: 10.1111/1523-1747.ep12371744.
    1. McArdle F., Rhodes L.E., Parslew R., Jack C.I., Friedmann P.S., Jackson M.J. UVR-induced oxidative stress in human skin in vivo: Effects of oral vitamin C supplementation. Free Radic. Biol. Med. 2002;33:1355–1362. doi: 10.1016/S0891-5849(02)01042-0.
    1. Steiling H., Longet K., Moodycliffe A., Mansourian R., Bertschy E., Smola H., Mauch C., Williamson G. Sodium-dependent vitamin C transporter isoforms in skin: Distribution, kinetics, and effect of UVB-induced oxidative stress. Free Radic. Biol. Med. 2007;43:752–762. doi: 10.1016/j.freeradbiomed.2007.05.001.
    1. Hodges R.E., Baker E.M., Hood J., Sauberlich H.E., March S.C. Experimental scurvy in man. Am. J. Clin. Nutr. 1969;22:535–548.
    1. Hodges R.E., Hood J., Canham J.E., Sauberlich H.E., Baker E.M. Clinical manifestations of ascorbic acid deficiency in man. Am. J. Clin. Nutr. 1971;24:432–443.
    1. Kivirikko K.I., Myllyla R., Pihlajaniemi T. Protein hydroxylation: Prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J. 1989;3:1609–1617.
    1. Geesin J.C., Darr D., Kaufman R., Murad S., Pinnell S.R. Ascorbic acid specifically increases type I and type III procollagen messenger RNA levels in human skin fibroblast. J. Investig. Dermatol. 1988;90:420–424. doi: 10.1111/1523-1747.ep12460849.
    1. Kishimoto Y., Saito N., Kurita K., Shimokado K., Maruyama N., Ishigami A. Ascorbic acid enhances the expression of type 1 and type 4 collagen and SVCT2 in cultured human skin fibroblasts. Biochem. Biophys. Res. Commun. 2013;430:579–584. doi: 10.1016/j.bbrc.2012.11.110.
    1. Nusgens B.V., Humbert P., Rougier A., Colige A.C., Haftek M., Lambert C.A., Richard A., Creidi P., Lapiere C.M. Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J. Investig. Dermatol. 2001;116:853–859. doi: 10.1046/j.0022-202x.2001.01362.x.
    1. Tajima S., Pinnell S.R. Ascorbic acid preferentially enhances type I and III collagen gene transcription in human skin fibroblasts. J. Dermatol. Sci. 1996;11:250–253. doi: 10.1016/0923-1811(95)00640-0.
    1. Davidson J.M., LuValle P.A., Zoia O., Quaglino D., Jr., Giro M. Ascorbate differentially regulates elastin and collagen biosynthesis in vascular smooth muscle cells and skin fibroblasts by pretranslational mechanisms. J. Biol. Chem. 1997;272:345–352. doi: 10.1074/jbc.272.1.345.
    1. Fuchs J., Kern H. Modulation of UV-light-induced skin inflammation by D-alpha-tocopherol and L-ascorbic acid: A clinical study using solar simulated radiation. Free Radic. Biol. Med. 1998;25:1006–1012. doi: 10.1016/S0891-5849(98)00132-4.
    1. Lauer A.C., Groth N., Haag S.F., Darvin M.E., Lademann J., Meinke M.C. Dose-dependent vitamin C uptake and radical scavenging activity in human skin measured with in vivo electron paramagnetic resonance spectroscopy. Skin Pharmacol. Physiol. 2013;26:147–154. doi: 10.1159/000350833.
    1. Valacchi G., Sticozzi C., Belmonte G., Cervellati F., Demaude J., Chen N., Krol Y., Oresajo C. Vitamin C compound mixtures prevent ozone-induced oxidative damage in human keratinocytes as initial assessment of pollution protection. PLoS ONE. 2015;10:e0131097. doi: 10.1371/journal.pone.0131097.
    1. Valacchi G., Muresan X.M., Sticozzi C., Belmonte G., Pecorelli A., Cervellati F., Demaude J., Krol Y., Oresajo C. Ozone-induced damage in 3D-skin model is prevented by topical vitamin C and vitamin E compound mixtures application. J. Dermatol. Sci. 2016;82:209–212. doi: 10.1016/j.jdermsci.2016.02.007.
    1. Lin J.Y., Selim M.A., Shea C.R., Grichnik J.M., Omar M.M., Monteiro-Riviere N.A., Pinnell S.R. UV photoprotection by combination topical antioxidants vitamin C and vitamin E. J. Am. Acad. Dermatol. 2003;48:866–874. doi: 10.1067/mjd.2003.425.
    1. Pasonen-Seppanen S., Suhonen T.M., Kirjavainen M., Suihko E., Urtti A., Miettinen M., Hyttinen M., Tammi M., Tammi R. Vitamin C enhances differentiation of a continuous keratinocyte cell line (REK) into epidermis with normal stratum corneum ultrastructure and functional permeability barrier. Histochem. Cell Biol. 2001;116:287–297. doi: 10.1007/s004180100312.
    1. Savini I., Catani M.V., Rossi A., Duranti G., Melino G., Avigliano L. Characterization of keratinocyte differentiation induced by ascorbic acid: Protein kinase C involvement and vitamin C homeostasis. J. Investig. Dermatol. 2002;118:372–379. doi: 10.1046/j.0022-202x.2001.01624.x.
    1. Ponec M., Weerheim A., Kempenaar J., Mulder A., Gooris G.S., Bouwstra J., Mommaas A.M. The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J. Investig. Dermatol. 1997;109:348–355. doi: 10.1111/1523-1747.ep12336024.
    1. Uchida Y., Behne M., Quiec D., Elias P.M., Holleran W.M. Vitamin C stimulates sphingolipid production and markers of barrier formation in submerged human keratinocyte cultures. J. Investig. Dermatol. 2001;117:1307–1313. doi: 10.1046/j.0022-202x.2001.01555.x.
    1. Kim K.P., Shin K.O., Park K., Yun H.J., Mann S., Lee Y.M., Cho Y. Vitamin C stimulates epidermal ceramide production by regulating its metabolic enzymes. Biomol. Ther. 2015;23:525–530. doi: 10.4062/biomolther.2015.044.
    1. Mohammed B.M., Fisher B.J., Kraskauskas D., Ward S., Wayne J.S., Brophy D.F., Fowler A.A., III, Yager D.R., Natarajan R. Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int. Wound J. 2016;13:572–584. doi: 10.1111/iwj.12484.
    1. Duarte T.L., Cooke M.S., Jones G.D. Gene expression profiling reveals new protective roles for vitamin C in human skin cells. Free Radic. Biol. Med. 2009;46:78–87. doi: 10.1016/j.freeradbiomed.2008.09.028.
    1. Desneves K.J., Todorovic B.E., Cassar A., Crowe T.C. Treatment with supplementary arginine, vitamin C and zinc in patients with pressure ulcers: A randomised controlled trial. Clin. Nutr. 2005;24:979–987. doi: 10.1016/j.clnu.2005.06.011.
    1. Taylor T.V., Rimmer S., Day B., Butcher J., Dymock I.W. Ascorbic acid supplementation in the treatment of pressure-sores. Lancet. 1974;2:544–546. doi: 10.1016/S0140-6736(74)91874-1.
