Harmful Effects of Hyperoxia in Postcardiac Arrest, Sepsis, Traumatic Brain Injury, or Stroke: The Importance of Individualized Oxygen Therapy in Critically Ill Patients

Jean-Louis Vincent, Fabio Silvio Taccone, Xinrong He, Jean-Louis Vincent, Fabio Silvio Taccone, Xinrong He

Abstract

The beneficial effects of oxygen are widely known, but the potentially harmful effects of high oxygenation concentrations in blood and tissues have been less widely discussed. Providing supplementary oxygen can increase oxygen delivery in hypoxaemic patients, thus supporting cell function and metabolism and limiting organ dysfunction, but, in patients who are not hypoxaemic, supplemental oxygen will increase oxygen concentrations into nonphysiological hyperoxaemic ranges and may be associated with harmful effects. Here, we discuss the potentially harmful effects of hyperoxaemia in various groups of critically ill patients, including postcardiac arrest, traumatic brain injury or stroke, and sepsis. In all these groups, there is evidence that hyperoxia can be harmful and that oxygen prescription should be individualized according to repeated assessment of ongoing oxygen requirements.

Conflict of interest statement

The authors declare that there are no competing interests regarding the publication of this paper.

Figures

Figure 1
Figure 1
Schematic showing U-shaped association of PaO2 with outcome.

