Can tDCS enhance treatment of aphasia after stroke?

Rachel Holland, Jenny Crinion, Rachel Holland, Jenny Crinion

Abstract

BACKGROUND: Recent advances in the application of transcranial direct current stimulation (tDCS) in healthy populations have led to the exploration of the technique as an adjuvant method to traditional speech therapies in patients with post-stroke aphasia. AIMS: THE PURPOSE OF THE REVIEW IS: (i) to review the features of tDCS that make it an attractive tool for research and potential future use in clinical contexts; (ii) to describe recent studies exploring the facilitation of language performance using tDCS in post-stroke aphasia; (iii) to explore methodological considerations of tDCS that may be key to understanding tDCS in treatment of aphasia post stroke; and (iv) to highlight several caveats and outstanding questions that need to be addressed in future work. MAIN CONTRIBUTION: This review aims to highlight our current understanding of the methodological and theoretical issues surrounding the use of tDCS as an adjuvant tool in the treatment of language difficulties after stroke. CONCLUSIONS: Preliminary evidence shows that tDCS may be a useful tool to complement treatment of aphasia, particularly for speech production in chronic stroke patients. To build on this exciting work, further systematic research is needed to understand the mechanisms of tDCS-induced effects, its application to current models of aphasia recovery, and the complex interactions between different stimulation parameters and language rehabilitation techniques. The potential of tDCS is to optimise language rehabilitation techniques and promote long-term recovery of language. A stimulating future for aphasia rehabilitation!

Figures

Figure 1.
Figure 1.
Summary schematic representation of potential tDCS effects in language performance in relation to normal re-learning after single and repeated interventions protocols (related to Table 1). Solid green line represents normal re-learning curve. Solid vertical red line indicates the potential percentage change in performance that may occur after a single intervention of tDCS. Dashed red line indicates potential performance change over 5 days from repeated tDCS delivered concurrently with treatment. Normal and tDCS-enhanced learning share an equivalent learning profile, however resulting gains post-tDCS may be modified by approximately 25%, with the effects of tDCS persisting for up to 3 weeks. To view this figure in colour, please see the online issue of the Journal.
Figure 2.
Figure 2.
Illustration of potential target sites of stimulation to facilitate naming performance in relation to structural brain damage and the normal naming network in three different patients. The top panel illustrates the extensive bilateral fronto-temporal naming network found in an fMRI study of healthy older particpants (cf. Holland et al., 2011). Activation is overlaid onto a rendered cortical surface from SPM8. In the lower panels of the figure we overlay the normal pattern of brain activation onto three chronic aphasic stroke patients’ individual structural MRI scans. The aim here is to illustrate from left to right for each patient: (1) their structural brain damage within the left hemisphere, (2) the normal naming network overlaid onto their individual brain scan to show the relationship between the lesion damage to the naming network and the target stimulation site (red cross), and (3) the stimulation sites feasible for each patient depending on the proposed target site. Panel A highlights, in two chronic aphasic stroke patients, that structurally intact regions of cortex within the lesioned left hemisphere may serve as potential candidate sites for anodal stimulation to facilitate treatment of anomia in (Ai) Broca's area and (Aii) Wernicke's area. Panel B highlights that when the lesion is has damaged relevant cortices in the left hemisphere perilesional stimulation may not be possible. Therefore, for the two patients illustrated, facilitation of the contralesional hemisphere may be the optimal approach to aid recovery: (Bi) right homologue to Broca's area and (Bii) Wernicke's area. Although not illustrated here, in cases where patients have suffered a large MCA infarct affecting the whole of the left hemisphere and resulted in extremely limited perilesional tissue, stimulation of the contralesional hemisphere would be the sole option. Furthermore, studies of aphasia recovery have successfully used anodal stimulation of the left perilesional hemisphere to elicit positive behavioural outcomes, however the effects of anodal or cathodal stimulation of the right contralesional hemisphere are, as yet unknown, and will be dependent on the theoretical hypotheses of the research. To view this figure in colour, please see the online issue of the Journal.

