Network modules uncover mechanisms of skeletal muscle dysfunction in COPD patients

Ákos Tényi, Isaac Cano, Francesco Marabita, Narsis Kiani, Susana G Kalko, Esther Barreiro, Pedro de Atauri, Marta Cascante, David Gomez-Cabrero, Josep Roca, Ákos Tényi, Isaac Cano, Francesco Marabita, Narsis Kiani, Susana G Kalko, Esther Barreiro, Pedro de Atauri, Marta Cascante, David Gomez-Cabrero, Josep Roca

Abstract

Background: Chronic obstructive pulmonary disease (COPD) patients often show skeletal muscle dysfunction that has a prominent negative impact on prognosis. The study aims to further explore underlying mechanisms of skeletal muscle dysfunction as a characteristic systemic effect of COPD, potentially modifiable with preventive interventions (i.e. muscle training). The research analyzes network module associated pathways and evaluates the findings using independent measurements.

Methods: We characterized the transcriptionally active network modules of interacting proteins in the vastus lateralis of COPD patients (n = 15, FEV1 46 ± 12% pred, age 68 ± 7 years) and healthy sedentary controls (n = 12, age 65 ± 9 years), at rest and after an 8-week endurance training program. Network modules were functionally evaluated using experimental data derived from the same study groups.

Results: At baseline, we identified four COPD specific network modules indicating abnormalities in creatinine metabolism, calcium homeostasis, oxidative stress and inflammatory responses, showing statistically significant associations with exercise capacity (VO2 peak, Watts peak, BODE index and blood lactate levels) (P < 0.05 each), but not with lung function (FEV1). Training-induced network modules displayed marked differences between COPD and controls. Healthy subjects specific training adaptations were significantly associated with cell bioenergetics (P < 0.05) which, in turn, showed strong relationships with training-induced plasma metabolomic changes; whereas, effects of training in COPD were constrained to muscle remodeling.

Conclusion: In summary, altered muscle bioenergetics appears as the most striking finding, potentially driving other abnormal skeletal muscle responses. Trial registration The study was based on a retrospectively registered trial (May 2017), ClinicalTrials.gov identifier: NCT03169270.

Keywords: Chronic obstructive pulmonary disease; Exercise training; Gene modules; Muscular weakness; Systems medicine.

Figures

Fig. 1
Fig. 1
Schematic diagram of the workflow of the study. (a) Study design of the used datasets. COPD patients (n = 15) and healthy controls (n = 12) were studied before (BT) and after (AT) an 8-week endurance training program. Measurements of skeletal gene expression [15] were used for network modules identification. Differential conditions of COPD disease effects (COPD-DE) and training-induced effects in COPD (COPD-TE) and in healthy muscles (Healthy-TE) were analyzed in the study. (b) Network modules were identified for each differential condition with the HotNet2 algorithm [22], using the gene’s false discovery rate (FDR) adjusted differential expression P values and selected protein–protein interaction (PPI) networks [17, 23] as explained in details in Additional file 1: Section 1. Thereafter (c), each module was functionally characterized using gene ontology (GO) term enrichment analysis. (d) Correlation of network modules with independent multilevel measurements was analyzed for evaluation purposes. Specifically, independent measurements were sampled both pre- and post-training and consisted of physiological parameters measured with a constant-work rate exercise at 75% of pre-training maximum peak exercise, inflammatory and redox biomarkers measured in plasma and in skeletal muscle [20], as well as plasma metabolomics measured at rest and after exercise [19]
Fig. 2
Fig. 2
Disease effects (COPD-DE) network modules. a The four network modules associated to COPD disease effects and their composing genes. Genes are colored according to their differential regulation, namely: up regulation—red nodes; and down regulation—blue nodes. Significantly differentially expressed genes are indicated by * (FDR ≤ 0.05) (for detailed information see Additional file 2: Table S6). b The significant correlations of independent measurements with any of the network modules’ first three principal components. Blue squares depict exercise related independent variables [19]; red squares show cytokines measured in blood [20]; yellow squares correspond to amino acids measured in serum [19]; and, green squares represents redox biomarkers [20]
Fig. 3
Fig. 3
Relationships between genes from COPD specific modules (disease effects) and previous experimental data. a The relationships between S100A1, from the Ca2+ dependent binding module, and VO2max. The two groups, healthy subjects (blue circles) and COPD patients (low and normal FFMI, empty and filled squares, respectively) fell on the same regression line (R = 0.52, P = 0.006, FDR = 0.026). b The relationships between SMURF1 from the TGF-β signaling module and skeletal muscle nitrosative stress. A statistical significant correlation was seen in the COPD group, both normal and low FFMI (R = − 0.67, P = 0.018 and FDR = 0.07), but not in healthy subjects (R = − 0.2, P = 0.55)
Fig. 4
Fig. 4
Training effects (TE) network modules. a Active network modules identified in case of COPD-TE, Healthy-TE and in both (shared). Genes are colored according to their differential regulation in COPD-TE (inner color of the nodes) and in Healthy-TE (border color of the nodes): up regulation with training (red circles), down regulation with training (blue circles). Modules are named after significantly enriched GO terms. Training differential expression significance is signed by * for COPD-TE, and § for Healthy-TE (FDR < 0.05) (for detailed information see Additional file 2: Table S6). b The significant correlations of the independent measurements with any of the significantly-changed training modules’ first three principal components in COPD, depicted as purple dashed lines, and in healthy subjects, depicted as blue dotted-dashed lines. Blue squares depict exercise related independent variables; red squares show cytokines measured in blood; and yellow squares correspond to amino acids measured in serum
Fig. 5
Fig. 5
Relationships between genes from Healthy-TE specific modules and previous experimental plasma metabolomics data. The figure depicts the relationships between training-induced changes in both SF3A3, from the Amino acid biosynthesis module, and glutamine. A strong correlation was seen in healthy subjects (blue circles) (R = 0.70, P = 0.001), but not in COPD patients (low and normal FFMI, empty and filled red squares, respectively) (R = − 0.14, P = 0.518)