References

    1. Heffner J. E. The story of oxygen. Respiratory Care. 2013;58(1):18–31. doi: 10.4187/respcare.01831.
    1. Severinghaus J. W. Priestley, the furious free thinker of the enlightenment, and Scheele, the taciturn apothecary of Uppsala. Acta Anaesthesiologica Scandinavica. 2002;46(1):2–9. doi: 10.1046/j.0001-5172.2001.00351.x.
    1. Parke R. L., Eastwood G. M., McGuinness S. P. Oxygen therapy in non-intubated adult intensive care patients: a point prevalence study. Critical Care and Resuscitation. 2013;15(4):287–293.
    1. de Jonge E., Peelen L., Keijzers P. J., et al. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Critical Care. 2008;12(6, article R156) doi: 10.1186/cc7150.
    1. Brueckl C., Kaestle S., Kerem A., et al. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. American Journal of Respiratory Cell and Molecular Biology. 2006;34(4):453–463. doi: 10.1165/rcmb.2005-0223OC.
    1. Zaher T. E., Miller E. J., Morrow D. M. P., Javdan M., Mantell L. L. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radical Biology and Medicine. 2007;42(7):897–908. doi: 10.1016/j.freeradbiomed.2007.01.021.
    1. Sjöberg F., Singer M. The medical use of oxygen: a time for critical reappraisal. Journal of Internal Medicine. 2013;274(6):505–528. doi: 10.1111/joim.12139.
    1. Orbegozo Cortés D., Puflea F., Donadello K., et al. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvascular Research. 2015;98:23–28. doi: 10.1016/j.mvr.2014.11.006.
    1. Calzia E., Asfar P., Hauser B., et al. Hyperoxia may be beneficial. Critical Care Medicine. 2010;38(10):S559–S568. doi: 10.1097/CCM.0b013e3181f1fe70.
    1. Dell'Anna A. M., Lamanna I., Vincent J.-L., Taccone F. S. How much oxygen in adult cardiac arrest? Critical Care. 2014;18(5, article 555) doi: 10.1186/s13054-014-0555-4.
    1. Kilgannon J. H., Jones A. E., Shapiro N. I., et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA—Journal of the American Medical Association. 2010;303(21):2165–2171. doi: 10.1001/jama.2010.707.
    1. Elmer J., Scutella M., Pullalarevu R., et al. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Medicine. 2015;41(1):49–57. doi: 10.1007/s00134-014-3555-6.
    1. Eastwood G. M., Tanaka A., Espinoza E. D. V., et al. Conservative oxygen therapy in mechanically ventilated patients following cardiac arrest: a retrospective nested cohort study. Resuscitation. 2016;101:108–114. doi: 10.1016/j.resuscitation.2015.11.026.
    1. Stub D., Smith K., Bernard S., et al. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015;131(24):2143–2150. doi: 10.1161/CIRCULATIONAHA.114.014494.
    1. Hofmann R., James S. K., Svensson L., et al. DETermination of the role of OXygen in suspected Acute Myocardial Infarction trial. American Heart Journal. 2014;167(3):322–328. doi: 10.1016/j.ahj.2013.09.022.
    1. Xu F., Liu P., Pascual J. M., Xiao G., Lu H. Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism. Journal of Cerebral Blood Flow and Metabolism. 2012;32(10):1909–1918. doi: 10.1038/jcbfm.2012.93.
    1. Quintard H., Patet C., Suys T., Marques-Vidal P., Oddo M. Normobaric hyperoxia is associated with increased cerebral excitotoxicity after severe traumatic brain injury. Neurocritical Care. 2015;22(2):243–250. doi: 10.1007/s12028-014-0062-0.
    1. Davis D. P., Meade W., Jr., Sise M. J., et al. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. Journal of Neurotrauma. 2009;26(12):2217–2223. doi: 10.1089/neu.2009.0940.
    1. Brenner M., Stein D., Hu P., Kufera J., Wooford M., Scalea T. Association between early hyperoxia and worse outcomes after traumatic brain injury. Archives of Surgery. 2012;147(11):1042–1046. doi: 10.1001/archsurg.2012.1560.
    1. Raj R., Bendel S., Reinikainen M., et al. Hyperoxemia and long-term outcome after traumatic brain injury. Critical Care. 2013;17(4, article no. R177) doi: 10.1186/cc12856.
    1. Taher A., Pilehvari Z., Poorolajal J., Aghajanloo M. Effects of normobaric hyperoxia in traumatic brain injury: a randomized controlled clinical trial. Trauma Monthly. 2016;21(1) doi: 10.5812/traumamon.26772.e26772
    1. Vilalta A., Sahuquillo J., Merino M.-A., et al. Normobaric hyperoxia in traumatic brain injury: does brain metabolic state influence the response to hyperoxic challenge? Journal of Neurotrauma. 2011;28(7):1139–1148. doi: 10.1089/neu.2010.1720.
    1. Bellomo R., Bailey M., Eastwood G. M., et al. Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Critical Care. 2011;15(2, article no. R90) doi: 10.1186/cc10090.
    1. Kilgannon J. H., Jones A. E., Parrillo J. E., et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123(23):2717–2722. doi: 10.1161/CIRCULATIONAHA.110.001016.
    1. Ranchord A. M., Argyle R., Beynon R., et al. High-concentration versus titrated oxygen therapy in ST-elevation myocardial infarction: a pilot randomized controlled trial. American Heart Journal. 2012;163(2):168–175. doi: 10.1016/j.ahj.2011.10.013.
    1. Janz D. R., Hollenbeck R. D., Pollock J. S., McPherson J. A., Rice T. W. Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Critical Care Medicine. 2012;40(12):3135–3139. doi: 10.1097/CCM.0b013e3182656976.
