Saffron: A Natural Potent Antioxidant as a Promising Anti-Obesity Drug

Maryam Mashmoul, Azrina Azlan, Huzwah Khaza'ai, Barakatun Nisak Mohd Yusof, Sabariah Mohd Noor, Maryam Mashmoul, Azrina Azlan, Huzwah Khaza'ai, Barakatun Nisak Mohd Yusof, Sabariah Mohd Noor

Abstract

Obesity is associated with various diseases, particularly diabetes, hypertension, osteoarthritis and heart disease. Research on possibilities of herbal extracts and isolated compounds from natural products for treating obesity has an upward trend. Saffron (Crocus Sativus L. Iridaceae) is a source of plant polyphenols/carotenoids, used as important spice and food colorant in different parts of the world. It has also been used in traditional medicine for treatment of different types of illnesses since ancient times. Many of these medicinal properties of saffron can be attributed to a number of its compounds such as crocetin, crocins and other substances having strong antioxidant and radical scavenger properties against a variety of radical oxygen species and pro-inflammatory cytokines. The aim of this article is to assess the potential role of saffron and its constituents in the regulation of metabolic functions, which can beneficially alter obesity pathophysiology.

Keywords: antioxidant; crocin; obesity; overweight; saffron; weight loss.

Figures

Figure 1
Figure 1
Chemical composition of the most active constituents of saffron.
Figure 2
Figure 2
Schematic of possible anti-obesity effect of saffron compounds.