References

    1. Celli BR, Decramer M, Wedzicha JA, Wilson KC, Agustí A, Criner GJ, et al. An official American Thoracic Society/European Respiratory Society statement: research questions in COPD. Eur Respir J. 2015;45:879–905. doi: 10.1183/09031936.00009015.
    1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195:557–582. doi: 10.1164/rccm.201701-0218PP.
    1. Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189:e15–e62. doi: 10.1164/rccm.201402-0373ST.
    1. Barnes PJ. Mechanisms of development of multimorbidity in the elderly. Eur Respir J. 2015;45:790–806. doi: 10.1183/09031936.00229714.
    1. Vanfleteren LEGW, Spruit MA, Groenen M, Gaffron S, van Empel VPM, Bruijnzeel PLB, et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187:728–735. doi: 10.1164/rccm.201209-1665OC.
    1. Divo MJ, Casanova C, Marin JM, Pinto-Plata VM, De-Torres JP, Zulueta JJ, et al. COPD comorbidities network. Eur Respir J. 2015;46:640–650. doi: 10.1183/09031936.00171614.
    1. Roca J, Vargas C, Cano I, Selivanov V, Barreiro E, Maier D, et al. Chronic obstructive pulmonary disease heterogeneity: challenges for health risk assessment, stratification and management. J Transl Med. 2014;12:S3. doi: 10.1186/1479-5876-12-S2-S3.
    1. Rabinovich RA, Ardite E, Troosters T, Carbó N, Alonso J, Gonzalez de Suso JM, et al. Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1114–1118. doi: 10.1164/ajrccm.164.7.2103065.
    1. Rabinovich RA, Bastos R, Ardite E, Llinas L, Orozco-Levi M, Gea J, et al. Mitochondrial dysfunction in COPD patients with low body mass index. Eur Respir J. 2007;29:643–650. doi: 10.1183/09031936.00086306.
    1. Marín de Mas I, Fanchon E, Papp B, Kalko S, Roca J, Cascante M. Molecular mechanisms underlying COPD-muscle dysfunction unveiled through a systems medicine approach. Bioinformatics. 2017;33:95–103. doi: 10.1093/bioinformatics/btw566.
    1. Puig-Vilanova E, Rodriguez DA, Lloreta J, Ausin P, Pascual-Guardia S, Broquetas J, et al. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic Biol Med. 2015;79:91–108. doi: 10.1016/j.freeradbiomed.2014.11.006.
    1. Fermoselle C, Rabinovich R, Ausin P, Puig-Vilanova E, Coronell C, Sanchez F, et al. Does oxidative stress modulate limb muscle atrophy in severe COPD patients? Eur Respir J. 2012;40:851–862. doi: 10.1183/09031936.00137211.
    1. Barreiro E, Rabinovich R, Marin-Corral J, Barbera JA, Gea J, Roca J. Chronic endurance exercise induces quadriceps nitrosative stress in patients with severe COPD. Thorax. 2009;64:13–19. doi: 10.1136/thx.2008.105163.
    1. Rabinovich RA, Drost E, Manning JR, Dunbar DR, Díaz-Ramos M, Lahkdar R, et al. Genome-wide mRNA expression profiling in vastus lateralis of COPD patients with low and normal fat free mass index and healthy controls. Respir Res. 2015;16:1. doi: 10.1186/s12931-014-0139-5.
    1. Turan N, Kalko S, Stincone A, Clarke K, Sabah A, Howlett K, et al. A systems biology approach identifies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease. PLoS Comput Biol. 2011;7:e1002129. doi: 10.1371/journal.pcbi.1002129.
    1. Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12:56–68. doi: 10.1038/nrg2918.
    1. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, et al. Disease networks. Uncovering disease–disease relationships through the incomplete interactome. Science. 2015;347:1257601. doi: 10.1126/science.1257601.
    1. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T. Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics. 2008;24:i223–i231. doi: 10.1093/bioinformatics/btn161.