    1. Stankova L., Gerhardt N.B., Nagel L., Bigley R.H. Ascorbate and phagocyte function. Infect. Immun. 1975;12:252–256.
    1. Winterbourn C.C., Vissers M.C. Changes in ascorbate levels on stimulation of human neutrophils. Biochim. Biophys. Acta. 1983;763:175–179. doi: 10.1016/0167-4889(83)90041-1.
    1. Parker A., Cuddihy S.L., Son T.G., Vissers M.C., Winterbourn C.C. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H(2)O(2)-treated HL60 cells. Free Radic. Biol. Med. 2011;51:1399–1405. doi: 10.1016/j.freeradbiomed.2011.06.029.
    1. Oberritter H., Glatthaar B., Moser U., Schmidt K.H. Effect of functional stimulation on ascorbate content in phagocytes under physiological and pathological conditions. Int. Arch. Allergy Appl. Immunol. 1986;81:46–50. doi: 10.1159/000234106.
    1. Goldschmidt M.C. Reduced bactericidal activity in neutrophils from scorbutic animals and the effect of ascorbic acid on these target bacteria in vivo and in vitro. Am. J. Clin. Nutr. 1991;54:1214S–1220S.
    1. Goldschmidt M.C., Masin W.J., Brown L.R., Wyde P.R. The effect of ascorbic acid deficiency on leukocyte phagocytosis and killing of actinomyces viscosus. Int. J. Vitam. Nutr. Res. 1988;58:326–334.
    1. Johnston C.S., Huang S.N. Effect of ascorbic acid nutriture on blood histamine and neutrophil chemotaxis in guinea pigs. J. Nutr. 1991;121:126–130.
    1. Rebora A., Dallegri F., Patrone F. Neutrophil dysfunction and repeated infections: Influence of levamisole and ascorbic acid. Br. J. Dermatol. 1980;102:49–56. doi: 10.1111/j.1365-2133.1980.tb05671.x.
    1. Patrone F., Dallegri F., Bonvini E., Minervini F., Sacchetti C. Disorders of neutrophil function in children with recurrent pyogenic infections. Med. Microbiol. Immunol. 1982;171:113–122. doi: 10.1007/BF02124918.
    1. Boura P., Tsapas G., Papadopoulou A., Magoula I., Kountouras G. Monocyte locomotion in anergic chronic brucellosis patients: The in vivo effect of ascorbic acid. Immunopharmacol. Immunotoxicol. 1989;11:119–129. doi: 10.3109/08923978909082146.
    1. Anderson R., Theron A. Effects of ascorbate on leucocytes: Part III. In vitro and in vivo stimulation of abnormal neutrophil motility by ascorbate. S. Afr. Med. J. 1979;56:429–433.
    1. Johnston C.S., Martin L.J., Cai X. Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis. J. Am. Coll. Nutr. 1992;11:172–176.
    1. Anderson R., Oosthuizen R., Maritz R., Theron A., Van Rensburg A.J. The effects of increasing weekly doses of ascorbate on certain cellular and humoral immune functions in normal volunteers. Am. J. Clin. Nutr. 1980;33:71–76.
    1. Anderson R. Ascorbate-mediated stimulation of neutrophil motility and lymphocyte transformation by inhibition of the peroxidase/H2O2/halide system in vitro and in vivo. Am. J. Clin. Nutr. 1981;34:1906–1911.
    1. Ganguly R., Durieux M.F., Waldman R.H. Macrophage function in vitamin C-deficient guinea pigs. Am. J. Clin. Nutr. 1976;29:762–765.
    1. Corberand J., Nguyen F., Fraysse B., Enjalbert L. Malignant external otitis and polymorphonuclear leukocyte migration impairment. Improvement with ascorbic acid. Arch. Otolaryngol. 1982;108:122–124. doi: 10.1001/archotol.1982.00790500058015.
    1. Levy R., Schlaeffer F. Successful treatment of a patient with recurrent furunculosis by vitamin C: Improvement of clinical course and of impaired neutrophil functions. Int. J. Dermatol. 1993;32:832–834. doi: 10.1111/j.1365-4362.1993.tb02780.x.
    1. Levy R., Shriker O., Porath A., Riesenberg K., Schlaeffer F. Vitamin C for the treatment of recurrent furunculosis in patients with imparied neutrophil functions. J. Infect. Dis. 1996;173:1502–1505. doi: 10.1093/infdis/173.6.1502.
    1. Nungester W.J., Ames A.M. The relationship between ascorbic acid and phagocytic activity. J. Infect. Dis. 1948;83:50–54. doi: 10.1093/infdis/83.1.50.
    1. Shilotri P.G. Phagocytosis and leukocyte enzymes in ascorbic acid deficient guinea pigs. J. Nutr. 1977;107:1513–1516.
    1. Shilotri P.G. Glycolytic, hexose monophosphate shunt and bactericidal activities of leukocytes in ascorbic acid deficient guinea pigs. J. Nutr. 1977;107:1507–1512.
    1. Sharma P., Raghavan S.A., Saini R., Dikshit M. Ascorbate-mediated enhancement of reactive oxygen species generation from polymorphonuclear leukocytes: Modulatory effect of nitric oxide. J. Leukoc. Biol. 2004;75:1070–1078. doi: 10.1189/jlb.0903415.
    1. Rebora A., Crovato F., Dallegri F., Patrone F. Repeated staphylococcal pyoderma in two siblings with defective neutrophil bacterial killing. Dermatologica. 1980;160:106–112. doi: 10.1159/000250481.
    1. Vissers M.C., Wilkie R.P. Ascorbate deficiency results in impaired neutrophil apoptosis and clearance and is associated with up-regulation of hypoxia-inducible factor 1alpha. J. Leukoc. Biol. 2007;81:1236–1244. doi: 10.1189/jlb.0806541.
    1. Fisher B.J., Kraskauskas D., Martin E.J., Farkas D., Wegelin J.A., Brophy D., Ward K.R., Voelkel N.F., Fowler A.A., III, Natarajan R. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012;303:L20–L32. doi: 10.1152/ajplung.00300.2011.
    1. Mohammed B.M., Fisher B.J., Kraskauskas D., Farkas D., Brophy D.F., Fowler A.A., Natarajan R. Vitamin C: A novel regulator of neutrophil extracellular trap formation. Nutrients. 2013;5:3131–3151. doi: 10.3390/nu5083131.
    1. Huijskens M.J., Walczak M., Koller N., Briede J.J., Senden-Gijsbers B.L., Schnijderberg M.C., Bos G.M., Germeraad W.T. Technical advance: Ascorbic acid induces development of double-positive T cells from human hematopoietic stem cells in the absence of stromal cells. J. Leukoc. Biol. 2014;96:1165–1175. doi: 10.1189/jlb.1TA0214-121RR.
    1. Molina N., Morandi A.C., Bolin A.P., Otton R. Comparative effect of fucoxanthin and vitamin C on oxidative and functional parameters of human lymphocytes. Int. Immunopharmacol. 2014;22:41–50. doi: 10.1016/j.intimp.2014.06.026.
    1. Tanaka M., Muto N., Gohda E., Yamamoto I. Enhancement by ascorbic acid 2-glucoside or repeated additions of ascorbate of mitogen-induced IgM and IgG productions by human peripheral blood lymphocytes. Jpn. J. Pharmacol. 1994;66:451–456. doi: 10.1254/jjp.66.451.
    1. Manning J., Mitchell B., Appadurai D.A., Shakya A., Pierce L.J., Wang H., Nganga V., Swanson P.C., May J.M., Tantin D., et al. Vitamin C promotes maturation of T-cells. Antioxid. Redox Signal. 2013;19:2054–2067. doi: 10.1089/ars.2012.4988.
