Effects of Remote Ischemic Conditioning on Hand Engagement in individuals with Spinal cord Injury (RICHES): protocol for a pilot crossover study

Yu-Kuang Wu, Noam Y Harel, Jill M Wecht, Ona E Bloom, Yu-Kuang Wu, Noam Y Harel, Jill M Wecht, Ona E Bloom

Abstract

​​​​​​ Background: Most spinal cord injuries (SCI) are not full transections, indicating that residual nerve circuits are retained. Rehabilitation interventions have been shown to beneficially reorganize motor pathways in the brain, corticospinal tract, and at the spinal level. However, rehabilitation training require a large number of repetitions, and intervention effects may be absent or show transient retention. Therefore, the need remains for an effective approach to synergistically improve the amount and duration of neuroplasticity in combination with other interventions. Remote ischemic conditioning (RIC) demonstrates several potential advantages as a candidate for such an approach. Therefore, we propose a protocol to investigate RIC coupled with physical training to promote neuroplasticity in hand muscles. Methods: This will be a prospective randomized-order crossover trial to be performed in eight able-bodied participants and eight participants with chronic cervical SCI. Patients will participate in two experimental sessions consisting of either active or sham RIC preceding a bout of pinch movement exercise. Serial evaluations will be conducted at baseline, after RIC, immediately after pinch exercise, and follow up 15-minutes later. The primary outcome is the change in corticospinal excitability (primarily measured by the motor evoked potential of abductor pollicis brevis muscle). Secondary outcomes will include maximal volitional pinch force, and inflammatory biomarkers. To ensure safety, we will monitor tolerability and hemodynamic responses during RIC. Discussion: This protocol will be the first to test RIC in people with cervical SCI and to investigate whether RIC alters corticospinal excitability. By sharing the details of our protocol, we hope other interested researchers will seek to investigate similar approaches - depending on overlap with the current study and mutual sharing of participant-level data, this could increase the sample size, power, and generalizability of the analysis and results. Trial registration: ClinicalTrial.gov, ID: NCT03851302; Date of registration: February 22, 2019.

Keywords: Remote ischemic conditioning; Spinal cord injury; TLR pathway; corticospinal; neural plasticity.

Conflict of interest statement

No competing interests were disclosed.

Copyright: © 2022 Wu YK et al.

Figures

Figure 1.. The experimental protocol.
Figure 1.. The experimental protocol.
Figure 2.. The equipment configuration for testing…
Figure 2.. The equipment configuration for testing HR variability, respiratory rate and blood pressure changes during RIC/Sham conditioning.

