A Randomized Crossover Trial on Acute Stress-Related Physiological Responses to Mountain Hiking

Martin Niedermeier, Carina Grafetstätter, Arnulf Hartl, Martin Kopp, Martin Niedermeier, Carina Grafetstätter, Arnulf Hartl, Martin Kopp

Abstract

Green exercise, defined as physical activity in natural environments, might have positive effects on stress-related physiological measures. Little is known about the acute effects of green exercise bouts lasting longer than 60 min. Therefore, the aim of the present study was to analyze the acute effects of a three-hour green exercise intervention (mountain hiking) on stress-related physiological responses. Using a randomized crossover design, 42 healthy participants were exposed to three different conditions in a field-based experiment: outdoor mountain hiking, indoor treadmill walking, and sedentary control condition (three hours each). At baseline and at follow-up (five minutes after the condition), stress-related physiological responses (salivary cortisol, blood pressure, and heart rate variability) were measured. Salivary cortisol decreased in all conditions, but showed a larger decrease after both mountain hiking and treadmill walking compared to the sedentary control situation (partial η² = 0.10). No differences were found between mountain hiking and treadmill walking in salivary cortisol. In heart rate variability and blood pressure, changes from baseline to follow-up did not significantly differ between the three conditions. The results indicate that three hours of hiking indoors or outdoors elicits positive effects on salivary cortisol concentration. Environmental effects seem to play a minor role in salivary cortisol, blood pressure, and heart rate variability.

Keywords: allostatic load; blood pressure; cortisol; green exercise; heart rate variability; urbanization.

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Flow diagram for data collection and participant flow. All participants were exposed to the three experimental conditions in a randomized order. The cases of acute illness occurred after the sedentary control condition (n = 2) and after indoor treadmill walking (n = 3).
Figure 2
Figure 2
Mean changes in salivary cortisol concentration from baseline to follow-up by condition. * Significant condition by time interaction, error bars represent standard deviations.