References

    1. World Health Organization Obesity and Overweight—Factsheet No. 311. Sep, 2006. [(accessed on 18 January 2011)]. Available online: .
    1. Mayer M.A., Hocht C., Puyó A., Taira C.A. Recent advances in obesity pharmacotherapy. Curr. Clin. Pharmacol. 2009;4:53–61. doi: 10.2174/157488409787236128.
    1. Nakayama T., Suzuki S., Kudo H., Sassa S., Nomura M., Sakamoto S. Effects of three Chinese herbal medicines on plasma and liver lipids in mice fed a high-fat diet. J. Ethnopharmacol. 2007;109:236–240. doi: 10.1016/j.jep.2006.07.041.
    1. Moro C., Basile G. Obesity and medicinal plants. Fitoterapia. 2000;71:S73–S82. doi: 10.1016/S0367-326X(00)00177-5.
    1. Rayalam S., Della-Fera M.A., Baile C.A. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 2008;19:717–726. doi: 10.1016/j.jnutbio.2007.12.007.
    1. Han L.-K., Kimura Y., Okuda H. Anti-obesity effects of natural products. Stud. Nat. Prod. Chem. 2005;30:79–110. doi: 10.1016/S1572-5995(05)80031-6.
    1. Fernández J.-A., Pandalai S. Biology, biotechnology and biomedicine of saffron. Recent Res. Dev. Plant Sci. 2004;2:127–159.
    1. Bathaie S.Z., Mousavi S.Z. New applications and mechanisms of action of saffron and its important ingredients. Crit. Rev. Food Sci. Nutr. 2010;50:761–786. doi: 10.1080/10408390902773003.
    1. Hasani-Ranjbar S., Larijani B., Abdollahi M. A systematic review of the potential herbal sources of future drugs effective in oxidant-related diseases. Inflamm. Allergy Drug Targets. 2009;8:2–10. doi: 10.2174/187152809787582561.
    1. García-Lafuente A., Guillamón E., Villares A., Rostagno M.A., Martínez J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009;58:537–552. doi: 10.1007/s00011-009-0037-3.
    1. Terra X., Montagut G., Bustos M., Llopiz N., Ardèvol A., Bladé C., Fernández-Larrea J., Pujadas G., Salvadó J., Arola L. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J. Nutr. Biochem. 2009;20:210–218. doi: 10.1016/j.jnutbio.2008.02.005.
    1. Slanc P., Doljak B., Kreft S., Lunder M., Janeš D., Štrukelj B. Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition. Phytother. Res. 2009;23:874–877. doi: 10.1002/ptr.2718.
    1. Birari R.B., Bhutani K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today. 2007;12:879–889. doi: 10.1016/j.drudis.2007.07.024.
    1. Chen Y., Zhang H., Tian X., Zhao C., Cai L., Liu Y., Jia L., Yin H.-X., Chen C. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ellis and Crocus sativus L.: A relationship investigation between antioxidant activity and crocin contents. Food Chem. 2008;109:484–492. doi: 10.1016/j.foodchem.2007.09.080.
    1. Rios J., Recio M., Giner R., Manez S. An update review of saffron and its active constituents. Phytother. Res. 1996;10:189–193. doi: 10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>;2-C.
    1. Abdullaev F.I. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.) Exp. Biol. Med. 2002;227:20–25.
    1. Nair S.C., Kurumboor S., Hasegawa J. Saffron chemoprevention in biology and medicine: A review. Cancer Biother. Radiopharm. 1995;10:257–264. doi: 10.1089/cbr.1995.10.257.
    1. Verma S., Bordia A. Antioxidant property of saffron in man. Indian J. Med. Sci. 1998;52:205–207.
    1. Giaccio M. Crocetin from saffron: An active component of an ancient spice. Crit. Rev. Food Sci. Nutr. 2004;44:155–172. doi: 10.1080/10408690490441433.
    1. Kamalipour M., Akhondzadeh S. Cardiovascular effects of saffron: An evidence-based review. J. Tehran Univ. Heart Cent. 2011;6:59–61.
    1. Assimopoulou A., Sinakos Z., Papageorgiou V. Radical scavenging activity of Crocus sativus L. Extract and its bioactive constituents. Phytother. Res. 2005;19:997–1000. doi: 10.1002/ptr.1749.
    1. He S.-Y., Qian Z.-Y., Tang F.-T., Wen N., Xu G.-L., Sheng L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 2005;77:907–921. doi: 10.1016/j.lfs.2005.02.006.