References

    1. Center NSCIS: Facts and Figures at a Glance.The University of Alabama at Birmingham,2016.
    1. Snoek GJ, IJzerman MJ, Hermens HJ, et al. : Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics. Spinal Cord. 2004;42(9):526–32. 10.1038/sj.sc.3101638
    1. Anderson KD: Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21(10):1371–1383. 10.1089/neu.2004.21.1371
    1. Kakulas AB: A Review of the Neuropathology of Human Spinal Cord Injury with Emphasis on Special Features. J Spinal Cord Med. 1999;22(2):119–124. 10.1080/10790268.1999.11719557
    1. Topka H, Cohen LG, Cole RA, et al. : Reorganization of corticospinal pathways following spinal cord injury. Neurology. 1991;41(8):1276–83. 10.1212/wnl.41.8.1276
    1. Winchester P, McColl R, Querry R, et al. : Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005;19(4):313–324. 10.1177/1545968305281515
    1. Behrman AL, Bowden MG, Nair PM: Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys Ther. 2006;86(10):1406–1425. 10.2522/ptj.20050212
    1. Forrest GF, Sisto SA, Barbeau H, et al. : Neuromotor and musculoskeletal responses to locomotor training for an individual with chronic motor complete {AIS}-B spinal cord injury. J Spinal Cord Med. 2008;31(5):509–21. 10.1080/10790268.2008.11753646
    1. Edgerton VR, Tillakaratne NJK, Bigbee AJ, et al. : Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004;27:145–167. 10.1146/annurev.neuro.27.070203.144308
    1. Harel NY, Strittmatter SM: Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci. 2006;7(8):603–616. 10.1038/nrn1957
    1. Girgis J, Merrett D, Kirkland S, et al. : Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain. 2007;130(Pt 11):2993–3003. 10.1093/brain/awm245
    1. Tansey KE: Neural plasticity and locomotor recovery after spinal cord injury. PM R. 2010;2(12 Suppl 2):S220–S226. 10.1016/j.pmrj.2010.10.007
    1. Fink KL, Cafferty WBJ: Reorganization of intact descending motor circuits to replace lost connections after injury. Neurotherapeutics. 2016;13(2):370–381. 10.1007/s13311-016-0422-x
    1. Ramer MS, Harper GP, Bradbury EJ: Progress in spinal cord research - a refined strategy for the International Spinal Research Trust. Spinal Cord. 2000;38(8):449–472. 10.1038/sj.sc.3101055
    1. Trumbower RD, Jayaraman A, Mitchell GS, et al. : Exposure to Acute Intermittent Hypoxia Augments Somatic Motor Function in Humans With Incomplete Spinal Cord Injury. Neurorehabil Neural Repair. 2012;26(2):163–172. 10.1177/1545968311412055
    1. Trumbower RD, Hayes HB, Mitchell GS, et al. : Effects of acute intermittent hypoxia on hand use after spinal cord trauma: A preliminary study. Neurology. 2017;89(18):1904–1907. 10.1212/WNL.0000000000004596
    1. Dale-Nagle EA, Hoffman MS, MacFarlane PM, et al. : Spinal plasticity following intermittent hypoxia: Implications for spinal injury. Ann N Y Acad Sci. 2010;1198:252–259. 10.1111/j.1749-6632.2010.05499.x
    1. Navarrete-Opazo A, Alcayaga J, Sepúlveda O, et al. : Repetitive Intermittent Hypoxia and Locomotor Training Enhances Walking Function in Incomplete Spinal Cord Injury Subjects: A Randomized, Triple-Blind, Placebo-Controlled Clinical Trial. J Neurotrauma. 2017;34(9):1803–1812. 10.1089/neu.2016.4478
    1. Dirnagl U, Becker K, Meisel A: Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8(4):398–412. 10.1016/S1474-4422(09)70054-7
    1. Gidday JM: Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7(6):437–448. 10.1038/nrn1927
    1. Stetler RA, Leak RK, Gan Y, et al. : Preconditioning provides neuroprotection in models of CNS disease: Paradigms and clinical significance. Prog Neurobiol. 2014;114:58–83. 10.1016/j.pneurobio.2013.11.005
    1. Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36. 10.1161/01.cir.74.5.1124
    1. Kharbanda RK, Mortensen UM, White PA, et al. : Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002;106(23):2881–2883. 10.1161/01.cir.0000043806.51912.9b
    1. Kharbanda RK, Nielsen TT, Redington AN: Translation of remote ischaemic preconditioning into clinical practice. Lancet. 2009;374(9700):1557–1565. 10.1016/S0140-6736(09)61421-5
    1. Ren C, Yan Z, Wei D, et al. : Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 2009;1288:88–94. 10.1016/j.brainres.2009.07.029
    1. Lim SY, Hausenloy DJ: Remote ischemic conditioning: From bench to bedside. Front Physiol. 2012;3:27. 10.3389/fphys.2012.00027
    1. Gill R, Kuriakose R, Gertz ZM, et al. : Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Mol Cell Biochem. 2015;402(1–2):41–49. 10.1007/s11010-014-2312-z
    1. Sapmaz A, Ulus AT, Turan NN, et al. : Which type of conditioning method protects the spinal cord from the ischemia-reperfusion injury in 24 hours? Vascular. 2015;23(6):614–21. 10.1177/1708538114568702