    1. Kennes B., Dumont I., Brohee D., Hubert C., Neve P. Effect of vitamin C supplements on cell-mediated immunity in old people. Gerontology. 1983;29:305–310. doi: 10.1159/000213131.
    1. Anderson R., Hay I., van Wyk H., Oosthuizen R., Theron A. The effect of ascorbate on cellular humoral immunity in asthmatic children. S. Afr. Med. J. 1980;58:974–977.
    1. Fraser R.C., Pavlovic S., Kurahara C.G., Murata A., Peterson N.S., Taylor K.B., Feigen G.A. The effect of variations in vitamin C intake on the cellular immune response of guinea pigs. Am. J. Clin. Nutr. 1980;33:839–847.
    1. Feigen G.A., Smith B.H., Dix C.E., Flynn C.J., Peterson N.S., Rosenberg L.T., Pavlovic S., Leibovitz B. Enhancement of antibody production and protection against systemic anaphylaxis by large doses of vitamin C. Res. Commun. Chem. Pathol. Pharmacol. 1982;38:313–333. doi: 10.1016/S0022-5347(17)52586-0.
    1. Prinz W., Bloch J., Gilich G., Mitchell G. A systematic study of the effect of vitamin C supplementation on the humoral immune response in ascorbate-dependent mammals. I. The antibody response to sheep red blood cells (a T-dependent antigen) in guinea pigs. Int. J. Vitam. Nutr. Res. 1980;50:294–300.
    1. Prinz W., Bortz R., Bregin B., Hersch M. The effect of ascorbic acid supplementation on some parameters of the human immunological defence system. Int. J. Vitam. Nutr. Res. 1977;47:248–257.
    1. Chen Y., Luo G., Yuan J., Wang Y., Yang X., Wang X., Li G., Liu Z., Zhong N. Vitamin C mitigates oxidative stress and tumor necrosis factor-alpha in severe community-acquired pneumonia and LPS-induced macrophages. Mediators Inflamm. 2014;2014:426740. doi: 10.1155/2014/426740.
    1. Jeng K.C., Yang C.S., Siu W.Y., Tsai Y.S., Liao W.J., Kuo J.S. Supplementation with vitamins C and E enhances cytokine production by peripheral blood mononuclear cells in healthy adults. Am. J. Clin. Nutr. 1996;64:960–965.
    1. Kim Y., Kim H., Bae S., Choi J., Lim S.Y., Lee N., Kong J.M., Hwang Y.I., Kang J.S., Lee W.J. Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-a/b at the initial stage of influenza A virus (H3N2) infection. Immune Netw. 2013;13:70–74. doi: 10.4110/in.2013.13.2.70.
    1. Gao Y.L., Lu B., Zhai J.H., Liu Y.C., Qi H.X., Yao Y., Chai Y.F., Shou S.T. The parenteral vitamin C improves sepsis and sepsis-induced multiple organ dysfunction syndrome via preventing cellular immunosuppression. Mediat. Inflamm. 2017;2017:4024672. doi: 10.1155/2017/4024672.
    1. Portugal C.C., Socodato R., Canedo T., Silva C.M., Martins T., Coreixas V.S., Loiola E.C., Gess B., Rohr D., Santiago A.R., et al. Caveolin-1-mediated internalization of the vitamin C transporter SVCT2 in microglia triggers an inflammatory phenotype. Sci. Signal. 2017;10 doi: 10.1126/scisignal.aal2005.
    1. Dahl H., Degre M. The effect of ascorbic acid on production of human interferon and the antiviral activity in vitro. Acta Pathol. Microbiol. Scand. B. 1976;84b:280–284. doi: 10.1111/j.1699-0463.1976.tb01938.x.
    1. Karpinska T., Kawecki Z., Kandefer-Szerszen M. The influence of ultraviolet irradiation, L-ascorbic acid and calcium chloride on the induction of interferon in human embryo fibroblasts. Arch. Immunol. Ther. Exp. 1982;30:33–37.
    1. Siegel B.V. Enhancement of interferon production by poly(rI)-poly(rC) in mouse cell cultures by ascorbic acid. Nature. 1975;254:531–532. doi: 10.1038/254531a0.
    1. Canali R., Natarelli L., Leoni G., Azzini E., Comitato R., Sancak O., Barella L., Virgili F. Vitamin C supplementation modulates gene expression in peripheral blood mononuclear cells specifically upon an inflammatory stimulus: A pilot study in healthy subjects. Genes Nutr. 2014;9:390. doi: 10.1007/s12263-014-0390-x.
    1. Dawson W., West G.B. The influence of ascorbic acid on histamine metabolism in guinea-pigs. Br. J. Pharmacol. Chemother. 1965;24:725–734. doi: 10.1111/j.1476-5381.1965.tb01628.x.
    1. Nandi B.K., Subramanian N., Majumder A.K., Chatterjee I.B. Effect of ascorbic acid on detoxification of histamine under stress conditions. Biochem. Pharmacol. 1974;23:643–647. doi: 10.1016/0006-2952(74)90629-7.
    1. Subramanian N., Nandi B.K., Majumder A.K., Chatterjee I.B. Role of L-ascorbic acid on detoxification of histamine. Biochem. Pharmacol. 1973;22:1671–1673. doi: 10.1016/0006-2952(73)90036-1.
    1. Chatterjee I.B., Gupta S.D., Majumder A.K., Nandi B.K., Subramanian N. Effect of ascorbic acid on histamine metabolism in scorbutic guinea-pigs. J. Physiol. 1975;251:271–279. doi: 10.1113/jphysiol.1975.sp011091.
    1. Clemetson C.A. Histamine and ascorbic acid in human blood. J. Nutr. 1980;110:662–668.
    1. Johnston C.S., Solomon R.E., Corte C. Vitamin C depletion is associated with alterations in blood histamine and plasma free carnitine in adults. J. Am. Coll. Nutr. 1996;15:586–591. doi: 10.1080/07315724.1996.10718634.
    1. Hagel A.F., Layritz C.M., Hagel W.H., Hagel H.J., Hagel E., Dauth W., Kressel J., Regnet T., Rosenberg A., Neurath M.F., et al. Intravenous infusion of ascorbic acid decreases serum histamine concentrations in patients with allergic and non-allergic diseases. Naunyn Schmiedebergs Arch. Pharmacol. 2013;386:789–793. doi: 10.1007/s00210-013-0880-1.
    1. Bruno R.S., Leonard S.W., Atkinson J., Montine T.J., Ramakrishnan R., Bray T.M., Traber M.G. Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic. Biol. Med. 2006;40:689–697. doi: 10.1016/j.freeradbiomed.2005.10.051.
    1. Parsons K.K., Maeda N., Yamauchi M., Banes A.J., Koller B.H. Ascorbic acid-independent synthesis of collagen in mice. Am. J. Physiol. Endocrinol. Metab. 2006;290:E1131–E1139. doi: 10.1152/ajpendo.00339.2005.
    1. Ross R., Benditt E.P. Wound healing and collagen formation. II. Fine structure in experimental scurvy. J. Cell Biol. 1962;12:533–551. doi: 10.1083/jcb.12.3.533.
    1. Fukushima R., Yamazaki E. Vitamin C requirement in surgical patients. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:669–676. doi: 10.1097/MCO.0b013e32833e05bc.