References

    1. Abel S. Dressel K. Bitzer R. Kummerer D. Mader I. Weiller C., et al. The separation of processing stages in a lexical interference fMRI-paradigm. NeuroImage. 2009;44(3):1113–1124.
    1. Antal A. Nitsche M. A. Kincses T. Z. Kruse W. Hoffmann K. P., Paulus W. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. European Journal of Neuroscience. 2004;19(10):2888–2892.
    1. Antal A. Nitsche M. A. Kruse W. Kincses T. Z. Hoffmann K. P., Paulus W. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience. 2004;16(4):521–527.
    1. Antal A., Paulus W. A case of refractory orofacial pain treated by transcranial direct current stimulation applied over hand motor area in combination with NMDA agonist drug intake. Brain Stimulation. 2011;4(2):117–121.
    1. Antal A. Terney D. Poreisz C., Paulus W. Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. European Journal of Neuroscience. 2007;26(9):2687–2691.
    1. Baker J. M. Rorden C., Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010;41(6):1229–1236.
    1. Barthel G. Meinzer M. Djundja D., Rockstroh B. Intensive language therapy in chronic aphasia: Which aspects contribute most? Aphasiology. 2008;22(4):408–421.
    1. Berthier M. L. Green C. Lara J. P. Higueras C. Barbancho M. A. Davila G., et al. Memantine and constraint-induced aphasia therapy in chronic poststroke aphasia. Annals of Neurology. 2009;65(5):577–585.
    1. Bhogal S. K. Teasell R. W. Foley N. C., Speechley M. R. Rehabilitation of aphasia: More is better. Topics in Stroke Rehabilitation. 2003;10(2):66–76.
    1. Bikson M. Datta A., Elwassif M. Establishing safety limits for transcranial direct current stimulation. Clinical Neurophysiology. 2009;120(6):1033–1034.
    1. Bindman L. J. Lippold O. C., Redfearn J. W. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents. Nature. 1962;196:584–585.
    1. Blank S. C. Bird H. Turkheimer F., Wise R. J. Speech production after stroke: The role of the right pars opercularis. Annals of Neurology. 2003;54(3):310–320.
    1. Boggio P. S. Nunes A. Rigonatti S. P. Nitsche M. A. Pascual-Leone A., Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restorative Neurology and Neuroscience. 2007;25(2):123–129.
    1. Breitenstein C. Kramer K. Meinzer M. Baumgartner A. Floël A., Knecht S. Intense language training for aphasia. Contribution of cognitive factors. Nervenarzt. 2009;80(2):149–150.
    1. Brindley P. Copeland M. Demain C., Martyn P. Comparison of the speech of ten chronic Broca's aphasics following intensive and nonintensive periods of therapy. Aphasiology. 1989;3:695–707.
    1. Brown S. Laird A. R. Pfordresher P. Q. Thelen S. M. Turkeltaub P., Liotti M. The somatotopy of speech: Phonation and articulation in the human motor cortex. Brain and Cognition. 2009;70(1):31–41.
    1. Canepari M. Djurisic M., Zecevic D. Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: A combined voltage- and calcium-imaging study. Journal of Physiology. 2007;580:463–484.
    1. Cappa S. F. Sandrini M. Rossini P. M. Sosta K., Miniussi C. The role of the left frontal lobe in action naming - rTMS evidence. Neurology. 2002;59(5):720–723.
    1. Cherney L. R. Patterson J. P. Raymer A. Frymark T., Schooling T. Evidence-based systematic review: Effects of intensity of treatment and constraint-induced language therapy for individuals with stroke-induced aphasia. Journal of Speech, Language and Hearing Research. 2008;51(5):1282–1299.
    1. Cohen Kadosh R. Soskic S. Iuculano T. Kanai R., Walsh V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Current Biology. 2010;20:1–5.
    1. Creutzfeldt O. D. Fromm G. H., Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Experimental Neurology. 1962;5:436–452.
    1. Crinion J., Price C. J. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke. Brain. 2005;128(Pt 12):2858–2871.
    1. Datta A. Bansal V. Diaz J. Patel J. Reato D., Bikson M. Gyri -precise head model of transcranial DC stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation. 2009;2(4):201–207.
    1. Datta A. Elwassif M., Bikson M. Bio-heat transfer model of transcranial DC stimulation: comparison of conventional pad versus ring electrode. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2009;2009:670–673.
    1. de Vries M. H. Barth A. C. R. Maiworm S. Knecht S. Zwitserlood P., Floël A. Electrical stimulation of Broca's area enhances implicit learning of an artificial grammar. Journal of Cognitive Neuroscience. 2010;22(11):2427–2436.
    1. de Zubicaray G. I., McMahon K. L. Auditory context effects in picture naming investigated with event-related fMRI. Cognitive Affective and Behavioral Neuroscience. 2009;9(3):260–269.
    1. Devlin J. T. Matthews P. M., Rushworth M. F. Semantic processing in the left inferior prefrontal cortex: A combined functional magnetic resonance imaging and transcranial magnetic stimulation study. Journal of Neuroscience. 2003;15(1):71–84.
    1. Dockery C. A. Hueckel-Weng R. Birbaumer N., Plewnia C. Enhancement of planning ability by transcranial direct current stimulation. Journal of Neuroscience. 2009;29(22):7271–7277.
    1. Dundas J. E. Thickbroom G. W., Mastaglia F. L. Perception of comfort during transcranial DC stimulation: Effect of NaCl solution concentration applied to sponge electrodes. Clinical Neurophysiology. 2007;118(5):1166–1170.
    1. Fertonani A. Rosini S. Cotelli M. Rossini P. M., Miniussi C. Naming facilitation induced by transcranial direct current stimulation. Behavioral Brain Research. 2010;208(2):311–318.
    1. Fiori V. Coccia M. Marinelli C. V. Vecchi V. Bonifazi S. Ceravolo M. G., et al. Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. Journal of Cognitive Neuroscience. 2010;23(9):2309–2323.
    1. Floël A. Rosser N. Miichka O. Knecht S., Breitenstein C. Noninvasive brain stimulation improves language learning. Journal of Cognitive Neuroscience. 2008;20(8):1415–1422.
    1. Frank E. Eichhammer P. Burger J. Zowe M. Landgrebe M. Hajak G., et al. Transcranial magnetic stimulation for the treatment of depression: Feasibility and results under naturalistic conditions: A retrospective analysis. European Archives of Psychiatry and Clinical Neuroscience. 2011;261(4):261–266.
    1. Fregni F. Boggio P. S. Lima M. C. Ferreira M. J. Wagner T. Rigonatti S. P., et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006;122(1–2):197–209.
    1. Fregni F. Boggio P. S. Mansur C. G. Wagner T. Ferreira M. J. L. Lima M. C., et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16(14):1551–1555.
    1. Fricke K. Seeber A. A. Thirugnanasambandam N. Paulus W. Nitsche M. A., Rothwell J. C. Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation (tDCS) of the human motor cortex. Journal of Neurophysiology. 2010;105(3):1141–1149.
    1. Fridriksson J. Bonilha L. Baker J. M. Moser D., Rorden C. Activity in preserved left hemisphere regions predicts anomia severity in aphasia. Cerebral Cortex. 2010;20(5):1013–1019.
    1. Fridriksson J. Moser D. Ryalls J. Bonilha L. Rorden C., Baylis G. Modulation of frontal lobe speech areas associated with the production and perception of speech movements. Journal of Speech Language and Hearing Research. 2009;52(3):812–819.
    1. Fridriksson J. Richardson J. D. Baker J. M., Rorden C. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: A double-blind, sham-controlled study. Stroke. 2011;42(3):819–821.
    1. Fritsch B. Reis J. Martinowich K. Schambra H. M. Ji Y. Cohen L. G., et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron. 2010;66(2):198–204.
    1. Gandiga P. C. Hummel F. C., Cohen L. G. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology. 2006;117(4):845–850.
    1. Gough P. M. Nobre A. C., Devlin J. T. Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. Journal of Neuroscience. 2005;25(35):8010–8016.
    1. Hamilton R. H. Chrysikou E. G., Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain and Language. 2011;118(1–2):40–50.
    1. Hartwigsen G. Price C. J. Baumgaertner A. Geiss G. Koehnke M. Ulmer S., et al. The right posterior inferior frontal gyrus contributes to phonological word decisions in the healthy brain: Evidence from dual-site TMS. Neuropsychologia. 2010;48(10):3155–3163.
    1. Hocking J. McMahon K. L., de Zubicaray G. I. Semantic context and visual feature effects in object naming: An fMRI study using arterial spin labeling. Journal of Cognitive Neuroscience. 2009;21(8):1571–1583.
    1. Holland R., Lambon Ralph M. A. The anterior temporal lobe semantic hub is a part of the language neural network: Selective disruption of irregular past tense verbs by rTMS. Cerebral Cortex. 2010;20(12):2771–2775.
    1. Holland R. Leff A. P. Josephs O. Galea J. M. Desikan M. Price C. J., et al. Speech facilitation by left inferior frontal cortex stimulation. Current Biology. 2011;21(16):1403–1407.
    1. Iyer M. B. Mattu U. Grafman J. Lomarev M. Sato S., Wassermann E. M. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005;64(5):872–875.
    1. Jahanshahi M., Rothwell J. Transcranial magnetic stimulation studies of cognition: An emerging field. Experimental Brain Research. 2000;131(1):1–9.
    1. Kelly H. Brady M. C., Enderby P. Speech and language therapy for aphasia following stroke. Cochrane Database of Systematic Reviews. 2010. p. CD000425. (5)
    1. Kendall D. L. Rosenbek J. C. Heilman K. M. Conway T. Klenberg K. Gonzalez Rothi L. J., et al. Phoneme-based rehabilitation of anomia in aphasia. Brain and Language. 2008;105(1):1–17.
    1. Kincses T. Z. Antal A. Nitsche M. A. Bartfai O., Paulus W. Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia. 2004;42(1):113–117.
    1. Kuo M. F. Unger M. Liebetanz D. Lang N. Tergau F. Paulus W., et al. Limited impact of homeostatic plasticity on motor learning in humans. Neuropsychologia. 2008;46(8):2122–2128.
    1. Lagopoulos J., Degabriele R. Feeling the heat: The electrode-skin interface during DCS. Acta Neuropsychiatry. 2008;20:98–100.
    1. Lang N. Siebner H. R. Ernst D. Nitsche M. A. Paulus W. Lemon R. N., et al. Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biological Psychiatry. 2004;56(9):634–639.
    1. Lang N. Siebner H. R. Ward N. S. Lee L. Nitsche M. A. Paulus W., et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? European Journal of Neuroscience. 2005;22(2):495–504.
    1. Leff A. Crinion J. Scott S. Turkheimer F. Howard D., Wise R. A physiological change in the homotopic cortex following left posterior temporal lobe infarction. Annals of Neurology. 2002;51(5):553–558.
    1. Liebetanz D. Koch R. Mayenfels S. Konig F. Paulus W., Nitsche M. A. Safety limits of cathodal transcranial direct current stimulation in rats. Clinical Neurophysiology. 2009;120(6):1161–1167.
    1. Liebetanz D. Nitsche M. A. Tergau F., Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125:2238–2247.
    1. Lindenberg R. Renga V. Zhu L. L. Nair D., Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010;75(24):2176–2184.
    1. Liuzzi G. Freundlieb N. Ridder V. Hoppe J. Heise K. Zimerman M., et al. The involvement of the left motor cortex in learning of a novel action word lexicon. Current Biology. 2010;20(19):1745–1751.
    1. Loo C. K. Martin D. M. Alonzo A. Gandevia S. Mitchell P. B., Sachdev P. Avoiding skin burns with transcranial direct current stimulation: Preliminary considerations. International Journal of Neuropsychopharmacology. 2011;14(3):425–426.
