Post cardiac surgery vasoplegia is associated with high preoperative copeptin plasma concentration

Pascal H Colson, Cedric Bernard, Joachim Struck, Nils G Morgenthaler, Bernard Albat, Gilles Guillon, Pascal H Colson, Cedric Bernard, Joachim Struck, Nils G Morgenthaler, Bernard Albat, Gilles Guillon

Abstract

Introduction: Post cardiac surgery vasodilatation (PCSV) is possibly related to a vasopressin deficiency that could relate to chronic stimulation of adeno-hypophysis. To assess vasopressin system activation, a perioperative course of copeptin and vasopressin plasma concentrations were studied in consecutive patients operated on for cardiac surgery.

Methods: Sixty-four consecutive patients scheduled for elective cardiac surgery with cardiopulmonary bypass were studied. Hemodynamic, laboratory and clinical data were recorded before and during cardiopulmonary bypass, and at the eighth postoperative hour (H8). At the same time, blood was withdrawn to determine plasma concentrations of arginine vasopressin (AVP, radioimmunoassay) and copeptin (immunoluminometric assay). PCSV was defined as mean arterial blood pressure < 60 mmHg with cardiac index ≥ 2.2 l/min/m², and was treated with norepinephrine to restore mean blood pressure > 60 mmHg. Patients with PCSV were compared with the other patients (controls). Student's t test, Fisher's exact test, or nonparametric tests (Mann-Whitney, Wilcoxon) were used when appropriate. Correlation between AVP and copeptin was evaluated and receiver-operator characteristic analysis assessed the utility of preoperative copeptin to distinguish between controls and PCSV patients.

Results: Patients who experienced PCSV had significantly higher copeptin plasma concentration before cardiopulmonary bypass (P < 0.001) but lower AVP concentrations at H8 (P < 0.01) than controls. PCSV patients had preoperative hyponatremia and decreased left ventricle ejection fraction, and experienced more complex surgery (redo). The area under the receiver-operator characteristic curve of preoperative copeptin concentration was 0.86 ± 0.04 (95% confidence interval = 0.78 to 0.94; P < 0.001). The best predictive value for preoperative copeptin plasma concentration was 9.43 pmol/l with a sensitivity of 90% and a specificity of 77%.

Conclusions: High preoperative copeptin plasma concentration is predictive of PSCV and suggests an activation of the AVP system before surgery that may facilitate depletion of endogenous AVP stores and a relative AVP deficit after surgery.

Figures

Figure 1
Figure 1
Receiver-operator characteristic analysis of preoperative copeptin. Receiver-operator characteristic analysis (area under the curve with 95% confidence interval) to assess the utility of preoperative copeptin to distinguish between controls and post cardiac surgery vasodilatation patients. Receiver-operator characteristic area under the curve was 0.86 ± 0.04 (95% confidence interval = 0.78 to 0.94; P < 0.001).
Figure 2
Figure 2
Correlation analysis between arginine vasopressin and copeptin plasma concentrations. A Spearman rank-order correlation test has been performed to assess the correlation between arginine vasopressin (AVP) and copeptin plasma concentrations from 191 pairs of measurements. Spearman r = 0.76, P < 0.001.