    1. Winterhalter P., Straubinger M. Saffron—Renewed interest in an ancient spice. Food Rev. Int. 2000;16:39–59. doi: 10.1081/FRI-100100281.
    1. Padwal R., Li S., Lau D. Long-term pharmacotherapy for overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. Int. J. Obes. 2003;27:1437–1446. doi: 10.1038/sj.ijo.0802475.
    1. Rothman R.B. Treatment of obesity with “combination” pharmacotherapy. Am. J. Ther. 2010;17:596–603. doi: 10.1097/MJT.0b013e31818e30da.
    1. Singla R.K., Bhat V.G. Crocin: An overview. Indo Glob. J. Pharm. Sci. 2011;1:281–286.
    1. Akhondzadeh B.A., Ghoreishi S.A., Noorbala A.A., Akhondzadeh S.H., Rezazadeh S.H. Petal and stigma of Crocus sativus L. in the treatment of depression: A pilot double-blind randomized trial. J. Med. Plants. 2008;7:29–36.
    1. Asai A., Nakano T., Takahashi M., Nagao A. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J. Agric. Food Chem. 2005;53:7302–7306. doi: 10.1021/jf0509355.
    1. Xi L., Qian Z., Du P., Fu J. Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine. 2007;14:633–636. doi: 10.1016/j.phymed.2006.11.028.
    1. Abdullaev F., Espinosa-Aguirre J. Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect. Prev. 2004;28:426–432. doi: 10.1016/j.cdp.2004.09.002.
    1. Abdullaev F.I. Antitumor Effect of Saffron (Crocus sativus L.): Overview and Perspectives; Proceedings of I International Symposium on Saffron Biology and Biotechnology 650; Albacete, Spain. 22–25 October 200; pp. 491–499.
    1. Gutheil W.G., Reed G., Ray A., Anant S., Dhar A. Crocetin: An agent derived from saffron for prevention and therapy for cancer. Curr. Pharm. Biotechnol. 2012;13:173–179. doi: 10.2174/138920112798868566.
    1. Abdullaev F., Riveron-Negrete L., Caballero-Ortega H., Manuel Hernandez J., Perez-Lopez I., Pereda-Miranda R., Espinosa-Aguirre J. Use of in vitro assays to assess the potential antigenotoxic and cytotoxic effects of saffron (Crocus sativus L.) Toxicol. In Vitro. 2003;17:731–736. doi: 10.1016/S0887-2333(03)00098-5.
    1. Kanakis C.D., Tarantilis P.A., Tajmir-Riahi H.A., Polissiou M.G. Crocetin, dimethylcrocetin, and safranal bind human serum albumin: Stability and antioxidative properties. J. Agric. Food Chem. 2007;55:970–977. doi: 10.1021/jf062638l.
    1. Papandreou M.A., Kanakis C.D., Polissiou M.G., Efthimiopoulos S., Cordopatis P., Margarity M., Lamari F.N. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J. Agric. Food Chem. 2006;54:8762–8768. doi: 10.1021/jf061932a.
    1. Charles D.J. Antioxidant Properties of Spices, Herbs and Other Sources. Springer; New York, NY, USA: 2013. Saffron; pp. 509–520.
    1. Hosseinzadeh H., Younesi H.M. Antinociceptive and anti-inflammatory effects of Crocus sativus L. Stigma and petal extracts in mice. BMC Pharmacol. 2002;2:7. doi: 10.1186/1471-2210-2-7.
    1. Poma A., Fontecchio G., Carlucci G., Chichiricco G. Anti-inflammatory properties of drugs from saffron crocus. Antiinflamm. Antiallergy Agents Med. Chem. 2012;11:37–51.
    1. He S.-Y., Qian Z.-Y., Wen N., Tang F.-T., Xu G.-L., Zhou C.-H. Influence of crocetin on experimental atherosclerosis in hyperlipidamic-diet quails. Eur. J. Pharmacol. 2007;554:191–195. doi: 10.1016/j.ejphar.2006.09.071.
    1. Xi L., Qian Z., Shen X., Wen N., Zhang Y. Crocetin prevents dexamethasone-induced insulin resistance in rats. Planta Med. 2005;71:917–922. doi: 10.1055/s-2005-871248.
    1. Plants A., Karaj I. Effects of saffron and its active constituents, crocin and safranal, on prevention of indomethacin induced gastric ulcers in diabetic and nondiabetic rats. J. Med. Plants. 2009;8:30–38.
    1. Shirali S., Zahra Bathaie S., Nakhjavani M. Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytother. Res. 2012;27:1042–1047.
    1. Imenshahidi M., Hosseinzadeh H., Javadpour Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother. Res. 2010;24:990–994.
