Effects of CYP2C19 loss-of-function variants on the eradication of H. pylori infection in patients treated with proton pump inhibitor-based triple therapy regimens: a meta-analysis of randomized clinical trials

Hui-Lin Tang, Yan Li, Yong-Fang Hu, Hong-Guang Xie, Suo-Di Zhai, Hui-Lin Tang, Yan Li, Yong-Fang Hu, Hong-Guang Xie, Suo-Di Zhai

Abstract

Background: There are inconsistent conclusions about whether CYP2C19 variants could affect H. pylori eradication rate in patients treated with the proton pump inhibitor (PPI)-based therapy. We therefore performed a meta-analysis of randomized clinical trials (RCTs) to re-evaluate the impact of CYP2C19 variants on PPI-based triple therapy for the above indication.

Methods: All relevant RCTs in the PubMed, Cochrane Library, EMBASE, Web of Science and two Chinese databases (up to February 2013) were systematically searched, and a pooled analysis was performed with the odds ratio (OR) and 95% confidence interval (CI) by the STATA software.

Results: Sixteen RCT datasets derived from 3680 patients were included. There was no significant heterogeneity across the data available in this meta-analysis. There were significant differences in that rate between homozygous (HomEMs) and heterozygous (HetEMs) extensive metabolizers (OR 0.724; 95% CI 0.594-0.881), between HomEMs and poor metabolizers (PM) (OR 0.507; 95%CI 0.379-0.679), or between HetEMs and PMs (OR 0.688; 95%CI 0.515-0.920), regardless of the PPI being taken. Furthermore, sub-analysis of individual PPIs was carried out to explore the difference across all the PPIs used. A significantly low rate was seen in HomEMs vs. HetEMs taking either omeprazole (OR 0.329; 95%CI 0.195-0.553) or lansoprazole (OR 0.692; 95%CI 0.485-0.988), and also in HomEMs vs. PMs for omeprazole (OR 0.232; 95%CI 0.105-0.515) or lansoprazole (OR 0.441; 95%CI 0.252-0.771). However, there was no significant difference between HetEMs and PMs taking either one. No significant differences were observed for rabeprazole or esomeprazole across the CYP2C19 genotypes of interest.

Conclusions: Carriage of CYP2C19 loss-of-function variants is associated with increased H. pylori eradication rate in patients taking PPI-based triple therapies when omeprazole or lansoprazole is chosen. However, there is no a class effect after use of rabeprazole or esomeprazole.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Process that identified eligible randomized…
Figure 1. Process that identified eligible randomized clinical trials.
Figure 2. Forest plot of RCTs comparing…
Figure 2. Forest plot of RCTs comparing HomEMs vs.
HetEM in relation to H. pylori eradication rate of all PPI-based triple therapies.
Figure 3. Forest plot of RCTs comparing…
Figure 3. Forest plot of RCTs comparing HomEMs vs.
PM in relation to H. pylori eradication rate of all PPI-based triple therapies.
Figure 4. Forest plot of RCTs comparing…
Figure 4. Forest plot of RCTs comparing HetEMs vs.
PM in relation to H. pylori eradication rate of all PPI-based triple therapies.