    1. Selimoglu O, Ugurlucan M, Basaran M, et al. : Efficacy of remote ischaemic preconditioning for spinal cord protection against ischaemic injury: Association with heat shock protein expression. Folia Neuropathol. 2008;46(3):204–212.
    1. Su B, Dong H, Ma R, et al. : Cannabinoid 1 receptor mediation of spinal cord ischemic tolerance induced by limb remote ischemia preconditioning in rats. J Thorac Cardiovasc Surg. 2009;138(6):1409–16. 10.1016/j.jtcvs.2009.07.014
    1. Dong HL, Zhang Y, Su BX, et al. : Limb remote ischemic preconditioning protects the spinal cord from ischemia-reperfusion injury: A newly identified nonneuronal but reactive oxygen species-dependent pathway. Anesthesiology. 2010;112(4):881–91. 10.1097/ALN.0b013e3181d0486d
    1. Correia SC, Moreira PI: Hypoxia-inducible factor 1: A new hope to counteract neurodegeneration? J Neurochem. 2010;112(1):1–12. 10.1111/j.1471-4159.2009.06443.x
    1. Albrecht M, Zitta K, Bein B, et al. : Remote ischemic preconditioning regulates HIF-1α levels, apoptosis and inflammation in heart tissue of cardiosurgical patients: A pilot experimental study. Basic Res Cardiol. 2013;108(1):314. 10.1007/s00395-012-0314-0
    1. Ueno K, Samura M, Nakamura T, et al. : Increased plasma VEGF levels following ischemic preconditioning are associated with downregulation of miRNA-762 and miR-3072-5p. Sci Rep. 2016;6:36758. 10.1038/srep36758
    1. Konstantinov IE, Arab S, Kharbanda RK, et al. : The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics. 2004;19(1):143–150. 10.1152/physiolgenomics.00046.2004
    1. Kim YH, Yoon DW, Kim JH, et al. : Effect of remote ischemic post-conditioning on systemic inflammatory response and survival rate in lipopolysaccharide-induced systemic inflammation model. J Inflamm (Lond). 2014;11:16. 10.1186/1476-9255-11-16
    1. Raetz CRH, Whitfield C: Lipopolysaccharide Endotoxins. Annu Rev Biochem. 2002;71:635–700. 10.1146/annurev.biochem.71.110601.135414
    1. Lapchak PA, Araujo DM, Hefti F: Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Neuroscience. 1993;53(2):297–301. 10.1016/0306-4522(93)90196-m
    1. Guan Z, Fang J: Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun. 2006;20(1):64–71. 10.1016/j.bbi.2005.04.005
    1. Schnydrig S, Korner L, Landweer S, et al. : Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain. Neurosci Lett. 2007;429(1):69–73. 10.1016/j.neulet.2007.09.067
    1. Herman P, Stein A, Gibbs K, et al. : Persons with Chronic Spinal Cord Injury Have Decreased Natural Killer Cell and Increased Toll-Like Receptor/Inflammatory Gene Expression. J Neurotrauma. 2018;35(15):1819–1829. 10.1089/neu.2017.5519
    1. Cherry-Allen KM, Gidday JM, Lee JM, et al. : Remote limb ischemic conditioning enhances motor learning in healthy humans. J Neurophysiol. 2015;113(10):3708–3719. 10.1152/jn.01028.2014
    1. Koch S, Katsnelson M, Dong C, et al. : Remote ischemic limb preconditioning after subarachnoid hemorrhage: A phase Ib study of safety and feasibility. Stroke. 2011;42(5):1387–1391. 10.1161/STROKEAHA.110.605840
    1. Meng R, Asmaro K, Meng L, et al. : Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012;79(18):1853–1861. 10.1212/WNL.0b013e318271f76a
    1. Connolly M, Bilgin-Freiert A, Ellingson B, et al. : Peripheral vascular disease as remote ischemic preconditioning, for acute stroke. Clin Neurol Neurosurg. 2013;115(10):2124–2129. 10.1016/j.clineuro.2013.07.038
    1. England TJ, Hedstrom A, O'Sullivan S, et al. : RECAST (Remote Ischemic Conditioning after Stroke Trial): A Pilot Randomized Placebo Controlled Phase II Trial in Acute Ischemic Stroke. Stroke. 2017;48(5):1412–1415. 10.1161/STROKEAHA.116.016429
    1. Lambert EA, Thomas CJ, Hemmes R, et al. : Sympathetic nervous response to ischemia-reperfusion injury in humans is altered with remote ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2016;311(2):H364–70. ajpheart.00369.2016. 10.1152/ajpheart.00369.2016
    1. Enko K, Nakamura K, Yunoki K, et al. : Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J Physiol Sci. 2011;61(6):507–513. 10.1007/s12576-011-0172-9
    1. Li S, Ma C, Shao G, et al. : Safety and feasibility of remote limb ischemic preconditioning in patients with unilateral middle cerebral artery stenosis and healthy volunteers. Cell Transplant. 2015;24(9):1901–1911. 10.3727/096368914X683520
    1. Zagidullin N, Scherbakova E, Safina Y, et al. : The Impact of Remote Ischemic Preconditioning on Arterial Stiffness and Heart Rate Variability in Patients with Angina Pectoris. J Clin Med. 2016;5(7):60. 10.3390/jcm5070060