    1. Blass S.C., Goost H., Tolba R.H., Stoffel-Wagner B., Kabir K., Burger C., Stehle P., Ellinger S. Time to wound closure in trauma patients with disorders in wound healing is shortened by supplements containing antioxidant micronutrients and glutamine: A PRCT. Clin. Nutr. 2012;31:469–475. doi: 10.1016/j.clnu.2012.01.002.
    1. Cereda E., Gini A., Pedrolli C., Vanotti A. Disease-specific, versus standard, nutritional support for the treatment of pressure ulcers in institutionalized older adults: A randomized controlled trial. J. Am. Geriatr. Soc. 2009;57:1395–1402. doi: 10.1111/j.1532-5415.2009.02351.x.
    1. Martin P., Leibovich S.J. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends Cell Biol. 2005;15:599–607. doi: 10.1016/j.tcb.2005.09.002.
    1. Wilgus T.A., Roy S., McDaniel J.C. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv. Wound Care. 2013;2:379–388. doi: 10.1089/wound.2012.0383.
    1. Wong S.L., Demers M., Martinod K., Gallant M., Wang Y., Goldfine A.B., Kahn C.R., Wagner D.D. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 2015;21:815–819. doi: 10.1038/nm.3887.
    1. Washko P., Rotrosen D., Levine M. Ascorbic acid transport and accumulation in human neutrophils. J. Biol. Chem. 1989;264:18996–19002.
    1. Bergsten P., Amitai G., Kehrl J., Dhariwal K.R., Klein H.G., Levine M. Millimolar concentrations of ascorbic acid in purified human mononuclear leukocytes. Depletion and reaccumulation. J. Biol. Chem. 1990;265:2584–2587.
    1. Evans R.M., Currie L., Campbell A. The distribution of ascorbic acid between various cellular components of blood, in normal individuals, and its relation to the plasma concentration. Br. J. Nutr. 1982;47:473–482. doi: 10.1079/BJN19820059.
    1. Levine M., Conry-Cantilena C., Wang Y., Welch R.W., Washko P.W., Dhariwal K.R., Park J.B., Lazarev A., Graumlich J.F., King J., et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA. 1996;93:3704–3709. doi: 10.1073/pnas.93.8.3704.
    1. Levine M., Wang Y., Padayatty S.J., Morrow J. A new recommended dietary allowance of vitamin C for healthy young women. Proc. Natl. Acad. Sci. USA. 2001;98:9842–9846. doi: 10.1073/pnas.171318198.
    1. Carr A.C., Bozonet S.M., Pullar J.M., Simcock J.W., Vissers M.C. Human skeletal muscle ascorbate is highly responsive to changes in vitamin C intake and plasma concentrations. Am. J. Clin. Nutr. 2013;97:800–807. doi: 10.3945/ajcn.112.053207.
    1. Vissers M.C., Bozonet S.M., Pearson J.F., Braithwaite L.J. Dietary ascorbate intake affects steady state tissue concentrations in vitamin C-deficient mice: Tissue deficiency after suboptimal intake and superior bioavailability from a food source (kiwifruit) Am. J. Clin. Nutr. 2011;93:292–301. doi: 10.3945/ajcn.110.004853.
    1. Corpe C.P., Lee J.H., Kwon O., Eck P., Narayanan J., Kirk K.L., Levine M. 6-Bromo-6-deoxy-l-ascorbic acid: An ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways. J. Biol. Chem. 2005;280:5211–5220. doi: 10.1074/jbc.M412925200.
    1. Washko P.W., Wang Y., Levine M. Ascorbic acid recycling in human neutrophils. J. Biol. Chem. 1993;268:15531–15535.
    1. Buettner G.R. The pecking order of free radicals and antioxidants: Lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 1993;300:535–543. doi: 10.1006/abbi.1993.1074.
    1. Sen C.K., Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10:709–720.
    1. Li N., Karin M. Is NF-kappaB the sensor of oxidative stress? Faseb J. 1999;13:1137–1143.
    1. Macdonald J., Galley H.F., Webster N.R. Oxidative stress and gene expression in sepsis. Br. J. Anaesth. 2003;90:221–232. doi: 10.1093/bja/aeg034.
    1. Tan P.H., Sagoo P., Chan C., Yates J.B., Campbell J., Beutelspacher S.C., Foxwell B.M., Lombardi G., George A.J. Inhibition of NF-kappa B and oxidative pathways in human dendritic cells by antioxidative vitamins generates regulatory T cells. J. Immunol. 2005;174:7633–7644. doi: 10.4049/jimmunol.174.12.7633.
    1. Winterbourn C.C., Hampton M.B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 2008;45:549–561. doi: 10.1016/j.freeradbiomed.2008.05.004.
    1. Griffiths H.R., Willetts R.S., Grant M.M., Mistry N., Lunec J., Bevan R.J. In vivo vitamin C supplementation increases phosphoinositol transfer protein expression in peripheral blood mononuclear cells from healthy individuals. Br. J. Nutr. 2009;101:1432–1439. doi: 10.1017/S0007114508079646.
    1. Grant M.M., Mistry N., Lunec J., Griffiths H.R. Dose-dependent modulation of the T cell proteome by ascorbic acid. Br. J. Nutr. 2007;97:19–26. doi: 10.1017/S0007114507197592.
    1. Lammermann T. In the eye of the neutrophil swarm-navigation signals that bring neutrophils together in inflamed and infected tissues. J. Leukoc. Biol. 2016;100:55–63. doi: 10.1189/jlb.1MR0915-403.
    1. Demaret J., Venet F., Friggeri A., Cazalis M.A., Plassais J., Jallades L., Malcus C., Poitevin-Later F., Textoris J., Lepape A., et al. Marked alterations of neutrophil functions during sepsis-induced immunosuppression. J. Leukoc. Biol. 2015;98:1081–1090. doi: 10.1189/jlb.4A0415-168RR.
    1. Arraes S.M., Freitas M.S., da Silva S.V., de Paula Neto H.A., Alves-Filho J.C., Auxiliadora Martins M., Basile-Filho A., Tavares-Murta B.M., Barja-Fidalgo C., Cunha F.Q. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood. 2006;108:2906–2913. doi: 10.1182/blood-2006-05-024638.
    1. Chishti A.D., Shenton B.K., Kirby J.A., Baudouin S.V. Neutrophil chemotaxis and receptor expression in clinical septic shock. Intensive Care Med. 2004;30:605–611. doi: 10.1007/s00134-004-2175-y.
    1. Tavares-Murta B.M., Zaparoli M., Ferreira R.B., Silva-Vergara M.L., Oliveira C.H., Murta E.F., Ferreira S.H., Cunha F.Q. Failure of neutrophil chemotactic function in septic patients. Crit. Care Med. 2002;30:1056–1061. doi: 10.1097/00003246-200205000-00017.
    1. Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 2013;13:862–874. doi: 10.1038/nri3552.
    1. Vohra K., Khan A.J., Telang V., Rosenfeld W., Evans H.E. Improvement of neutrophil migration by systemic vitamin C in neonates. J. Perinatol. 1990;10:134–136.
    1. Roos D. Chronic granulomatous disease. Br. Med. Bull. 2016;118:50–63. doi: 10.1093/bmb/ldw009.
    1. Introne W., Boissy R.E., Gahl W.A. Clinical, molecular, and cell biological aspects of Chediak-Higashi syndrome. Mol. Genet. Metab. 1999;68:283–303. doi: 10.1006/mgme.1999.2927.