References

    1. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 1311–1315.
    1. NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer Disease. JAMA 272: 65–69.
    1. Goodwin CS, Mendall MM, Northfield TC (1997) Helicobacter pylori infection. Lancet 349: 265–269.
    1. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, et al. (2001) Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345: 784–789.
    1. Marshall BJ, Windsor HM (2005) The relation of Helicobacter pylori to gastric adenocarcinoma and lymphoma: pathophysiology, epidemiology, screening, clinical presentation, treatment, and prevention. Med Clin North Am 89: 313–344, viii.
    1. Marshall BJ, Goodwin CS, Warren JR, Murray R, Blincow ED, et al. (1988) Prospective double-blind trial of duodenal ulcer relapse after eradication of Campylobacter pylori. Lancet 2: 1437–1442.
    1. Chey WD, Wong BC (2007) American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Am J Gastroenterol 102: 1808–1825.
    1. Egan BJ, Katicic M, O’Connor HJ, O’Morain CA (2007) Treatment of Helicobacter pylori. Helicobacter 12 Suppl 131–37.
    1. Malfertheiner P, Megraud F, O’Morain C, Bazzoli F, El-Omar E, et al. (2007) Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut 56: 772–781.
    1. Goddard AF, Jessa MJ, Barrett DA, Shaw PN, Idstrom JP, et al. (1996) Effect of omeprazole on the distribution of metronidazole, amoxicillin, and clarithromycin in human gastric juice. Gastroenterology 111: 358–367.
    1. Erah PO, Goddard AF, Barrett DA, Shaw PN, Spiller RC (1997) The stability of amoxycillin, clarithromycin and metronidazole in gastric juice: relevance to the treatment of Helicobacter pylori infection. J Antimicrob Chemother 39: 5–12.
    1. Andersson T, Regardh CG, Dahl-Puustinen ML, Bertilsson L (1990) Slow omeprazole metabolizers are also poor S-mephenytoin hydroxylators. Ther Drug Monit 12: 415–416.
    1. Ishizaki T, Horai Y (1999) Review article: cytochrome P450 and the metabolism of proton pump inhibitors–emphasis on rabeprazole. Aliment Pharmacol Ther 13 Suppl 327–36.
    1. Tomalik-Scharte D, Lazar A, Fuhr U, Kirchheiner J (2008) The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J 8: 4–15.
    1. Hagymasi K, Muellner K, Herszenyi L, Tulassay Z (2011) Update on the pharmacogenomics of proton pump inhibitors. Pharmacogenomics 12: 873–888.
    1. Dadabhai A, Friedenberg FK (2009) Rabeprazole: a pharmacologic and clinical review for acid-related disorders. Expert Opin Drug Saf 8: 119–126.
    1. Dojo M, Azuma T, Saito T, Ohtani M, Muramatsu A, et al. (2001) Effects of CYP2C19 gene polymorphism on cure rates for Helicobacter pylori infection by triple therapy with proton pump inhibitor (omeprazole or rabeprazole), amoxycillin and clarithromycin in Japan. Dig Liver Dis 33: 671–675.
    1. Inaba T, Mizuno M, Kawai K, Yokota K, Oguma K, et al. (2002) Randomized open trial for comparison of proton pump inhibitors in triple therapy for Helicobacter pylori infection in relation to CYP2C19 genotype. J Gastroenterol Hepatol 17: 748–753.
    1. Isomoto H, Inoue K, Furusu H, Nishiyama H, Shikuwa S, et al. (2003) Lafutidine, a novel histamine H2-receptor antagonist, vs lansoprazole in combination with amoxicillin and clarithromycin for eradication of Helicobacter pylori. Helicobacter 8: 111–119.
    1. Kawabata H, Habu Y, Tomioka H, Kutsumi H, Kobayashi M, et al. (2003) Effect of different proton pump inhibitors, differences in CYP2C19 genotype and antibiotic resistance on the eradication rate of Helicobacter pylori infection by a 1-week regimen of proton pump inhibitor, amoxicillin and clarithromycin. Aliment Pharmacol Ther 17: 259–264.
    1. Miki I, Aoyama N, Sakai T, Shirasaka D, Wambura CM, et al. (2003) Impact of clarithromycin resistance and CYP2C19 genetic polymorphism on treatment efficacy of Helicobacter pylori infection with lansoprazole- or rabeprazole-based triple therapy in Japan. Eur J Gastroenterol Hepatol 15: 27–33.
    1. Take S, Mizuno M, Ishiki K, Nagahara Y, Yoshida T, et al. (2003) Interleukin-1beta genetic polymorphism influences the effect of cytochrome P 2C19 genotype on the cure rate of 1-week triple therapy for Helicobacter pylori infection. Am J Gastroenterol 98: 2403–2408.
    1. He XX, Zhao YH, Hao YT (2004) Effect of CYP2C19 genetic polymorphism on treatment efficacy of Helicobacter pylori infection with rabeprazole-based triple therapy in Chinese. Chin J Intern Med 43: 13–15.
    1. Jiang YJ, Li YY, Nie YQ, Wang H, Sha WH (2004) Effect of Rabeprazole on Eradication of Helicobacter Pylori and Its Correlation to CYP2C19 Genetic Polymorphisms. Academic Journal of Guangzhou Medical College 32: 22–25.
    1. Okudaira K, Furuta T, Shirai N, Sugimoto M, Miura S (2005) Concomitant dosing of famotidine with a triple therapy increases the cure rates of Helicobacter pylori infections in patients with the homozygous extensive metabolizer genotype of CYP2C19. Aliment Pharmacol Ther 21: 491–497.
