Platelet Mitochondrial Respiration, Endogenous Coenzyme Q10 and Oxidative Stress in Patients with Chronic Kidney Disease

Anna Gvozdjáková, Zuzana Sumbalová, Jarmila Kucharská, Mária Komlósi, Zuzana Rausová, Oľga Vančová, Monika Számošová, Viliam Mojto, Anna Gvozdjáková, Zuzana Sumbalová, Jarmila Kucharská, Mária Komlósi, Zuzana Rausová, Oľga Vančová, Monika Számošová, Viliam Mojto

Abstract

Chronic kidney disease (CKD) is characterized by a progressive loss of renal function and a decrease of glomerular filtration rate. Reduced mitochondrial function, coenzyme Q10 (CoQ10), and increased oxidative stress in patients with CKD contribute to the disease progression. We tested whether CoQ10 levels, oxidative stress and platelet mitochondrial bioenergetic function differ between groups of CKD patients.

Methods: Twenty-seven CKD patients were enrolled in this trial, 17 patients had arterial hypertension (AH) and 10 patients had arterial hypertension and diabetes mellitus (AH and DM). The control group consisted of 12 volunteers. A high-resolution respirometry (HRR) method was used for the analysis of mitochondrial bioenergetics in platelets, and an HPLC method with UV detection was used for CoQ10 determination in platelets, blood, and plasma. Oxidative stress was determined as thiobarbituric acid reactive substances (TBARS).

Results: Platelets mitochondrial respiration showed slight, not significant differences between the groups of CKD patients and control subjects. The oxygen consumption by intact platelets positively correlated with the concentration of CoQ10 in the platelets of CKD patients.

Conclusion: A decreased concentration of CoQ10 and oxidative stress could contribute to the progression of renal dysfunction in CKD patients. The parameters of platelet respiration assessed by high-resolution respirometry can be used only as a weak biological marker for mitochondrial diagnosis and therapy monitoring in CKD patients.

Keywords: chronic kidney disease; coenzyme Q10; mitochondria; oxidative stress; platelets; respiration.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
Respirometric analysis of mitochondrial function in human platelets. Legend: The trace from the measurement of platelet (PLT) respiration at 37 °C in a respiration medium MiR05 and 20 mM creatine. Blue line represents oxygen concentration (µM), and the red trace represents oxygen consumption as flow per cells (pmol O2 ∙ s−1 ∙10−6 cells). The modified (substrate-uncoupler-inhibitor-titration) SUIT reference protocol 1 (RP1) [22] includes following steps:
Figure 2
Figure 2
Platelet mitochondrial function in control subjects and groups of CKD patients. Legend: The parameters of mitochondrial respiration in human platelets. The bars show mean ± SEM. The names on the x-axis represent steps in the SUIT RP1—see the legend for Figure 1 in the Methods section. Control—the group of healthy subjects (n = 12); CKD-ALL—all patients with chronic kidney disease (n = 27); CKD and arterial hypertension (CKD+AH)—the subgroup of CKD-ALL patients with arterial hypertension (n = 17); and CKD+AH+diabetes mellitus (DM)—the subgroup of CKD-ALL patients with arterial hypertension and diabetes type 2 (n = 10).
Figure 3
Figure 3
Endogenous coenzyme Q10-TOTAL in platelets, blood, and plasma in control subjects and groups of CKD patients. Legend: coenzyme Q10 (CoQ10)-TOTAL (ubiquinol and ubiquinone); PLT—platelets; * p < 0.05; ** p < 0.01; and *** p < 0.001. Control—the group of healthy subjects (n = 12); CKD-ALL—all patients with chronic kidney disease (n = 27); CKD+AH—the subgroup of CKD-ALL patients with arterial hypertension (n = 17); CKD+AH+DM—the subgroup of CKD-ALL patients with arterial hypertension and diabetes type 2 (n = 10).
Figure 4
Figure 4
Correlation between CoQ10-TOTAL in platelets and the respiration of intact platelets in control subjects and CKD-ALL patients. Legend: ce1—the rate of oxygen consumption in intact platelet; CoQ10-TOTAL—ubiquinol and ubiquinone. CKD-ALL all patients with chronic kidney disease (n = 27); Control—the group of healthy subjects (n = 12). p < 0.05 statistically significant association between CoQ10-TOTAL in platelets and ce1 in CKD-ALL.
Figure 5
Figure 5
Correlation between thiobarbituric acid reactive substances (TBARS) and plasma CoQ10-TOTAL in control subjects and CKD-ALL patients. Legend: CoQ10-TOTAL—ubiquinol and ubiquinone. CKD-ALL—all patients with chronic kidney disease (n = 27); Control—the group of healthy subjects (n = 12).

References

    1. WHO—World Health Organization Noncommunicable Diseases, Posed June 1 2018. [(accessed on 1 September 2018)]; Available online: .
    1. