Normobaric hyperoxia in traumatic brain injury: does brain metabolic state influence the response to hyperoxic challenge?

Anna Vilalta, Juan Sahuquillo, Maria-Angels Merino, Maria-Antonia Poca, Angel Garnacho, Tamara Martínez-Valverde, Mithilesh Dronavalli, Anna Vilalta, Juan Sahuquillo, Maria-Angels Merino, Maria-Antonia Poca, Angel Garnacho, Tamara Martínez-Valverde, Mithilesh Dronavalli

Abstract

This study sought to investigate whether normobaric hyperoxia (NH) improves brain oxygenation and brain metabolism in the early phase of severe and moderate traumatic brain injury (TBI) and whether this effect occurs uniformly in all TBI patients. Thirty patients (9 women and 21 men) with a median initial Glasgow Coma Score (GCS) of 6 (range, 3-12) were monitored using a brain microdialysis (MD) catheter with a brain tissue oxygen sensor (PtiO(2)) placed in the least-injured hemisphere. The inspired oxygen fraction was increased to 100% for 2 h. Patients were divided into two groups: Group 1: patients with baseline brain lactate ≤3 mmol/L and Group 2: patients with baseline brain lactate >3 mmol/L, and therefore increased anaerobic metabolism in the brain. In Group 1, no significant changes in brain metabolic parameters were found after hyperoxic challenge, whereas a significant increase in glucose and a decrease in the lactate-pyruvate ratio (LPR) were found in Group 2. In this latter group of patients, brain glucose increased on average by 17.9% (95% CI, +9.2% to +26.6%, p<0.001) and LPR decreased by 11.6% (95% CI, -16.2% to -6.9%, p<0.001). The results of our study show that moderate and severe TBI may induce metabolic alterations in the brain, even in macroscopically normal brain tissue. We observed that NH increased PaO(2) and PtiO(2) and significantly decreased LPR in patients in whom baseline brain lactate levels were increased, suggesting that NH improved the brain redox state. In patients with normal baseline brain lactate levels, we did not find any significant changes in the metabolic variables after NH. This suggests that the baseline metabolic state should be taken into account when applying NH to patients with TBI. This maneuver may only be effective in a specific group of patients.

Figures

FIG. 1.
FIG. 1.
PtiO2 and PaO2 values (expressed as mmHg) at baseline and at the end of the hyperoxic challenge. Clinically statistical differences are represented with an asterisk.