    1. Sheng L., Qian Z., Zheng S., Xi L. Mechanism of hypolipidemic effect of crocin in rats: Crocin inhibits pancreatic lipase. Eur. J. Pharmacol. 2006;543:116–122. doi: 10.1016/j.ejphar.2006.05.038.
    1. Mohajeri D., Mousavi G., Doustar Y. Antihyperglycemic and pancreas-protective effects of Crocus sativus L. (saffron) stigma ethanolic extract on rats with alloxan-induced diabetes. J. Biol. Sci. 2009;9:302–310. doi: 10.3923/jbs.2009.302.310.
    1. Plants A., Karaj I. Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan-induced diabetic rats. J. Med. Plants. 2011;10:82–89.
    1. Mostafa S., Ebrahiem M., Hasan H. Studies of Effect of Useing Saffron, Cyperus, Manuka Honey and their Combination on Rats Suffering from Hyperglycemia.(i); Proceedings of the 6th Arab and 3rd International Annual Scientific Conference on Development of Higher Specific Education Programs in Egypt and the Arab World in the Light of Knowledge Era Requirements; Cairo, Egype. 13–14 April 2011; pp. 2285–2308.
    1. Hosseinzadeh H., Karimi G., Niapoor M. Antidepressant Effect of Crocus sativus L. Stigma Extracts and their Constituents, Crocin and Safranal, in Mice; Proceedings of I International Symposium on Saffron Biology and Biotechnology 650; Albacete, Spain. 22–25 October 2003; pp. 435–445.
    1. Akhondzadeh S., Tahmacebi-Pour N., Noorbala A.A., Amini H., Fallah-Pour H., Jamshidi A.H., Khani M. Crocus sativus L. in the treatment of mild to moderate depression: A double-blind, randomized and placebo-controlled trial. Phytother. Res. 2005;19:148–151. doi: 10.1002/ptr.1647.
    1. Basti A.A., Moshiri E., Noorbala A.-A., Jamshidi A.-H., Abbasi S.H., Akhondzadeh S. Comparison of petal of Crocus sativus L. and fluoxetine in the treatment of depressed outpatients: A pilot double-blind randomized trial. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2007;31:439–442. doi: 10.1016/j.pnpbp.2006.11.010.
    1. Noorbala A., Akhondzadeh S., Tahmacebi-Pour N., Jamshidi A. Hydro-alcoholic extract of Crocus sativus L. versus fluoxetine in the treatment of mild to moderate depression: A double-blind, randomized pilot trial. Ethnopharmacol. 2005;97:281–284. doi: 10.1016/j.jep.2004.11.004.
    1. Hosseinzadeh H., Sadeghnia H.R., Ghaeni F.A., Motamedshariaty V.S., Mohajeri S.A. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother. Res. 2012;26:381–386.
    1. Hosseinzadeh H., Noraei N.B. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother. Res. 2009;23:768–774. doi: 10.1002/ptr.2597.
    1. Schmidt M., Betti G., Hensel A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien. Med. Wochenschr. 2007;157:315–319. doi: 10.1007/s10354-007-0428-4.
    1. Liu N., Yang Y., Mo S., Liao J., Jin J. Calcium antagonistic effects of chinese crude drugs: Preliminary investigation and evaluation by 45ca. Appl. Radiat. Isot. 2005;63:151–155. doi: 10.1016/j.apradiso.2004.12.011.
    1. Arasteh A., Aliyev A., Khamnei S., Delazar A., Mesgari M., Mehmannavaz Y. Effects of hydromethanolic extract of saffron (Crocus sativus) on serum glucose, insulin and cholesterol levels in healthy male rats. J. Med. Plants Res. 2010;4:397–402.
    1. Xi L., Qian Z., Xu G., Zheng S., Sun S., Wen N., Sheng L., Shi Y., Zhang Y. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J. Nutr. Biochem. 2007;18:64–72. doi: 10.1016/j.jnutbio.2006.03.010.
    1. Mohammad R., Daryoush M., Ali R., Yousef D., Mehrdad N. Attenuation of oxidative stress of hepatic tissue by ethanolic extract of saffron (dried stigmas of Crocus sativus L.) in streptozotocin (stz)-induced diabetic rats. Afr. J. Pharm. Pharmacol. 2011;5:2166–2173.
    1. Thushara R., Hemshekhar M., Santhosh M.S., Jnaneshwari S., Nayaka S., Naveen S., Kemparaju K., Girish K. Crocin, a dietary additive protects platelets from oxidative stress-induced apoptosis and inhibits platelet aggregation. Mol. Cell. Biochem. 2013;373:73–83. doi: 10.1007/s11010-012-1476-7.