    1. Martin P. I. Naeser M. A. Theoret H. Tormos J. M. Nicholas M. Kurland J., et al. Transcranial magnetic stimulation as a complementary treatment for aphasia. Seminars in Speech and Language. 2004;25(2):181–191.
    1. Meinzer M. Djundja D. Barthel G. Elbert T., Rockstroh B. Long-term stability of improved language functions in chronic aphasia after constraint-induced aphasia therapy. Stroke. 2005;36(7):1462–1466.
    1. Meinzer M. Elbert T. Wienbruch C. Djundja D. Barthel G., Rockstroh B. Intensive language training enhances brain plasticity in chronic aphasia. BMC Biology. 2004;2:20.
    1. Minhas P. Bansal V. Patel J. Ho J. S. Diaz J. Datta A., et al. Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. Journal of Neuroscience Methods. 2010;190(2):188–197.
    1. Miniussi C. Cappa S. F. Cohen L. G. Floël A. Fregni F. Nitsche M. A., et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabititation. Brain Stimulation. 2008;1(4):326–336.
    1. Miranda P. C. Lomarev M., Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology. 2006;117(7):1623–1629.
    1. Monte-Silva K. Kuo M. F. Liebetanz D. Paulus W., Nitsche M. A. Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS) Journal of Neurophysiology. 2010;103(4):1735–1740.
    1. Monti A. Cogiamanian F. Marceglia S. Ferrucci R. Mameli F. Mrakic-Sposta S., et al. Improved naming after transcranial direct current stimulation in aphasia. Journal of Neurology Neurosurgery and Psychiatry. 2008;79(4):451–453.
    1. Naeser M. A. Martin P. I. Baker E. H. Hodge S. M. Sczerzenie S. E. Nicholas M., et al. Overt propositional speech in chronic nonfluent aphasia studied with the dynamic susceptibility contrast fMRI method. NeuroImage. 2004;22(1):29–41.
    1. Naeser M. A. Martin P. I. Nicholas M. Baker E. H. Seekins H. Kobayashi M., et al. Improved picture naming in chronic aphasia after TMS to part of right Broca's area: An open-protocol study. Brain and Language. 2005;93(1):95–105.
    1. Nickels L. Therapy for naming disorders: Revisiting, revising, and reviewing. Aphasiology. 2002;16:935–979.
    1. Nitsche M. A. Cohen L. G. Wassermann E. M. Priori A. Lang N. Antal A., et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimulation. 2008;1(3):206–223.
    1. Nitsche M. A. Doemkes S. Karakose T. Antal A. Liebetanz D. Lang N., et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology. 2007;97(4):3109–3117.
    1. Nitsche M. A. Fricke K. Henschke U. Schlitterlau A. Liebetanz D. Lang N., et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. Journal of Physiology. 2003;553:293–301.
    1. Nitsche M. A. Grundey J. Liebetanz D. Lang N. Tergau F., Paulus W. Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cerebral Cortex. 2004;14(11):1240–1245.
    1. Nitsche M. A. Liebetanz D. Antal A. Lang N. Tergau F., Paulus W. Modulation of cortical excitability by weak direct current stimulation - technical, safety and functional aspects. Supplements to Clinical Neurophysiology. 2003;56:255–276.
    1. Nitsche M. A. Nitsche M. S. Klein C. C. Tergau F. Rothwell J. C., Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology. 2003;114(4):600–604.
    1. Nitsche M. A., Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology. 2000;527(Pt 3):633–639.
    1. Nitsche M. A., Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–1901.
    1. Nitsche M. A. Roth A. Kuo M. F. Fischer A. K. Liebetanz D. Lang N., et al. Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. Journal of Neuroscience. 2007;27(14):3807–3812.
    1. Nitsche M. A. Schauenburg A. Lang N. Liebetanz D. Exner C. Paulus W., et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience. 2003;15(4):619–626.
    1. Nixon P. Lazarova J. Hodinott-Hill I. Gough P., Passingham R. The inferior frontal gyrus and phonological processing: An investigation using rTMS. Journal of Cognitive Neuroscience. 2004;16(2):289–300.