References

    1. Alves O.L. Daugherty W.P. Rios M. Arterial hyperoxia in severe head injury: a useful or harmful option? Curr. Pharm. Des. 2004;10:2163–2176.
    1. Bergsneider M. Hovda D.A. Shalmon E. Kelly D.F. Vespa P.M. Martin N.A. Phelps M.E. McArthur D.L. Caron M.J. Kraus J.F. Becker D.P. Cerebral hyperglycolysis following severe traumatic brain injury in humans: A positron emission tomography study. J. Neurosurg. 1997;86:241–251.
    1. Bouma G.J. Muizelaar J.P. Choi S.C. Newlon P.G. Young H.F. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J. Neurosurgery. 1991a;75:685–693.
    1. Bouma G.J. Muizelaar J.P. Stringer W.A. Choi S.C. Fatouros P. Young H.F. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J. Neurosurg. 1992;77:360–368.
    1. Bouma G.J. Muizelaar J.P. Young H.F. Demonstration of early ischemia after severe head injury. J.Neurosurg. 1991b;74:364A–365A.
    1. Bullock R.M. Chesnut R.M. Clifton G.L. Ghajar J. Marion D.W. Narayan R.K. Newell D.W. Pitts L.H. Rosner M.J. Walters B.C. Wilberger J.E. Maas A.I.R. Servadei F. Teasdale G. Unterberg A. von Holst H. Contant C. Florin R. Jagoda A. Kelly J.P. Marmarou A. Queen P.C. Rosenberg J. Valadka A.B. Dearden M. Miller J.D. Stocchetti N. Management and prognosis of severe traumatic brain injury. Part 1: Guidelines for the management of severe traumatic brain injury. Part 2: Early indicators of prognosis in severe traumatic brain injury. J. Neurotrauma. 2000;17:451–627.
    1. Carlsson A. Application notes and Case reports. Clinical research: CMA 600 Microdialysis Analyser Manual. 2008.
    1. Cesarini K.G. Enblad P. Ronne–Engstrom E. Marklund N. Salci K. Nilsson P. Hardemark H.G. Hillered L. Persson L. Early cerebral hyperglycolysis after subarachnoid haemorrhage correlates with favourable outcome. Acta Neurochirurg. (Wien) 2002;144:1121–1131.
    1. Diringer M.N. Hyperoxia: good or bad for the injured brain? Curr. Opin. Crit. Care. 2008;14:167–171.
    1. Diringer M.N. Aiyagari V. Zazulia A.R. Videen T.O. Powers W.J. Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury. J. Neurosurg. 2007;106:526–529.
    1. Forgue J. Legeay A. Massabuau J.C. Is the resting rate of oxygen consumption of locomotor muscles in crustaceans limited by the low blood oxygenation strategy?'. J. Exp. Biol. 2001;204:933–940.
    1. Graham D.I. Adams J.H. Doyle D. Ischaemic brain damage in fatal non-missile head injuries. J. Neurol Sci. 1978;39:213–234.
    1. Graham D.I. Ford D.I. Adams J.H. Doyle D. Teasdale G.M. Lawrence A.E. McLellan D.R. Ischaemic brain damage is still common in fatal non-missile head injury. J. Neurol. Neurosurg. Psychiatry. 1989;52:346–350.
    1. Jain K.K. Oxygen toxicity. In: Jain K.K., editor. Textbook of Hyperbaric Medicine. Göttingen: Hogrefe and Huber; 2009. pp. 47–58.
    1. Magnoni S. Ghisoni L. Locatelli M. Caimi M. Colombo A. Valeriani V. Stocchetti N. Lack of improvement in cerebral metabolism after hyperoxia in severe head injury: a microdialysis study. J. Neurosurg. 2003;98:952–958.
    1. Marshall S.B. Klauber M.R. Van Berkum Clark M. Eisenberg H.M. Jane J. Luerssen T.G. Marmarou A. Marshall L.F. Foulkes M.A. A new classification of head injury based on computerized tomography. J. Neurosurg. (Suppl.) 1991;75:14–20.
    1. Massabuau J.C. From low arterial- to low tissue-oxygenation strategy. An evolutionary theory. Respir. Physiol. 2001;128:249–261.
    1. Massabuau J.C. Primitive, and protective, our cellular oxygenation status? Mech. Ageing Dev. 2003;124:857–863.
    1. Menon D.K. Coles J.P. Gupta A.K. Fryer T.D. Smielewski P. Chatfield D.A. Aigbirhio F. Skepper J.N. Minhas P.S. Hutchinson P.J. Carpenter T.A. Clark J.C. Pickard J.D. Diffusion limited oxygen delivery following head injury. Crit. Care Med. 2004;32:1384–1390.
    1. Menzel M. Doppenberg E. Zauner A. Bullock R. Ward J. Young H.F. Marmarou A. Brockenborough P. Arterial oxygen partial pressure as a determinant of brain tissue oxygenation and brain tissue lactate levels early after severe head injury (Abstracts) Neurosurgery. 1997;41:753–754.
    1. Menzel M. Doppenberg E.M. Zauner A. Soukup J. Reinert M.M. Bullock R. Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury. J. Neurosurg. 1999a;91:1–10.
    1. Menzel M. Doppenberg E.M. Zauner A. Soukup J. Reinert M.M. Clausen T. Brockenbrough P.B. Bullock R. Cerebral oxygenation in patients after severe head injury: monitoring and effects of arterial hyperoxia on cerebral blood flow, metabolism and intracranial pressure. J. Neurosurg. Anesthesiol. 1999b;11:240–251.