    1. Sheu BS, Kao AW, Cheng HC, Hunag SF, Chen TW, et al. (2005) Esomeprazole 40 mg twice daily in triple therapy and the efficacy of Helicobacter pylori eradication related to CYP2C19 metabolism. Aliment Pharmacol Ther 21: 283–288.
    1. Furuta T, Shirai N, Kodaira M, Sugimoto M, Nogaki A, et al. (2007) Pharmacogenomics-based tailored versus standard therapeutic regimen for eradication of H. pylori. Clin Pharmacol Ther 81: 521–528.
    1. Kuwayama H, Asaka K, Sugiyama T, Fukuda Y, Aoyama N, et al. (2007) Rabeprazole-based eradication therapy for Helicobacter pylori: a large-scale study in Japan. Aliment Pharmacol Ther 25: 1105–1113.
    1. Zhang L, Xu JM, Mei Q, Li QS, Hu YM (2009) Impact of CYP2C19 polymorphisms on eradication of Helicobacter pylori using triple therapy with esomeprazole. Chin J Dig 29: 545–548.
    1. Lee JH, Jung HY, Choi KD, Song HJ, Lee GH, et al. (2010) The Influence of CYP2C19 Polymorphism on Eradication of Helicobacter pylori: A Prospective Randomized Study of Lansoprazole and Rabeprazole. Gut Liver 4: 201–206.
    1. Pan X, Li Y, Qiu Y, Tang Q, Qian B, et al. (2010) Efficacy and tolerability of first-line triple therapy with levofloxacin and amoxicillin plus esomeprazole or rabeprazole for the eradication of Helicobacter pylori infection and the effect of CYP2C19 genotype: a 1-week, randomized, open-label study in Chinese adults. Clin Ther 32: 2003–2011.
    1. Zhang L, Mei Q, Li QS, Hu YM, Xu JM (2010) The effect of cytochrome P2C19 and interleukin-1 polymorphisms on H. pylori eradication rate of 1-week triple therapy with omeprazole or rabeprazole, amoxycillin and clarithromycin in Chinese people. J Clin Pharm Ther 35: 713–722.
    1. Padol S, Yuan YH, Thabane M, Padol IT, Hunt RH (2006) The effect of CYP2C19 polymorphisms on H-Pylori eradication rate in dual and triple first-line PPI therapies: A meta-analysis. Am J Gastroenterol 101: 1467–1475.
    1. Zhao F, Wang J, Yang Y, Wang X, Shi R, et al. (2008) Effect of CYP2C19 Genetic Polymorphisms on the Efficacy of Proton Pump Inhibitor-Based Triple Therapy for Helicobacter pylori Eradication: A Meta-Analysis. Helicobacter 13: 532–541.
    1. McNicholl AG, Linares PM, Nyssen OP, Calvet X, Gisbert JP (2012) Meta-analysis: esomeprazole or rabeprazole vs. first-generation pump inhibitors in the treatment of Helicobacter pylori infection. Aliment Pharmacol Ther 36: 414–425.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6: e1000097.
    1. Higgins JPT, Green S (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. Available: . Accessed 15 December 2012.
    1. Ioannidis JP, Trikalinos TA (2007) The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ 176: 1091–1096.
    1. Furuta T, Ohashi K, Kosuge K, Zhao XJ, Takashima M, et al. (1999) CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans. Clin Pharmacol Ther 65: 552–561.
    1. Hokari K, Sugiyama T, Kato M, Saito M, Miyagishima T, et al. (2001) Efficacy of triple therapy with rabeprazole for Helicobacter pylori infection and CYP2C19 genetic polymorphism. Aliment Pharmacol Ther 15: 1479–1484.
    1. Dent J (2003) Review article: pharmacology of esomeprazole and comparisons with omeprazole. Aliment Pharmacol Ther 17 Suppl 15–9.
    1. Tybring G, Bottiger Y, Widen J, Bertilsson L (1997) Enantioselective hydroxylation of omeprazole catalyzed by CYP2C19 in Swedish white subjects. Clin Pharmacol Ther 62: 129–137.
    1. Lim PW, Goh KL, Wong BC (2005) CYP2C19 genotype and the PPIs–focus on rabeprazole. J Gastroenterol Hepatol 20 Suppl: S22–28
    1. Houben MH, van de Beek D, Hensen EF, de Craen AJ, Rauws EA, et al. (1999) A systematic review of Helicobacter pylori eradication therapy–the impact of antimicrobial resistance on eradication rates. Aliment Pharmacol Ther 13: 1047–1055.
    1. Miwa H, Misawa H, Yamada T, Nagahara A, Ohtaka K, et al. (2001) Clarithromycin resistance, but not CYP2C-19 polymorphism, has a major impact on treatment success in 7-day treatment regimen for cure of H. pylori infection: a multiple logistic regression analysis. Dig Dis Sci 46: 2445–2450.
    1. Jung HC, Kim JM, Song IS, Kim CY (1997) Helicobacter pylori induces an array of pro-inflammatory cytokines in human gastric epithelial cells: quantification of mRNA for interleukin-8, -1 alpha/beta, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1 and tumour necrosis factor-alpha. J Gastroenterol Hepatol 12: 473–480.
    1. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, et al. (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404: 398–402.
    1. Mizuno M, Take S, Ishiki K, Okada H, Shiratori Y (2004) Interluekin-1 beta genetic polymorphism influences the impact of cytochrome P 2C19 genotype on the cure rate of H. pylori eradication therapy. Nihon rinsho 62: 455–458.
    1. Gawronska-Szklarz B, Siuda A, Kurzawski M, Bielicki D, Marlicz W, et al. (2010) Effects of CYP2C19, MDR1, and interleukin 1-B gene variants on the eradication rate of Helicobacter pylori infection by triple therapy with pantoprazole, amoxicillin, and metronidazole. Eur J Clin Pharmacol 66: 681–687.

Source: PubMed

3
Suscribir