References

    1. Patel R.B., Burke T.F. Urbanization—An Emerging Humanitarian Disaster. N. Engl. J. Med. 2009;361:741–743. doi: 10.1056/NEJMp0810878.
    1. Godfrey R., Julien M. Urbanisation and health. Clin. Med. (Northfield Il.) 2005;5:137–141. doi: 10.7861/clinmedicine.5-2-137.
    1. Harpham T. Urbanisation and health in transition. The Lancet. 1997;349:S11–S13. doi: 10.1016/S0140-6736(97)90072-6.
    1. Ekelund U., Steene-Johannessen J., Brown W.J., Fagerland M.W., Owen N., Powell K.E., Bauman A., Lee I.M. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388:1302–1310. doi: 10.1016/S0140-6736(16)30370-1.
    1. Ding D., Lawson K.D., Kolbe-Alexander T.L., Finkelstein E.A., Katzmarzyk P.T., van Mechelen W., Pratt M. The economic burden of physical inactivity: A global analysis of major non-communicable diseases. Lancet. 2016 doi: 10.1016/S0140-6736(16)30383-X.
    1. McEwen B.S. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998;840:33–44. doi: 10.1111/j.1749-6632.1998.tb09546.x.
    1. McEwen B.S. Protective and damaging effects of stress mediators. N. Engl. J. Med. 1998;338:171–179. doi: 10.1056/NEJM199801153380307.
    1. Ulrich R.S. View through a window may influence recovery from surgery. Science. 1984;224:420–421. doi: 10.1126/science.6143402.
    1. Hartig T., Mang M., Evans G.W. Restorative effects of natural environment experiences. Environ. Behav. 1991;23:3–26. doi: 10.1177/0013916591231001.
    1. Gerber M., Pühse U. Review article: Do exercise and fitness protect against stress-induced health complaints? A review of the literature. Scand. J. Public Health. 2009;37:801–819. doi: 10.1177/1403494809350522.
    1. Hamer M., Taylor A., Steptoe A. The effect of acute aerobic exercise on stress related blood pressure responses: A systematic review and meta-analysis. Biol. Psychol. 2006;71:183–190. doi: 10.1016/j.biopsycho.2005.04.004.
    1. Barton J., Pretty J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 2010;44:3947–3955. doi: 10.1021/es903183r.
    1. Thompson Coon J., Boddy K., Stein K., Whear R., Barton J., Depledge M.H. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 2011;45:1761–1772. doi: 10.1021/es102947t.
    1. Bowler D.E., Buyung-Ali L.M., Knight T.M., Pullin A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health. 2010;10:456. doi: 10.1186/1471-2458-10-456.
    1. Haluza D., Schonbauer R., Cervinka R. Green perspectives for public health: A narrative review on the physiological effects of experiencing outdoor nature. Int. J. Environ. Res. Public Health. 2014;11:5445–5461. doi: 10.3390/ijerph110505445.
    1. Van Eck M., Berkhof H., Nicolson N., Sulon J. The effects of perceived stress, traits, mood states, and stressful daily events on salivary cortisol. Psychosom. Med. 1996;58:447–458. doi: 10.1097/00006842-199609000-00007.
    1. Kwan B.M., Bryan A. In-task and post-task affective response to exercise: Translating exercise intentions into behaviour. Br. J. Health Psychol. 2010;15:115–131. doi: 10.1348/135910709X433267.
    1. Rhodes R.E., Kates A. Can the affective response to exercise predict future motives and physical activity behavior? A systematic review of published evidence. Ann. Behav. Med. 2015:715–731. doi: 10.1007/s12160-015-9704-5.
    1. Williams D.M., Dunsiger S., Ciccolo J.T., Lewis B.A., Albrecht A.E., Marcus B.H. Acute affective response to a moderate-intensity exercise stimulus predicts physical activity participation 6 and 12 months later. Psychol. Sport Exerc. 2008;9:231–245. doi: 10.1016/j.psychsport.2007.04.002.
    1. Pretty J., Peacock J., Sellens M., Griffin M. The mental and physical health outcomes of green exercise. Int. J. Environ. Health Res. 2005;15:319–337. doi: 10.1080/09603120500155963.
    1. Schobersberger W., Leichtfried V., Mueck-Weymann M., Humpeler E. Austrian moderate altitude studies (amas): Benefits of exposure to moderate altitudes (1,500–2,500 m) Sleep Breath. 2010;14:201–207. doi: 10.1007/s11325-009-0286-y.
    1. Sturm J., Plöderl M., Fartacek C., Kralovec K., Neunhäuserer D., Niederseer D., Hitzl W., Niebauer J., Schiepek G., Fartacek R. Physical exercise through mountain hiking in high-risk suicide patients. A randomized crossover trial. Acta Psychiatr. Scand. 2012;126:467–475. doi: 10.1111/j.1600-0447.2012.01860.x.
    1. Niedermeier M., Einwanger J., Hartl A., Kopp M. Affective responses in mountain hiking—A randomized crossover trial focusing on differences between indoor and outdoor activity. PLoS ONE. 2017;12:e0177719. doi: 10.1371/journal.pone.0177719.
    1. Shephard R.J., Thomas S., Weller I. The canadian home fitness test. 1991 update. Sports Med. 1991;11:358–366. doi: 10.2165/00007256-199111060-00002.
    1. Faul F., Erdfelder E., Lang A.G., Buchner A. G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Van Den Berg A.E., Custers M.H. Gardening promotes neuroendocrine and affective restoration from stress. J. Health Psychol. 2011;16:3–11. doi: 10.1177/1359105310365577.
    1. Hernando D., Garatachea N., Almeida R., Casajus J.A., Bailon R. Validation of heart rate monitor polar rs800 for heart rate variability analysis during exercise. J. Strength Cond. Res. 2016 doi: 10.1519/JSC.0000000000001662.
    1. Nunan D., Donovan G., Jakovljevic D., Hodges L., Sandercock G., Brodie D. Validity and reliability of short-term heart-rate variability from the polar s810. Med. Sci. Sports Exerc. 2009;41:243. doi: 10.1249/MSS.0b013e318184a4b1.
    1. Task Force of The European Society of Cardiology Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Eur. Heart J. 1996;17:354–381.
    1. Thayer J.F., Ahs F., Fredrikson M., Sollers J.J., 3rd, Wager T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012;36:747–756. doi: 10.1016/j.neubiorev.2011.11.009.