    1. Gout B., Bourges C., Paineau-Dubreuil S. Satiereal, a Crocus sativus L. extract, reduces snacking and increases satiety in a randomized placebo-controlled study of mildly overweight, healthy women. Nutr. Res. 2010;30:305–313. doi: 10.1016/j.nutres.2010.04.008.
    1. Anunciato T.P., da Rocha Filho P.A. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J. Cosmet. Dermatol. 2012;11:51–54. doi: 10.1111/j.1473-2165.2011.00600.x.
    1. Kolotkin R.L., Meter K., Williams G.R. Quality of life and obesity. Obes. Rev. 2001;2:219–229. doi: 10.1046/j.1467-789X.2001.00040.x.
    1. Sumithran P., Prendergast L.A., Delbridge E., Purcell K., Shulkes A., Kriketos A., Proietto J. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 2011;365:1597–1604. doi: 10.1056/NEJMoa1105816.
    1. Premkumar K., Abraham S.K., Santhiya S., Ramesh A. Protective effects of saffron (Crocus sativus Linn.) on genotoxins-induced oxidative stress in swiss albino mice. Phytother. Res. 2003;17:614–617. doi: 10.1002/ptr.1209.
    1. Bray G.A. Medical consequences of obesity. J. Clin. Endocrinol. Metab. 2004;89:2583–2589. doi: 10.1210/jc.2004-0535.
    1. Guh D.P., Zhang W., Bansback N., Amarsi Z., Birmingham C.L., Anis A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health. 2009;9 doi: 10.1186/1471-2458-9-88.
    1. Muls E., Kolanowski J., Scheen A., van Gaal L. The effects of orlistat on weight and on serum lipids in obese patients with hypercholesterolemia: A randomized, double-blind, placebo-controlled, multicentre study. Int. J. Obes. Relat. Metab. Disord. 2001;25:1713–1721. doi: 10.1038/sj.ijo.0801814.
    1. Yoshino F., Yoshida A., Umigai N., Kubo K., Lee M.-C. Crocetin reduces the oxidative stress induced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (shrsps) brain. J. Clin. Biochem. Nutr. 2011;49:182–187. doi: 10.3164/jcbn.11-01.
    1. El Daly E. Protective effect of cysteine and vitamin E, Crocus sativus and nigella sativa extracts on cisplatin-induced toxicity in rats. J. Pharm. Belg. 1998;53:87–93.
    1. Fernández-Sánchez A., Madrigal-Santillán E., Bautista M., Esquivel-Soto J., Morales-González Á., Esquivel-Chirino C., Durante-Montiel I., Sánchez-Rivera G., Valadez-Vega C., Morales-González J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011;12:3117–3132. doi: 10.3390/ijms12053117.
    1. Zulet M., Puchau B., Navarro C., Marti A., Martínez J. Inflammatory biomarkers: The link between obesity and associated pathologies. Nutr. Hosp. 2007;22:511–527. (in Spanish)
    1. Bastard J.-P., Maachi M., Lagathu C., Kim M.J., Caron M., Vidal H., Capeau J., Feve B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 2006;17:4–12.
    1. Das U. Is obesity an inflammatory condition? Nutrition. 2001;17:953–966. doi: 10.1016/S0899-9007(01)00672-4.
    1. Dandona P., Aljada A., Bandyopadhyay A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4–7. doi: 10.1016/j.it.2003.10.013.
    1. Codoñer-Franch P., Valls-Bellés V., Arilla-Codoñer A., Alonso-Iglesias E. Oxidant mechanisms in childhood obesity: The link between inflammation and oxidative stress. Transl. Res. 2011;158:369–384. doi: 10.1016/j.trsl.2011.08.004.
    1. Vincent H.K., Innes K.E., Vincent K.R. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes. Metab. 2007;9:813–839. doi: 10.1111/j.1463-1326.2007.00692.x.
    1. Abete I., Goyenechea E., Zulet M., Martinez J. Obesity and metabolic syndrome: Potential benefit from specific nutritional components. Nutr. Metab. Cardiovasc. Dis. 2011;21:B1–B15. doi: 10.1016/j.numecd.2011.05.001.
    1. Hermsdorff H., Puchau B., Volp A., Barbosa K., Bressan J., Zulet M.Á., Martínez J.A. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr. Metab. (Lond.) 2011;8 doi: 10.1186/1743-7075-8-59.
    1. Nam K.N., Park Y.-M., Jung H.-J., Lee J.Y., Min B.D., Park S.-U., Jung W.-S., Cho K.-H., Park J.-H., Kang I., et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur. J. Pharmacol. 2010;648:110–116. doi: 10.1016/j.ejphar.2010.09.003.

Source: PubMed

3
Suscribir