    1. Rodríguez DA, Alcarraz-Vizán G, Díaz-Moralli S, Reed M, Gómez FP, Falciani F, et al. Plasma metabolic profile in COPD patients: effects of exercise and endurance training. Metabolomics. 2011;8:508–516. doi: 10.1007/s11306-011-0336-x.
    1. Rodriguez DA, Kalko S, Puig-Vilanova E, Perez-Olabarría M, Falciani F, Gea J, et al. Muscle and blood redox status after exercise training in severe COPD patients. Free Radic Biol Med. 2012;52:88–94. doi: 10.1016/j.freeradbiomed.2011.09.022.
    1. Vestbo J, Prescott E, Almdal T, Dahl M, Nordestgaard BG, Andersen T, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006;173:79–83.
    1. Leiserson MDM, Vandin F, Wu H-T, Dobson JR, Eldridge JV, Thomas JL, et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet. 2014;47:106–114. doi: 10.1038/ng.3168.
    1. Rolland T, Taşan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, et al. A proteome-scale map of the human interactome network. Cell. 2014;159:1212–1226. doi: 10.1016/j.cell.2014.10.050.
    1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–29. doi: 10.1038/75556.
    1. Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 2004;573:83–92. doi: 10.1016/j.febslet.2004.07.055.
    1. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi: 10.1089/omi.2011.0118.
    1. Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol. 2007;1:54. doi: 10.1186/1752-0509-1-54.
    1. Davidsen PK, Herbert JM, Antczak P, Clarke K, Ferrer E, Peinado VI, et al. A systems biology approach reveals a link between systemic cytokines and skeletal muscle energy metabolism in a rodent smoking model and human COPD. Genome Med. 2014;6:59. doi: 10.1186/s13073-014-0059-5.
    1. Barreiro E, Gea J, Matar G, Hussain SNA. Expression and carbonylation of creatine kinase in the quadriceps femoris muscles of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2005;33:636–642. doi: 10.1165/rcmb.2005-0114OC.
    1. Barreiro E, Rabinovich R, Marin-Corral J, Barbera JA, Gea J, Roca J. Chronic endurance exercise induces quadriceps nitrosative stress in patients with severe COPD. Thorax. 2008;64:13–19. doi: 10.1136/thx.2008.105163.
    1. Wuyam B, Payen JF, Levy P, Bensaidane H, Reutenauer H, Le Bas JF, et al. Metabolism and aerobic capacity of skeletal muscle in chronic respiratory failure related to chronic obstructive pulmonary disease. Eur Respir J. 1992;5:157–162.
    1. Tada H, Kato H, Misawa T, Sasaki F, Hayashi S, Takahashi H, et al. 31P-Nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with chronic lung disease and congestive heart failure. Eur Respir J. 1992;5:163–169.
    1. Kutsuzawa T, Shioya S, Kurita D, Haida M, Ohta Y, Yamabayashi H. Muscle energy metabolism and nutritional status in patients with chronic obstructive pulmonary disease. A 31P magnetic resonance study. Am J Respir Crit Care Med. 1995;152:647–652. doi: 10.1164/ajrccm.152.2.7633721.
    1. Steeghs K, Benders A, Oerlemans F, de Haan A, Heerschap A, Ruitenbeek W, et al. Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell. 1997;89:93–103. doi: 10.1016/S0092-8674(00)80186-5.
    1. Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta Mol Basis Dis. 2006;1762:164–180. doi: 10.1016/j.bbadis.2005.09.004.
    1. Prosser BL, Wright NT, Hernãndez-Ochoa EO, Varney KM, Liu Y, Olojo RO, et al. S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation–contraction coupling. J Biol Chem. 2008;283:5046–5057. doi: 10.1074/jbc.M709231200.