    1. Lee B. K., Jeung K. W., Lee H. Y., et al. Association between mean arterial blood gas tension and outcome in cardiac arrest patients treated with therapeutic hypothermia. American Journal of Emergency Medicine. 2014;32(1):55–60. doi: 10.1016/j.ajem.2013.09.044.
    1. Rincon F., Kang J., Maltenfort M., et al. Association between hyperoxia and mortality after stroke: a multicenter cohort study. Critical Care Medicine. 2014;42(2):387–396. doi: 10.1097/ccm.0b013e3182a27732.
    1. Rincon F., Kang J., Vibbert M., Urtecho J., Athar M. K., Jallo J. Significance of arterial hyperoxia and relationship with case fatality in traumatic brain injury: a multicentre cohort study. Journal of Neurology, Neurosurgery and Psychiatry. 2014;85(7):799–805. doi: 10.1136/jnnp-2013-305505.
    1. Jeon S.-B., Choi H. A., Badjatia N., et al. Hyperoxia may be related to delayed cerebral ischemia and poor outcome after subarachnoid haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry. 2014;85:1301–1307. doi: 10.1136/jnnp-2013-307314.
    1. Lang M., Raj R., Skrifvars M. B., et al. Early moderate hyperoxemia does not predict outcome after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2016;78(4):540–545. doi: 10.1227/NEU.0000000000001111.
    1. Stolmeijer R., Ter Maaten J. C., Zijlstra J. G., Ligtenberg J. J. M. Oxygen therapy for sepsis patients in the emergency department: a little less? European Journal of Emergency Medicine. 2014;21(3):233–235. doi: 10.1097/mej.0b013e328361c6c7.
    1. Panwar R., Hardie M., Bellomo R., et al. Conservative versus liberal oxygenation targets for mechanically ventilated patients. A pilot multicenter randomized controlled trial. American Journal of Respiratory and Critical Care Medicine. 2016;193(1):43–51. doi: 10.1164/rccm.201505-1019oc.
    1. Girardis M., Busani S., Damiani E., et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the Oxygen-ICU randomized clinical trial. The Journal of the American Medical Association. 2016;316(15):1583–1589. doi: 10.1001/jama.2016.11993.
    1. Helmerhorst H. J., Arts D. L., Schultz M. J., et al. Metrics of arterial hyperoxia and associated outcomes in critical care. Critical Care Medicine. 2017;45(2):187–195. doi: 10.1097/ccm.0000000000002084.
    1. Young P., Beasley R., Bailey M., et al. The association between early arterial oxygenation and mortality in ventilated patients with acute ischaemic stroke. Critical Care and Resuscitation. 2012;14(1):14–19.
    1. Roffe C., Ali K., Warusevitane A., et al. The SOS pilot study: a RCT of routine oxygen supplementation early after acute stroke—effect on recovery of neurological function at one week. PLoS ONE. 2011;6(5) doi: 10.1371/journal.pone.0019113.e19113
    1. Ali K., Warusevitane A., Lally F., et al. The stroke oxygen pilot study: a randomized controlled trial of the effects of routine oxygen supplementation early after acute stroke—effect on key outcomes at six months. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0059274.e59274
    1. Hafner S., Beloncle F., Koch A., Radermacher P., Asfar P. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Annals of Intensive Care. 2015;5(1, article 42):1–14. doi: 10.1186/s13613-015-0084-6.
    1. Asfar P., Calzia E., Huber-Lang M., Ignatius A., Radermacher P. Hyperoxia during septic Shock—Dr. Jekyll or Mr. Hyde? Shock. 2012;37(1):122–123. doi: 10.1097/shk.0b013e318238c991.
    1. Rodríguez-González R., Martín-Barrasa J. L., Ramos-Nuez Á., et al. Multiple system organ response induced by Hyperoxia in a clinically relevant animal model of sepsis. Shock. 2014;42(2):148–153. doi: 10.1097/SHK.0000000000000189.
    1. Hauser B., Barth E., Bassi G., et al. Hemodynamic, metabolic, and organ function effects of pure oxygen ventilation during established fecal peritonitis-induced septic shock. Critical Care Medicine. 2009;37(8):2465–2469. doi: 10.1097/ccm.0b013e3181aee8ad.
    1. Waisman D., Brod V., Rahat M. A., et al. Dose-related effects of hyperoxia on the lung inflammatory response in septic rats. Shock. 2012;37(1):95–102. doi: 10.1097/SHK.0b013e3182356fc3.
    1. Kiers D., Gerretsen J., Janssen E., et al. Short-term hyperoxia does not exert immunologic effects during experimental murine and human endotoxemia. Scientific Reports. 2015;5, article 17441 doi: 10.1038/srep17441.
    1. Suzuki S., Eastwood G. M., Peck L., Glassford N. J., Bellomo R. Current oxygen management in mechanically ventilated patients: a prospective observational cohort study. Journal of Critical Care. 2013;28(5):647–654. doi: 10.1016/j.jcrc.2013.03.010.
    1. Helmerhorst H. J., Schultz M. J., van der Voort P. H., et al. Self-reported attitudes versus actual practice of oxygen therapy by ICU physicians and nurses. Annals of Intensive Care. 2014;4, article 23 doi: 10.1186/s13613-014-0023-y.
    1. Ridler N., Plumb J., Grocott M. Oxygen therapy in critical illness: friend or foe? A review of oxygen therapy in selected acute illnesses. Journal of the Intensive Care Society. 2014;15(3):190–198. doi: 10.1177/175114371401500303.

Source: PubMed

3
Suscribir