    1. Anderson R., Dittrich O.C. Effects of ascorbate on leucocytes: Part IV. Increased neutrophil function and clinical improvement after oral ascorbate in 2 patients with chronic granulomatous disease. S. Afr. Med. J. 1979;56:476–480.
    1. Anderson R. Assessment of oral ascorbate in three children with chronic granulomatous disease and defective neutrophil motility over a 2-year period. Clin. Exp. Immunol. 1981;43:180–188.
    1. Anderson R. Effects of ascorbate on normal and abnormal leucocyte functions. Int. J. Vitam. Nutr. Res. Suppl. 1982;23:23–34.
    1. Gallin J.I., Elin R.J., Hubert R.T., Fauci A.S., Kaliner M.A., Wolff S.M. Efficacy of ascorbic acid in Chediak-Higashi syndrome (CHS): Studies in humans and mice. Blood. 1979;53:226–234.
    1. Boxer L.A., Watanabe A.M., Rister M., Besch H.R., Jr., Allen J., Baehner R.L. Correction of leukocyte function in Chediak-Higashi syndrome by ascorbate. N. Engl. J. Med. 1976;295:1041–1045. doi: 10.1056/NEJM197611042951904.
    1. Yegin O., Sanal O., Yeralan O., Gurgey A., Berkel A.I. Defective lymphocyte locomotion in Chediak-Higashi syndrome. Am. J. Dis. Child. 1983;137:771–773.
    1. Weening R.S., Schoorel E.P., Roos D., van Schaik M.L., Voetman A.A., Bot A.A., Batenburg-Plenter A.M., Willems C., Zeijlemaker W.P., Astaldi A. Effect of ascorbate on abnormal neutrophil, platelet and lymphocytic function in a patient with the Chediak-Higashi syndrome. Blood. 1981;57:856–865.
    1. Boxer L.A., Vanderbilt B., Bonsib S., Jersild R., Yang H.H., Baehner R.L. Enhancement of chemotactic response and microtubule assembly in human leukocytes by ascorbic acid. J. Cell. Physiol. 1979;100:119–126. doi: 10.1002/jcp.1041000112.
    1. Boxer L.A., Albertini D.F., Baehner R.L., Oliver J.M. Impaired microtubule assembly and polymorphonuclear leucocyte function in the Chediak-Higashi syndrome correctable by ascorbic acid. Br. J. Haematol. 1979;43:207–213. doi: 10.1111/j.1365-2141.1979.tb03743.x.
    1. Parker W.H., Rhea E.M., Qu Z.C., Hecker M.R., May J.M. Intracellular ascorbate tightens the endothelial permeability barrier through Epac1 and the tubulin cytoskeleton. Am. J. Physiol. Cell Physiol. 2016;311:C652–C662. doi: 10.1152/ajpcell.00076.2016.
    1. Bozonet S.M., Carr A.C., Pullar J.M., Vissers M.C.M. Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients. 2015;7:2574–2588. doi: 10.3390/nu7042574.
    1. De la Fuente M., Ferrandez M.D., Burgos M.S., Soler A., Prieto A., Miquel J. Immune function in aged women is improved by ingestion of vitamins C and E. Can. J. Physiol. Pharmacol. 1998;76:373–380. doi: 10.1139/y98-038.
    1. Winterbourn C.C., Kettle A.J., Hampton M.B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 2016;85:765–792. doi: 10.1146/annurev-biochem-060815-014442.
    1. Patrone F., Dallegri F., Bonvini E., Minervini F., Sacchetti C. Effects of ascorbic acid on neutrophil function. Studies on normal and chronic granulomatous disease neutrophils. Acta Vitaminol. Enzymol. 1982;4:163–168.
    1. Foroozanfar N., Lucas C.F., Joss D.V., Hugh-Jones K., Hobbs J.R. Ascorbate (1 g/day) does not help the phagocyte killing defect of X-linked chronic granulomatous disease. Clin. Exp. Immunol. 1983;51:99–102.
    1. Hampton M.B., Kettle A.J., Winterbourn C.C. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92:3007–3017.
    1. Wenisch C., Graninger W. Are soluble factors relevant for polymorphonuclear leukocyte dysregulation in septicemia? Clin. Diagn. Lab. Immunol. 1995;2:241–245.
    1. Danikas D.D., Karakantza M., Theodorou G.L., Sakellaropoulos G.C., Gogos C.A. Prognostic value of phagocytic activity of neutrophils and monocytes in sepsis. Correlation to CD64 and CD14 antigen expression. Clin. Exp. Immunol. 2008;154:87–97. doi: 10.1111/j.1365-2249.2008.03737.x.
    1. Stephan F., Yang K., Tankovic J., Soussy C.J., Dhonneur G., Duvaldestin P., Brochard L., Brun-Buisson C., Harf A., Delclaux C. Impairment of polymorphonuclear neutrophil functions precedes nosocomial infections in critically ill patients. Crit. Care Med. 2002;30:315–322. doi: 10.1097/00003246-200202000-00009.
    1. McGovern N.N., Cowburn A.S., Porter L., Walmsley S.R., Summers C., Thompson A.A., Anwar S., Willcocks L.C., Whyte M.K., Condliffe A.M., et al. Hypoxia selectively inhibits respiratory burst activity and killing of Staphylococcus aureus in human neutrophils. J. Immunol. 2011;186:453–463. doi: 10.4049/jimmunol.1002213.
    1. Drifte G., Dunn-Siegrist I., Tissieres P., Pugin J. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit. Care Med. 2013;41:820–832. doi: 10.1097/CCM.0b013e318274647d.
    1. Bass D.A., Olbrantz P., Szejda P., Seeds M.C., McCall C.E. Subpopulations of neutrophils with increased oxidative product formation in blood of patients with infection. J. Immunol. 1986;136:860–866.
    1. Pillay J., Ramakers B.P., Kamp V.M., Loi A.L., Lam S.W., Hietbrink F., Leenen L.P., Tool A.T., Pickkers P., Koenderman L. Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia. J. Leukoc. Biol. 2010;88:211–220. doi: 10.1189/jlb.1209793.
    1. Wenisch C., Fladerer P., Patruta S., Krause R., Horl W. Assessment of neutrophil function in patients with septic shock: Comparison of methods. Clin. Diagn. Lab. Immunol. 2001;8:178–180. doi: 10.1128/CDLI.8.1.178-180.2001.
    1. Fox S., Leitch A.E., Duffin R., Haslett C., Rossi A.G. Neutrophil apoptosis: Relevance to the innate immune response and inflammatory disease. J. Innate Immun. 2010;2:216–227. doi: 10.1159/000284367.
    1. Hampton M.B., Fadeel B., Orrenius S. Redox regulation of the caspases during apoptosis. Ann. N. Y. Acad. Sci. 1998;854:328–335. doi: 10.1111/j.1749-6632.1998.tb09913.x.
    1. Fadeel B., Ahlin A., Henter J.I., Orrenius S., Hampton M.B. Involvement of caspases in neutrophil apoptosis: Regulation by reactive oxygen species. Blood. 1998;92:4808–4818.
    1. Wilkie R.P., Vissers M.C., Dragunow M., Hampton M.B. A functional NADPH oxidase prevents caspase involvement in the clearance of phagocytic neutrophils. Infect. Immun. 2007;75:3256–3263. doi: 10.1128/IAI.01984-06.
    1. Keel M., Ungethum U., Steckholzer U., Niederer E., Hartung T., Trentz O., Ertel W. Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood. 1997;90:3356–3363.