    1. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med. 2013;13:24–57. doi: 10.2174/156652413804486214.
    1. Sangadala S, Boden SD, Viggeswarapu M, Liu Y, Titus L. LIM mineralization protein-1 potentiates bone morphogenetic protein responsiveness via a novel interaction with Smurf1 resulting in decreased ubiquitination of smads. J Biol Chem. 2006;281:17212–17219. doi: 10.1074/jbc.M511013200.
    1. Goodman CA, Hornberger TA. New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass. F1000Prime Rep. 2014;6:20. doi: 10.12703/P6-20.
    1. Liu R-M, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med. 2010;48:1–15. doi: 10.1016/j.freeradbiomed.2009.09.026.
    1. Krstić J, Trivanović D, Mojsilović S, Santibanez JF. Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression. Oxid Med Cell Longev. 2015;2015:1–15. doi: 10.1155/2015/654594.
    1. Yuan C, Qi J, Zhao X, Gao C. Smurf1 protein negatively regulates interferon-γ signaling through promoting STAT1 protein ubiquitination and degradation. J Biol Chem. 2012;287:17006–17015. doi: 10.1074/jbc.M112.341198.
    1. Doles JD, Olwin BB. The impact of JAK-STAT signaling on muscle regeneration. Nat Med. 2014;20:1094–1095. doi: 10.1038/nm.3720.
    1. Zhou X, Michal JJ, Zhang L, Ding B, Lunney JK, Liu B, et al. Interferon induced IFIT family genes in host antiviral defense. Int J Biol Sci. 2013;9:200–208. doi: 10.7150/ijbs.5613.
    1. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:1005–1012. doi: 10.1056/NEJMoa021322.
    1. Cheng M, Nguyen M-H, Fantuzzi G, Koh TJ. Endogenous interferon-γ is required for efficient skeletal muscle regeneration. AJP Cell Physiol. 2008;294:C1183–C1191. doi: 10.1152/ajpcell.00568.2007.
    1. Richardson RS, Leek BT, Gavin TP, Haseler LJ, Mudaliar SRD, Henry R, et al. Reduced mechanical efficiency in chronic obstructive pulmonary disease but normal peak VO2 with small muscle mass exercise. Am J Respir Crit Care Med. 2004;169:89–96. doi: 10.1164/rccm.200305-627OC.
    1. Tsika RW, Schramm C, Simmer G, Fitzsimons DP, Moss RL, Ji J. Overexpression of TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle contractile phenotype. J Biol Chem. 2008;283:36154–36167. doi: 10.1074/jbc.M807461200.
    1. Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics. 2002;18(Suppl 1):S233–S240. doi: 10.1093/bioinformatics/18.suppl_1.S233.
    1. Mitra K, Carvunis A-R, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013;14:719–732. doi: 10.1038/nrg3552.
    1. Sharma A, Menche J, Huang CC, Ort T, Zhou X, Kitsak M, et al. A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. Hum Mol Genet. 2015;24:3005–3020. doi: 10.1093/hmg/ddv001.
    1. Han J-DJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, et al. Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature. 2004;430:88–93. doi: 10.1038/nature02555.
    1. Tényi Á, de Atauri P, Gomez-Cabrero D, Cano I, Clarke K, Falciani F, et al. ChainRank, a chain prioritisation method for contextualisation of biological networks. BMC Bioinform. 2016;17:17. doi: 10.1186/s12859-015-0864-x.
    1. Diez D, Agustí A, Wheelock CE. Network analysis in the investigation of chronic respiratory diseases. From basics to application. Am J Respir Crit Care Med. 2014;190:981–988. doi: 10.1164/rccm.201403-0421PP.
    1. Langen RCJ, Gosker HR, Remels AHV, Schols AMWJ. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Int J Biochem Cell Biol. 2013;45:2245–2256. doi: 10.1016/j.biocel.2013.06.015.

Source: PubMed

3
Suscribir