    1. Wu YK: Informed consent. figshare. Preprint.2021. 10.6084/m9.figshare.14592675.v1
    1. Floyd AG, Yu QP, Piboolnurak P, et al. : Transcranial magnetic stimulation in ALS: utility of central motor conduction tests. Neurology. 2009;72(6):498–504. 10.1212/01.wnl.0000341933.97883.a4
    1. Bøtker HE, Kharbanda R, Schmidt MR, et al. : Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet. 2010;375(9716):727–734. 10.1016/S0140-6736(09)62001-8
    1. Hausenloy DJ, Mwamure PK, Venugopal V, et al. : Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370(9587):575–579. 10.1016/S0140-6736(07)61296-3
    1. Koch S, Gonzalez N: Preconditioning the human brain: Proving the principle in subarachnoid hemorrhage. Stroke. 2013;44(6):1748–1753. 10.1161/STROKEAHA.111.000773
    1. Cherry-Allen KM, Gidday JM, Lee JM, et al. : Remote Limb Ischemic Conditioning at Two Cuff Inflation Pressures Yields Learning Enhancements in Healthy Adults. J Mot Behav. 2017;49(3):337–348. 10.1080/00222895.2016.1204268
    1. Balbi P, Perretti A, Sannino M, et al. : Postexercise facilitation of motor evoked potentials following transcranial magnetic stimulation: a study in normal subjects. Muscle Nerve. 2002;25(3):448–452. 10.1002/mus.10066
    1. Samii A, Wassermann EM, Ikoma K, et al. : Characterization of postexercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation. Neurology. 1996;46(5):1376–1382. 10.1212/wnl.46.5.1376
    1. Nuzzo JL: Effects of acute isometric resistance exercise on cervicomedullary motor evoked potentials. ARPN J Eng Appl Sci. 2017;12:3218–3221.
    1. Latella C, Teo WP, Harris D, et al. : Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses. Eur J Appl Physiol. 2017;117(11):2211–2224. 10.1007/s00421-017-3709-7
    1. Nørgaard P, Nielsen JF, Andersen H: Post-exercise facilitation of compound muscle action potentials evoked by transcranial magnetic stimulation in healthy subjects. Exp Brain Res. 2000;132(4):517–22. 10.1007/s002219900318
    1. Geevasinga N, Menon P, Kiernan MC, et al. : Motor cortical function and the precision grip. Physiol Rep. 2014;2(12):e12120. 10.14814/phy2.12120
    1. Rittig-Rasmussen B, Kasch H, Fuglsang-Frederiksen A, et al. : Specific Neck Training Induces Sustained Corticomotor Hyperexcitability as Assessed by Motor Evoked Potentials. Spine (Phila Pa 1976). 2013;38(16):E979–E984. 10.1097/BRS.0b013e3182975310
    1. Jensen JL, Marstrand PCD, Nielsen JB: Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol (1985). 2005;99(4):1558–1568. 10.1152/japplphysiol.01408.2004
    1. Chen R, Cros D, Curra A, et al. : The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2008;119(3):504–532. 10.1016/j.clinph.2007.10.014
    1. McGie SC, Masani K, Popovic MR: Failure of spinal paired associative stimulation to induce neuroplasticity in the human corticospinal tract. J Spinal Cord Med. 2014;37(5):565–574. 10.1179/2045772314Y.0000000267
    1. Thabit MN, Ueki Y, Koganemaru S, et al. : Movement-related cortical stimulation can induce human motor plasticity. J Neurosci. 2010;30(34):11529–11536. 10.1523/JNEUROSCI.1829-10.2010
    1. Vaseghi B, Zoghi M, Jaberzadeh S: Inter-pulse interval affects the size of single-pulse TMS-induced motor evoked potentials: A reliability study. Basic Clin Neurosci. 2015;6(1):44–51.
    1. Chen R, Tam A, Bütefisch C, et al. : Intracortical Inhibition and Facilitation in Different Representations of the Human Motor Cortex. J Neurophysiol. 1998;80(6):2870–81. 10.1152/jn.1998.80.6.2870
    1. Carson RG, Nelson BD, Buick AR, et al. : Characterizing changes in the excitability of corticospinal projections to proximal muscles of the upper limb. Brain Stimul. 2013;6(5):760–8. 10.1016/j.brs.2013.01.016
    1. Kujirai T, Caramia MD, Rothwell JC, et al. : Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–519. 10.1113/jphysiol.1993.sp019912
    1. Du X, Summerfelt A, Chiappelli J, et al. : Individualized brain inhibition and excitation profile in response to paired-pulse TMS. J Mot Behav. 2014;46(1):39–48. 10.1080/00222895.2013.850401
    1. McNeil CJ, Martin PG, Gandevia SC, et al. : Long-interval intracortical inhibition in a human hand muscle. Exp Brain Res. 2011;209(2):287–297. 10.1007/s00221-011-2552-z
    1. Kobayashi M, Pascual-Leone A: Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–156. 10.1016/s1474-4422(03)00321-1
    1. Faul F, Erdfelder E, Buchner A, et al. : Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149–60. 10.3758/BRM.41.4.1149
    1. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402–8. 10.1006/meth.2001.1262
    1. Wu YK: SPIRIT Checklist for study protocol paper. figshare. Preprint.2021. 10.6084/m9.figshare.14597403.v2

Source: PubMed

3
Suscribir