    1. Jimenez M.F., Watson R.W., Parodo J., Evans D., Foster D., Steinberg M., Rotstein O.D., Marshall J.C. Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch. Surg. 1997;132:1263–1269. doi: 10.1001/archsurg.1997.01430360009002.
    1. Harter L., Mica L., Stocker R., Trentz O., Keel M. Mcl-1 correlates with reduced apoptosis in neutrophils from patients with sepsis. J. Am. Coll. Surg. 2003;197:964–973. doi: 10.1016/j.jamcollsurg.2003.07.008.
    1. Taneja R., Parodo J., Jia S.H., Kapus A., Rotstein O.D., Marshall J.C. Delayed neutrophil apoptosis in sepsis is associated with maintenance of mitochondrial transmembrane potential and reduced caspase-9 activity. Crit. Care Med. 2004;32:1460–1469. doi: 10.1097/01.CCM.0000129975.26905.77.
    1. Fotouhi-Ardakani N., Kebir D.E., Pierre-Charles N., Wang L., Ahern S.P., Filep J.G., Milot E. Role for myeloid nuclear differentiation antigen in the regulation of neutrophil apoptosis during sepsis. Am. J. Respir. Crit. Care Med. 2010;182:341–350. doi: 10.1164/rccm.201001-0075OC.
    1. Paunel-Gorgulu A., Flohe S., Scholz M., Windolf J., Logters T. Increased serum soluble Fas after major trauma is associated with delayed neutrophil apoptosis and development of sepsis. Crit. Care. 2011;15:R20. doi: 10.1186/cc9965.
    1. Paunel-Gorgulu A., Kirichevska T., Logters T., Windolf J., Flohe S. Molecular mechanisms underlying delayed apoptosis in neutrophils from multiple trauma patients with and without sepsis. Mol. Med. 2012;18:325–335. doi: 10.2119/molmed.2011.00380.
    1. Tamayo E., Gomez E., Bustamante J., Gomez-Herreras J.I., Fonteriz R., Bobillo F., Bermejo-Martin J.F., Castrodeza J., Heredia M., Fierro I., et al. Evolution of neutrophil apoptosis in septic shock survivors and nonsurvivors. J. Crit. Care. 2012;27:415. doi: 10.1016/j.jcrc.2011.09.001.
    1. Fialkow L., Fochesatto Filho L., Bozzetti M.C., Milani A.R., Rodrigues Filho E.M., Ladniuk R.M., Pierozan P., de Moura R.M., Prolla J.C., Vachon E., et al. Neutrophil apoptosis: A marker of disease severity in sepsis and sepsis-induced acute respiratory distress syndrome. Crit. Care. 2006;10:R155. doi: 10.1186/cc5090.
    1. Ertel W., Keel M., Infanger M., Ungethum U., Steckholzer U., Trentz O. Circulating mediators in serum of injured patients with septic complications inhibit neutrophil apoptosis through up-regulation of protein-tyrosine phosphorylation. J. Trauma. 1998;44:767–775. doi: 10.1097/00005373-199805000-00005.
    1. Parlato M., Souza-Fonseca-Guimaraes F., Philippart F., Misset B., Adib-Conquy M., Cavaillon J.M. CD24-triggered caspase-dependent apoptosis via mitochondrial membrane depolarization and reactive oxygen species production of human neutrophils is impaired in sepsis. J. Immunol. 2014;192:2449–2459. doi: 10.4049/jimmunol.1301055.
    1. Colotta F., Re F., Polentarutti N., Sozzani S., Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood. 1992;80:2012–2020.
    1. Mikirova N., Riordan N., Casciari J. Modulation of Cytokines in Cancer Patients by Intravenous Ascorbate Therapy. Med. Sci. Monit. 2016;22:14–25. doi: 10.12659/MSM.895368.
    1. Ferron-Celma I., Mansilla A., Hassan L., Garcia-Navarro A., Comino A.M., Bueno P., Ferron J.A. Effect of vitamin C administration on neutrophil apoptosis in septic patients after abdominal surgery. J. Surg. Res. 2009;153:224–230. doi: 10.1016/j.jss.2008.04.024.
    1. Pechous R.D. With Friends like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia. Front. Cell. Infect. Microbiol. 2017;7:160. doi: 10.3389/fcimb.2017.00160.
    1. Zawrotniak M., Rapala-Kozik M. Neutrophil extracellular traps (NETs)—Formation and implications. Acta Biochim. Pol. 2013;60:277–284.
    1. Fuchs T.A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V., Weinrauch Y., Brinkmann V., Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007;176:231–241. doi: 10.1083/jcb.200606027.
    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385.
    1. Parker H., Albrett A.M., Kettle A.J., Winterbourn C.C. Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J. Leukoc. Biol. 2012;91:369–376. doi: 10.1189/jlb.0711387.
    1. Czaikoski P.G., Mota J.M., Nascimento D.C., Sonego F., Castanheira F.V., Melo P.H., Scortegagna G.T., Silva R.L., Barroso-Sousa R., Souto F.O., et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS ONE. 2016;11:e0148142. doi: 10.1371/journal.pone.0148142.
    1. Camicia G., Pozner R., de Larranaga G. Neutrophil extracellular traps in sepsis. Shock. 2014;42:286–294. doi: 10.1097/SHK.0000000000000221.
    1. Silk E., Zhao H., Weng H., Ma D. The role of extracellular histone in organ injury. Cell Death Dis. 2017;8:e2812. doi: 10.1038/cddis.2017.52.
    1. Margraf S., Logters T., Reipen J., Altrichter J., Scholz M., Windolf J. Neutrophil-derived circulating free DNA (cf-DNA/NETs): A potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis. Shock. 2008;30:352–358. doi: 10.1097/SHK.0b013e31816a6bb1.
    1. Natarajan R., Fisher B.J., Syed A.A., Fowler A.A. Impact of intravenous ascorbic acid infusion on novel biomarkers in patients with severe sepsis. J. Pulm. Respir. Med. 2014;4:8. doi: 10.4172/2161-105X.1000214.
    1. Elks P.M., van Eeden F.J., Dixon G., Wang X., Reyes-Aldasoro C.C., Ingham P.W., Whyte M.K., Walmsley S.R., Renshaw S.A. Activation of hypoxia-inducible factor-1alpha (Hif-1alpha) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood. 2011;118:712–722. doi: 10.1182/blood-2010-12-324186.
    1. Hirota K., Semenza G.L. Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem. Biophys. Res. Commun. 2005;338:610–616. doi: 10.1016/j.bbrc.2005.08.193.
    1. McInturff A.M., Cody M.J., Elliott E.A., Glenn J.W., Rowley J.W., Rondina M.T., Yost C.C. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 alpha. Blood. 2012;120:3118–3125. doi: 10.1182/blood-2012-01-405993.
    1. Hong J.M., Kim J.H., Kang J.S., Lee W.J., Hwang Y.I. Vitamin C is taken up by human T cells via sodium-dependent vitamin C transporter 2 (SVCT2) and exerts inhibitory effects on the activation of these cells in vitro. Anat. Cell Biol. 2016;49:88–98. doi: 10.5115/acb.2016.49.2.88.
    1. Bergsten P., Yu R., Kehrl J., Levine M. Ascorbic acid transport and distribution in human B lymphocytes. Arch. Biochem. Biophys. 1995;317:208–214. doi: 10.1006/abbi.1995.1155.