References

    1. St Andre AC, Del Rossi A. Hemodynamic management of patients in the first 24 h after cardiac surgery. Crit Care Med. 2005;33:2082–2093. doi: 10.1097/01.CCM.0000178355.96817.81.
    1. Sun X, Zhang L, Hill PC, Lowery R, Lee AT, Molyneaux RE, Corso PJ, Boyce SW. Is incidence of postoperative vasoplegic syndrome different between off-pump and on-pump coronary artery bypass grafting surgery? Eur J Cardiothorac Surg. 2008;34:820–825. doi: 10.1016/j.ejcts.2008.07.012.
    1. Argenziano M, Choudhri AF, Oz MC, Rose EA, Smith CR, Landry DW. A prospective randomized trial of arginine vasopressin in the treatment of vasodilatory shock after left ventricular assist device placement. Circulation. 1997;96:II–286-II-290.
    1. Morales DL, Gregg D, Helman DN, Williams M, Naka Y, Landry D, Oz MC. Arginine vasopressin in the treatment of 50 patients with postcardiotomy vasodilatory shock. Ann Thorac Surg. 2000;69:102–106. doi: 10.1016/S0003-4975(99)01197-2.
    1. Jochberger S, Velik-Salchner C, Mayr VD, Luckner G, Wenzel V, Falkensammer G, Hanno U, Morgenthaler N, Hasibeder W, Dünser MW. The vasopressin and copeptin response in patients with vasodilatory shock after cardiac surgery: a prospective, controlled study. Intensive Care Med. 2009;35:489–497. doi: 10.1007/s00134-008-1279-1.
    1. Argenziano M, Chen J, Choudhri A, Cullinane S, Garfein E, Weinberget A, Smith CR, Rose EA, Landry DW, Oz MC. Management of vasodilatory shock after cardiac surgery: identification of predisposing factors and use of a novel pressor agent. J Thorac Cardiovasc Surg. 1998;116:973–980. doi: 10.1016/S0022-5223(98)70049-2.
    1. Dunser MW, Mayr AJ, Ulmer H, Ritsch N, Knotzer H, Pajk W, Luckner G, Mutz NJ, Hasibeder WR. The effects of vasopressin on systemic hemodynamics in catecholamine-resistant septic and postcardiotomy shock: a retrospective analysis. Anesth Analg. 2001;93:7–13.
    1. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345:588–595. doi: 10.1056/NEJMra002709.
    1. Luckner G, Dünser MW, Jochberger S, Mayr VD, Wenzel V, Ulmer H, Schmid S, Knotzer H, Pajk W, Hasibeder W, Mayr AJ, Friesenecker B. Arginine vasopressin in 316 patients with advanced vasodilatory shock. Crit Care Med. 2005;33:2659–2666. doi: 10.1097/01.CCM.0000186749.34028.40.
    1. Pajk W, Hasibeder W, Friesenecker B, Mayr AJ, Dünser MW, Jochberger S, Mayr VD, Luckner G, Volker W, Ulmer H, Schmid S, Knotzer H. Serum vasopressin concentrations in critically ill patients. Crit Care Med. 2006;34:293–299. doi: 10.1097/01.CCM.0000198528.56397.4F.
    1. Neuhold S, Huelsmann M, Strunk G, Stoiser B, Struck J, Morgenthaler N, Bergmann A, Moertl D, Berger R, Pacher R. Comparison of copeptin, B-type natriuretic peptide, and amino-terminal Pro-B-type natriuretic peptide in patients with chronic heart failure. J Am Coll Cardiol. 2008;52:266–272. doi: 10.1016/j.jacc.2008.03.050.
    1. Khan S, Dhillon O, O'Brien R, Struck J, Quinn P, Morgenthaler N, Squire I, Davies J, Bergmann A, Ng LL. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction. Leicester Acute Myocardial Infarction Peptide (LAMP) Study. Circulation. 2007;115:2103–2110. doi: 10.1161/CIRCULATIONAHA.106.685503.
    1. Nakamura T, Funayama H, Yoshimura A, Tsuruya Y, Saito M, Kawakami M, Ishikawa S-E. Possible vascular role of increased plasma arginine vasopressin in congestive heart failure. Int J Cardiol. 2006;106:191–195. doi: 10.1016/j.ijcard.2005.01.043.
    1. Westermann I, Dünser MW, Haas T, Jochberger S, Luckner G, Mayr VD, Wenzel V, Stadlbauer K-H, Innerhofer P, Morgenthaler N, Hasibeder WR, Voelckel WG. Endogenous vasopressin and copeptin response in multiple trauma patients. Shock. 2007;28:644–649.
    1. Morgenthaler NG, Müller B, Struck J, Bergmann A, Redl H, Christ-Crain M. Copeptin a stable peptide of the arginine vasopressin precursor is elevated in septic and hemorrhagic shock. Shock. 2007;2:219–226.
    1. Voors AA, von Haehling S, Anker SD, Hillege HL, Struck J, Hartmann O, Bergmann A, Squire I, van Veldhuisen DJ, Dickstein K. OPTIMAAL Investigators. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study. Eur Heart J. 2009;30:1187–1194. doi: 10.1093/eurheartj/ehp098.
    1. Stoiser B, Mörtl D, Hülsmann M, Berger R, Struck J, Morgenthaler NG, Bergmann A, Pacher R. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur J Clin Invest. 2006;36:771–778. doi: 10.1111/j.1365-2362.2006.01724.x.
    1. Philbin D, Coggins C, Wilson N, Sokoloski J. Antidiuretic hormone levels during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1977;73:145–148.
    1. Woods WG, Forsling ML, Le Quesne LP. Plasma arginine vasopressin levels and arterial pressure during open heart surgery. Br J Surg. 1989;76:29–32. doi: 10.1002/bjs.1800760110.
    1. Landgraf R, Neumann I, Holsboer F, Pittman QJ. Interleukin-1β stimulates both central and peripheral release of vasopressin and oxytocin in the rat. Eur J Neurosci. 1995;7:592–598. doi: 10.1111/j.1460-9568.1995.tb00663.x.
    1. Raber J, Bloom FE. IL-2 induces vasopressin release from the hypothalamus and the amygdale: role of nitric oxide-mediated signalling. J Neurosci. 1994;14:6187–6195.
    1. Ruthberg H, Hakanson E, Anderberg B, Jorfeldt L, Schildt B, Tegler L. Thyroid hormones, catecholamine and cortisol concentrations after upper abdominal surgery. Acta Chir Scand. 1984;150:273–278.
    1. Sharshar T, Carlier R, Blanchard A, Feydy A, Gray F, Paillard M, Raphael JC, Gajdos P, Annane D. Depletion of neurohypophyseal content of vasopressin in septic shock. Crit Care Med. 2002;30:497–500. doi: 10.1097/00003246-200203000-00001.
    1. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–119. doi: 10.1373/clinchem.2005.060038.
    1. Struck J, Morgenthaler NG, Bergmann A. Copeptin, a stable peptide derived from the vasopressin precursor, is elevated in serum of sepsis patients. Peptides. 2005;26:2500–2504. doi: 10.1016/j.peptides.2005.04.019.

Source: PubMed

3
Suscribir