    1. Nelson D.W. Thornquist B. Maccallum R.M. Nystrom H. Holst A. Rudehill A. Wanecek M. Bellander B.M. Weitzberg E. Analyses of cerebral microdialysis in patients with traumatic brain injury: relations to intracranial pressure, cerebral perfusion pressure and catheter placement. BMC Med. 2011;9:21.
    1. Nortje J. Coles J.P. Timofeev I. Fryer T.D. Aigbirhio F.I. Smielewski P. Outtrim J.G. Chatfield D.A. Pickard J.D. Hutchinson P.J. Gupta A.K. Menon D.K. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: Preliminary findings. Crit. Care Med. 2008;36:273–281.
    1. Park E. Bell J.D. Baker A.J. Traumatic brain injury: can the consequences be stopped? CMAJ. 2008;178:1163–1170.
    1. Patel D.N. Goel A. Agarwal S.B. Garg P. Lakhani K.K. Oxygen toxicity. J. Ind. Acad. Clin. Med. 2003;4:234–237.
    1. Poca M.A. Sahuquillo J. Arribas M. Baguena M. Amoros S. Rubio E. Fiberoptic intraparenchymal brain pressure monitoring with the Camino V420 monitor: reflections on our experience in 163 severely head-injured patients. J. Neurotrauma. 2002;19:439–448.
    1. Poca M.A. Sahuquillo J. Vilalta A. de los Rios J. Robles A. Exposito L. Percutaneous implantation of cerebral microdialysis catheters by twist-drill craniostomy in neurocritical patients: description of the technique and results of a feasibility study in 97 patients. J. Neurotrauma. 2006;23:1510–1517.
    1. Povlishock J.T. Marmarou A. McIntosh T. Trojanowski J.Q. Moroi J. Impact acceleration injury in the rat: evidence for focal axolemmal change and related neurofilament sidearm alteration. J. Neuropathol. Exp. Neurol. 1997;56:347–359.
    1. Reinert M. Barth A. Rothen H.U. Schaller B. Takala J. Seiler R.W. Effects of cerebral perfusion pressure and increased fraction of inspired oxygen on brain tissue oxygen, lactate and glucose in patients with severe head injury. Acta Neurochirurg. 2003;145:341–349.
    1. Rockswold S.B. Rockswold G.L. Defillo A. Hyperbaric oxygen in traumatic brain injury. Neurol. Res. 2007;29:162–172.
    1. Rockswold S.B. Rockswold G.L. Zaun D.A. Zhang X. Cerra C.E. Bergman T.A. Liu J. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J. Neurosurg. 2010;112:1080–1094.
    1. Saatman K.E. Duhaime A.C. Bullock R. Maas A.I. Valadka A. Manley G.T. Workshop Scientific Team and Advisory Panel. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma. 2008;25:719–738.
    1. Sahuquillo J. Biestro A. Mena M.P. Amoros S. Lung M. Poca M.A. de Nadal M. Baguena M. Panzardo H. Mira J.M. Garnacho A. Lobato R.D. First tier measures in the treatment of intracranial hypertension in the patient with severe craniocerebral trauma. Proposal and justification of a protocol. Neurocirugía (Astur) 2002;13:78–100.
    1. Sahuquillo J. Poca M.A. Amoros S. Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr. Pharm. Des. 2001;7:1475–1503.
    1. Sahuquillo J. Poca M.A. Monforte L. Sanchez–Massa L.L. Campos L. Rubio E. Zapater P. Interhemispheric supratentorial ICP gradients in head injury patients: Are they clinically important? In: Nagai H., editor; Kamiya K., editor; Ishii S., editor. Intracranial Pressure IX. Tokyo: Springer–Verlag; 1994. pp. 48–51.
    1. Siggaard–Andersen O. Fogh–Andersen N. Gothgen I.H. Larsen V.H. Oxygen status of arterial and mixed venous blood. Crit. Care Med. 1995a;23:1284–1293.
    1. Siggaard–Andersen O. Ulrich A. Gothgen I.H. Classes of tissue hypoxia. Acta Anaesthesiol. Scand. 1995b;39:137–142.
    1. Signoretti S. Marmarou A. Aygok G.A. Fatouros P.P. Portella G. Bullock R.M. Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy. J. Neurosurg. 2008;108:42–52.
    1. Tolias C.M. Reinert M. Seiler R. Gilman C. Scharf A. Bullock M.R. Normobaric hyperoxia-induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohort-matched study. J. Neurosurg. 2004;101:435–444.
    1. Verweij B.H. Muizelaar J.P. Vinas F.C. Peterson P.L. Xiong Y. Lee C.P. Mitochondrial dysfunction after experimental and human brain injury and its possible reversal with a selective N–type calcium channel antagonist (SNX-111) Neurol. Res. 1997;19:334–339.
    1. Verweij B.H. Muizelaar J.P. Vinas F.C. Peterson P.L. Xiong Y. Lee C.P. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J. Neurosurg. 2000;93:815–820.
    1. Vespa P.M. McArthur D. O'Phelan K. Glenn T. Etchepare M. Kelly D. Bergsneider M. Martin N.A. Hovda D.A. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J. Cereb. Blood Flow Metab. 2003;23:865–877.
    1. Vespa P.M. O'Phelan K. McArthur D. Miller C. Eliseo M. Hirt D. Glenn T. Hovda D.A. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit. Care Med. 2007;35:1153–1160.
    1. Xiong Y. Gu Q. Peterson P.L. Muizelaar J.P. Lee C.P. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J. Neurotrauma. 1997;14:23–34.

Source: PubMed

3
Suscribir