    1. Lenton K.J., Therriault H., Fulop T., Payette H., Wagner J.R. Glutathione and ascorbate are negatively correlated with oxidative DNA damage in human lymphocytes. Carcinogenesis. 1999;20:607–613. doi: 10.1093/carcin/20.4.607.
    1. Campbell J.D., Cole M., Bunditrutavorn B., Vella A.T. Ascorbic acid is a potent inhibitor of various forms of T cell apoptosis. Cell. Immunol. 1999;194:1–5. doi: 10.1006/cimm.1999.1485.
    1. Huijskens M.J., Walczak M., Sarkar S., Atrafi F., Senden-Gijsbers B.L., Tilanus M.G., Bos G.M., Wieten L., Germeraad W.T. Ascorbic acid promotes proliferation of natural killer cell populations in culture systems applicable for natural killer cell therapy. Cytotherapy. 2015;17:613–620. doi: 10.1016/j.jcyt.2015.01.004.
    1. Penn N.D., Purkins L., Kelleher J., Heatley R.V., Mascie-Taylor B.H., Belfield P.W. The effect of dietary supplementation with vitamins A, C and E on cell-mediated immune function in elderly long-stay patients: A randomized controlled trial. Age Ageing. 1991;20:169–174. doi: 10.1093/ageing/20.3.169.
    1. Heuser G., Vojdani A. Enhancement of natural killer cell activity and T and B cell function by buffered vitamin C in patients exposed to toxic chemicals: The role of protein kinase-C. Immunopharmacol. Immunotoxicol. 1997;19:291–312. doi: 10.3109/08923979709046977.
    1. Sasidharan Nair V., Song M.H., Oh K.I. Vitamin C Facilitates Demethylation of the Foxp3 Enhancer in a Tet-Dependent Manner. J. Immunol. 2016;196:2119–2131. doi: 10.4049/jimmunol.1502352.
    1. Nikolouli E., Hardtke-Wolenski M., Hapke M., Beckstette M., Geffers R., Floess S., Jaeckel E., Huehn J. Alloantigen-Induced Regulatory T Cells Generated in Presence of Vitamin C Display Enhanced Stability of Foxp3 Expression and Promote Skin Allograft Acceptance. Front. Immunol. 2017;8:748. doi: 10.3389/fimmu.2017.00748.
    1. Monfort A., Wutz A. Breathing-in epigenetic change with vitamin C. EMBO Rep. 2013;14:337–346. doi: 10.1038/embor.2013.29.
    1. Song C.X., He C. Potential functional roles of DNA demethylation intermediates. Trends Biochem. Sci. 2013;38:480–484. doi: 10.1016/j.tibs.2013.07.003.
    1. Johnston C.S., Barkyoumb G.M., Schumacher S.S. Vitamin C supplementation slightly improves physical activity levels and reduces cold incidence in men with marginal vitamin C status: A randomized controlled trial. Nutrients. 2014;6:2572–2583. doi: 10.3390/nu6072572.
    1. Haryanto B., Suksmasari T., Wintergerst E., Maggini S. Multivitamin supplementation supports immune function and ameliorates conditions triggered by reduced air quality. Vitam. Miner. 2015;4:1–15.
    1. Romieu I., Castro-Giner F., Kunzli N., Sunyer J. Air pollution, oxidative stress and dietary supplementation: A review. Eur. Respir. J. 2008;31:179–196. doi: 10.1183/09031936.00128106.
    1. Kelly F., Dunster C., Mudway I. Air pollution and the elderly: Oxidant/antioxidant issues worth consideration. Eur. Respir. J. 2003;21:70s–75s. doi: 10.1183/09031936.03.00402903.
    1. Marmot A., Eley J., Stafford M., Stansfeld S., Warwick E., Marmot M. Building health: An epidemiological study of “sick building syndrome” in the Whitehall II study. Occup. Environ. Med. 2006;63:283–289. doi: 10.1136/oem.2005.022889.
    1. Pozzer A., Zimmermann P., Doering U., van Aardenne J., Tost H., Dentener F., Janssens-Maenhout G., Lelieveld J. Effects of business-as-usual anthropogenic emissions on air quality. Atmos. Chem. Phys. 2012;12:6915–6937. doi: 10.5194/acp-12-6915-2012.
    1. Sram R.J., Binkova B., Rossner P., Jr. Vitamin C for DNA damage prevention. Mutat. Res. 2012;733:39–49. doi: 10.1016/j.mrfmmm.2011.12.001.
    1. Tribble D., Giuliano L., Fortmann S. Reduced plasma ascorbic acid concentrations in nonsmokers regularly exposed to environmental tobacco smoke. Am. J. Clin. Nutr. 1993;58:886–890.
    1. Valkonen M., Kuusi T. Passive smoking induces atherogenic changes in low-density lipoprotein. Circulation. 1998;97:2012–2016. doi: 10.1161/01.CIR.97.20.2012.
    1. Schectman G., Byrd J.C., Hoffmann R. Ascorbic acid requirements for smokers: Analysis of a population survey. Am. J. Clin. Nutr. 1991;53:1466–1470.
    1. Preston A.M., Rodriguez C., Rivera C.E., Sahai H. Influence of environmental tobacco smoke on vitamin C status in children. Am. J. Clin. Nutr. 2003;77:167–172.
    1. Strauss R. Environmental tobacco smoke and serum vitamin C levels in children. Pediatrics. 2001;107:540–542. doi: 10.1542/peds.107.3.540.
    1. Panda K., Chattopadhyay R., Chattopadhyay D.J., Chatterjee I.B. Vitamin C prevents cigarette smoke-induced oxidative damage in vivo. Free Radic. Biol. Med. 2000;29:115–124. doi: 10.1016/S0891-5849(00)00297-5.
    1. Dietrich M., Block G., Benowitz N., Morrow J., Hudes M., Jacob P., III, Norkus E., Packer L. Vitamin C supplementation decreases oxidative stress biomarker f2-isoprostanes in plasma of nonsmokers exposed to environmental tobacco smoke. Nutr. Cancer. 2003;45:176–184. doi: 10.1207/S15327914NC4502_06.
    1. Bagaitkar J., Demuth D., Scott D. Tobacco use increases susceptibility to bacterial infection. Tob. Induc. Dis. 2008;4:12. doi: 10.1186/1617-9625-4-12.
    1. Arcavi L., Benowitz N.L. Cigarette smoking and infection. Arch. Intern. Med. 2004;164:2206–2216. doi: 10.1001/archinte.164.20.2206.
    1. Sargeant L., Jaeckel A., Wareham N. Interaction of vitamin C with the relation between smoking and obstructive airways disease in EPIC Norfolk. European Prospective Investigation into Cancer and Nutrition. Eur. Respir. J. 2000;16:397–403. doi: 10.1034/j.1399-3003.2000.016003397.x.
    1. Peleg A.Y., Weerarathna T., McCarthy J.S., Davis T.M. Common infections in diabetes: Pathogenesis, management and relationship to glycaemic control. Diabetes Metab. Res. Rev. 2007;23:3–13. doi: 10.1002/dmrr.682.
    1. Narayan K.M.V., Williams D., Gregg E.W., Cowie C.C., editors. Diabetes Public Health: From Data to Policy. Oxford University Press; Oxford, UK: 2011.
    1. Pirola L., Ferraz J. Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World J. Biol. Chem. 2017;8:120–128. doi: 10.4331/wjbc.v8.i2.120.
    1. Donath M. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat. Rev. Drug Discov. 2014;13:465–476. doi: 10.1038/nrd4275.