    1. Burr R.L. Interpretation of normalized spectral heart rate variability indices in sleep research: A critical review. Sleep. 2007;30:913–919. doi: 10.1093/sleep/30.7.913.
    1. Tanaka H., Monahan K.D., Seals D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001;37:153–156. doi: 10.1016/S0735-1097(00)01054-8.
    1. Borg G. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982:377–381. doi: 10.1249/00005768-198205000-00012.
    1. Noble B.J., Robertson R.J. Perceived Exertion. Human Kinetics; Mitcham, Australia: 1996.
    1. Field A. Discovering Statistics Using Spss. 3rd ed. SAGE; London, UK: 2009.
    1. Liu S.Y., Wrosch C., Miller G.E., Pruessner J.C. Self-esteem change and diurnal cortisol secretion in older adulthood. Psychoneuroendocrinology. 2014;41:111–120. doi: 10.1016/j.psyneuen.2013.12.010.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum Associates; Hillsdale, ON, Canada: 1988.
    1. Heaney J.L.J., Carroll D., Phillips A.C. DHEA, DHEA-s and cortisol responses to acute exercise in older adults in relation to exercise training status and sex. Age. 2013;35:395–405. doi: 10.1007/s11357-011-9345-y.
    1. Ida M., Ida I., Wada N., Sohmiya M., Tazawa M., Shirakura K. A clinical study of the efficacy of a single session of individual exercise for depressive patients, assessed by the change in saliva free cortisol level. Biopsychosoc. Med. 2013;7:18. doi: 10.1186/1751-0759-7-18.
    1. Kuratorium für Verkehrssicherheit Freizeitunfallstatistik 2005. [(accessed on 24 December 2015)]; Available online: .
    1. Statistik Austria Population statistics. [(accessed on 3 March 2016)]; Available online: .
    1. Burtscher M. High altitude headache: Epidemiology, pathophysiology, therapy and prophylaxis. Wien. Klin. Wochenschr. 1999;111:830–836.
    1. Powell J., DiLeo T., Roberge R., Coca A., Kim J.H. Salivary and serum cortisol levels during recovery from intense exercise and prolonged, moderate exercise. Biol. Sport. 2015;32:91–95. doi: 10.5604/20831862.1134314.
    1. Gatti R., De Palo E.F. An update: Salivary hormones and physical exercise. Scand. J. Med. Sci. Sports. 2011;21:157–169. doi: 10.1111/j.1600-0838.2010.01252.x.
    1. Lackner H.K., Weiss E.M., Hinghofer-Szalkay H., Papousek I. Cardiovascular effects of acute positive emotional arousal. Appl. Psychophysiol. Biofeedback. 2014;39:9–18. doi: 10.1007/s10484-013-9235-4.
    1. Lakin R., Notarius C., Thomas S., Goodman J. Effects of moderate-intensity aerobic cycling and swim exercise on post-exertional blood pressure in healthy young untrained and triathlon-trained men and women. Clin. Sci. (Lond.) 2013;125:543–553. doi: 10.1042/CS20120508.
    1. Rezk C.C., Marrache R.C.B., Tinucci T., Mion D., Forjaz C.L.M. Post-resistance exercise hypotension, hemodynamics, and heart rate variability: Influence of exercise intensity. Eur. J. Appl. Physiol. 2006;98:105–112. doi: 10.1007/s00421-006-0257-y.
    1. Kirschbaum C., Hellhammer D.H. Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology. 1994;19:313–333. doi: 10.1016/0306-4530(94)90013-2.
    1. Pescatello L.S., Franklin B.A., Fagard R., Farquhar W.B., Kelley G.A., Ray C.A. American college of sports medicine position stand. Exercise and hypertension. Med. Sci. Sports Exerc. 2004;36:533–553. doi: 10.1249/01.MSS.0000115224.88514.3A.
    1. Gidlow C.J., Jones M.V., Hurst G., Masterson D., Clark-Carter D., Tarvainen M.P., Smith G., Nieuwenhuijsen M. Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. J. Environ. Psychol. 2016;45:22–29. doi: 10.1016/j.jenvp.2015.11.003.
    1. Li Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 2010;15:9–17. doi: 10.1007/s12199-008-0068-3.
    1. Park B.J., Tsunetsugu Y., Kasetani T., Kagawa T., Miyazaki Y. The physiological effects of shinrin-yoku (taking in the forest atmosphere or forest bathing): Evidence from field experiments in 24 forests across japan. Environ. Health Prev. Med. 2010;15:18–26. doi: 10.1007/s12199-009-0086-9.
    1. Lee J., Tsunetsugu Y., Takayama N., Park B.J., Li Q., Song C., Komatsu M., Ikei H., Tyrvainen L., Kagawa T., et al. Influence of forest therapy on cardiovascular relaxation in young adults. Evid. Based Complement. Alternat. Med. 2014;2014:834360. doi: 10.1155/2014/834360.
    1. Tyrväinen L., Ojala A., Korpela K., Lanki T., Tsunetsugu Y., Kagawa T. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 2014;38:1–9. doi: 10.1016/j.jenvp.2013.12.005.
    1. Nater U.M., Rohleder N., Schlotz W., Ehlert U., Kirschbaum C. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology. 2007;32:392–401. doi: 10.1016/j.psyneuen.2007.02.007.
    1. Burger A.J., Charlamb M., Sherman H.B. Circadian patterns of heart rate variability in normals, chronic stable angina and diabetes mellitus. Int. J. Cardiol. 1999;71:41–48. doi: 10.1016/S0167-5273(99)00110-2.
    1. Kirschbaum C., Kudielka B.M., Gaab J., Schommer N.C., Hellhammer D.H. Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosom. Med. 1999;61:154–162. doi: 10.1097/00006842-199903000-00006.
    1. Reckelhoff J.F. Gender differences in the regulation of blood pressure. Hypertension. 2001;37:1199–1208. doi: 10.1161/01.HYP.37.5.1199.
    1. Prince M., Patel V., Saxena S., Maj M., Maselko J., Phillips M.R., Rahman A. No health without mental health. Lancet. 2007;370:859–877. doi: 10.1016/S0140-6736(07)61238-0.
    1. Yusuf S., Hawken S., Ounpuu S., Dans T., Avezum A., Lanas F., McQueen M., Budaj A., Pais P., Varigos J., et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the interheart study): Case-control study. Lancet. 2004;364:937–952. doi: 10.1016/S0140-6736(04)17018-9.
    1. Philippe M., Junker G., Gatterer H., Melmer A., Burtscher M. Acute effects of concentric and eccentric exercise matched for energy expenditure on glucose metabolism in healthy females: A randomized crossover trial. Springerplus. 2016;5:1455. doi: 10.1186/s40064-016-3062-z.

Source: PubMed

3
Suscribir