    1. Palm U. Keeser D. Schiller C. Fintescu Z. Nitsche M. Reisinger E., et al. Skin lesions after treatment with transcranial direct current stimulation (tDCS) Brain Stimulation. 2008;1(4):386–387.
    1. Papoutsi M. de Zwart J. A. Jansma J. M. Pickering M. J. Bednar J. A., Horwitz B. From phonemes to articulatory codes: An fMRI study of the role of Broca's area in speech production. Cerebral Cortex. 2009;19(9):2156–2165.
    1. Pobric G. Jefferies E., Lambon Ralph M. A. Anterior temporal lobes: Mimicking semantic dementia by using rTMS in normal participants. Proceedings of the National Academy of Sciences. 2007;104(50):20137–20141.
    1. Poeck K. Huber W., Willmes K. Outcome of intensive language treatment in aphasia. Journal of Speech and Hearing Disorders. 1989;54:471–479.
    1. Poreisz C. Boros K. Antal A., Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin. 2007;72(4–6):208–214.
    1. Price C. J. The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences. 2010;1191:62–88.
    1. Priori A. Hallett M., Rothwell J. C. Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation. 2009;2(4):241–245.
    1. Pulvermuller F. Neininger B. Elbert T. Mohr B. Rockstroh B. Koebbel P., et al. Constraint-induced therapy of chronic aphasia after stroke. Stroke. 2001;32(7):1621–1626.
    1. Purpura D. P., McMurtry J. G. Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology. 1965;28:166–185.
    1. Reis J. Schambra H. M. Cohen L. G. Buch E. R. Fritsch B. Zarahn E., et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(5):1590–1595.
    1. Rosen H. J. Petersen S. E. Linenweber M. R. Snyder A. Z. White D. A. Chapman L., et al. Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology. 2000;55(12):1883–1894.
    1. Ross L. A. McCoy D. Wolk D. A. Coslett H. B., Olson I. R. Improved proper name recall by electrical stimulation of the anterior temporal lobes. Neuropsychologia. 2010;48(12):3671–3674.
    1. Siebner H. R. Lang N. Rizzo V. Nitsche M. A. Paulus W. Lemon R. N., et al. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: Evidence for homeostatic plasticity in the human motor cortex. Journal of Neuroscience. 2004;24(13):3379–3385.
    1. Sparing R. Dafotakis M. Hesse M. D., Fink G. R. Enhancing language performance with transcranial direct current stimulation in healthy humans: Implications for rehabilitation and recovery of function after stroke. Journal of Neurology. 2007;254:65–65.
    1. Stagg C. J., Nitsche M. A. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.
    1. Stewart L. Meyer B. Frith U., Rothwell J. C. Left posterior BA37 is involved in object recognition: A TMS study. Neuropsychologia. 2001;39:1–6.
    1. Thiel A. Haupt W. F. Habedank B. Winhuisen L. Herholz K. Kessler J., et al. Neuroimaging-guided rTMS of the left inferior frontal gyrus interferes with repetition priming. NeuroImage. 2005;25(3):815–823.
    1. Vandermeeren Y. Jamart J., Ossemann M. Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions. BMC Neuroscience. 2010;11:38.
    1. Vigneau M. Beaucousin V. Herve P. Y. Duffau H. Crivello F. Houde O., et al. Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. NeuroImage. 2006;30(4):1414–1432.
    1. Vines B. W. Cerruti C., Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neuroscience. 2008;9:103.
    1. Vitali P. Abutalebi J. Tettamanti M. Danna M. Ansaldo A. I. Perani D., et al. Training-induced brain remapping in chronic aphasia: A pilot study. Neurorehabilitation and Neural Repair. 2007;21(2):152–160.
    1. Winhuisen L. Thiel A. Schumacher B. Kessler J. Rudolf J. Haupt W. F., et al. Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: A combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke. 2005;36(8):1759–1763.

Source: PubMed

3
Suscribir