    1. Ferrante A.W., Jr. Macrophages, fat, and the emergence of immunometabolism. J. Clin. Investig. 2013;123:4992–4993. doi: 10.1172/JCI73658.
    1. Osborn O., Olefsky J.M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 2012;18:363–374. doi: 10.1038/nm.2627.
    1. Wilson R., Willis J., Gearry R., Skidmore P., Fleming E., Frampton C., Carr A. Inadequate vitamin C status in prediabetes and type 2 diabetes mellitus: Associations with glycaemic control, obesity, and smoking. Nutrients. 2017;9:997. doi: 10.3390/nu9090997.
    1. Maggini S., Wenzlaff S., Hornig D. Essential role of vitamin C and zinc in child immunity and health. J. Int. Med. Res. 2010;38:386–414. doi: 10.1177/147323001003800203.
    1. Wintergerst E., Maggini S., Hornig D. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann. Nutr. Metab. 2006;50:85–94. doi: 10.1159/000090495.
    1. Harding A.H., Wareham N.J., Bingham S.A., Khaw K., Luben R., Welch A., Forouhi N.G. Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: The European prospective investigation of cancer—Norfolk prospective study. Arch. Intern. Med. 2008;168:1493–1499. doi: 10.1001/archinte.168.14.1493.
    1. Kositsawat J., Freeman V.L. Vitamin C and A1c relationship in the National Health and Nutrition Examination Survey (NHANES) 2003–2006. J. Am. Coll. Nutr. 2011;30:477–483. doi: 10.1080/07315724.2011.10719993.
    1. Carter P., Gray L.J., Talbot D., Morris D.H., Khunti K., Davies M.J. Fruit and vegetable intake and the association with glucose parameters: A cross-sectional analysis of the Let’s Prevent Diabetes Study. Eur. J. Clin. Nutr. 2013;67:12–17. doi: 10.1038/ejcn.2012.174.
    1. Mazloom Z., Hejazi N., Dabbaghmanesh M.H., Tabatabaei H.R., Ahmadi A., Ansar H. Effect of vitamin C supplementation on postprandial oxidative stress and lipid profile in type 2 diabetic patients. Pak. J. Biol. Sci. 2011;14:900–904.
    1. Ashor A.W., Werner A.D., Lara J., Willis N.D., Mathers J.C., Siervo M. Effects of vitamin C supplementation on glycaemic control: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Clin. Nutr. 2017 doi: 10.1038/ejcn.2017.24.
    1. Hajishengallis G. Too old to fight? Aging and its toll on innate immunity. Mol. Oral Microbiol. 2010;25:25–37. doi: 10.1111/j.2041-1014.2009.00562.x.
    1. Cheng L., Cohen M., Bhagavan H. Vitamin C and the elderly. In: Watson R., editor. CRC Handbook of Nutrition in the Aged. CRC Press Inc.; Boca Raton, FL, USA: 1985. pp. 157–185.
    1. Simon J., Hudes E., Tice J. Relation of serum ascorbic acid to mortality among US adults. J. Am. Coll. Nutr. 2001;20:255–263. doi: 10.1080/07315724.2001.10719040.
    1. Fletcher A., Breeze E., Shetty P. Antioxidant vitamins and mortality in older persons: Findings from the nutrition add-on study to the Medical Research Council Trial of Assessment and Management of Older People in the Community. Am. J. Clin. Nutr. 2003;78:999–1010.
    1. Thurman J., Mooradian A. Vitamin supplementation therapy in the elderly. Drugs Aging. 1997;11:433–449. doi: 10.2165/00002512-199711060-00003.
    1. Hanck A. Vitamin C in the elderly. Int. J. Vitam. Nutr. Res. Suppl. 1983;24:257–269.
    1. Schorah C.J. The level of vitamin C reserves required in man: Towards a solution to the controversy. Proc. Nutr. Soc. 1981;40:147–154. doi: 10.1079/PNS19810023.
    1. Hunt C., Chakravorty N., Annan G. The clinical and biochemical effects of vitamin C supplementation in short-stay hospitalized geriatric patients. Int. J. Vitam. Nutr. Res. 1984;54:65–74.
    1. Mayland C.R., Bennett M.I., Allan K. Vitamin C deficiency in cancer patients. Palliat. Med. 2005;19:17–20. doi: 10.1191/0269216305pm970oa.
    1. Danai P.A., Moss M., Mannino D.M., Martin G.S. The epidemiology of sepsis in patients with malignancy. Chest. 2006;129:1432–1440. doi: 10.1378/chest.129.6.1432.
    1. Gan R., Eintracht S., Hoffer L.J. Vitamin C deficiency in a university teaching hospital. J. Am. Coll. Nutr. 2008;27:428–433. doi: 10.1080/07315724.2008.10719721.
    1. Bakaev V.V., Duntau A.P. Ascorbic acid in blood serum of patients with pulmonary tuberculosis and pneumonia. Int. J. Tuberc. Lung Dis. 2004;8:263–266.
    1. Hunt C., Chakravorty N.K., Annan G., Habibzadeh N., Schorah C.J. The clinical effects of vitamin C supplementation in elderly hospitalised patients with acute respiratory infections. Int. J. Vitam. Nutr. Res. 1994;64:212–219.
    1. Bharara A., Grossman C., Grinnan D., Syed A.A., Fisher B.J., DeWilde C., Natarajan R., Fowler A.A. Intravenous vitamin C administered as adjunctive therapy for recurrent acute respiratory distress syndrome. Case Rep. Crit. Care. 2016;2016:8560871. doi: 10.1155/2016/8560871.
    1. Fowler A.A., Kim C., Lepler L., Malhotra R., Debesa O., Natarajan R., Fisher B.J., Syed A., DeWilde C., Priday A., et al. Intravenous vitamin C as adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress syndrome. World J. Crit. Care Med. 2017;6:85–90. doi: 10.5492/wjccm.v6.i1.85.
    1. Hemila H., Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev. 2013;1:CD000980.
    1. Hemila H. Vitamin C and the common cold. Br. J. Nutr. 1992;67:3–16. doi: 10.1079/BJN19920004.
    1. Hume R., Weyers E. Changes in leucocyte ascorbic acid during the common cold. Scott. Med. J. 1973;18:3–7. doi: 10.1177/003693307301800102.
    1. Wilson C.W. Ascorbic acid function and metabolism during colds. Ann. N. Y. Acad. Sci. 1975;258:529–539. doi: 10.1111/j.1749-6632.1975.tb29312.x.
    1. Schwartz A.R., Togo Y., Hornick R.B., Tominaga S., Gleckman R.A. Evaluation of the efficacy of ascorbic acid in prophylaxis of induced rhinovirus 44 infection in man. J. Infect. Dis. 1973;128:500–505. doi: 10.1093/infdis/128.4.500.
    1. Davies J.E., Hughes R.E., Jones E., Reed S.E., Craig J.W., Tyrrell D.A. Metabolism of ascorbic acid (vitamin C) in subjects infected with common cold viruses. Biochem. Med. 1979;21:78–85. doi: 10.1016/0006-2944(79)90058-9.
    1. Mochalkin N. Ascorbic acid in the complex therapy of acute pneumonia. [(accessed on 5 December 2014)];Voen. Med. Zhurnal. 1970 9:17–21. Available online: .
    1. Hemila H., Louhiala P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst. Rev. 2013;8:CD005532.

Source: PubMed

3
Suscribir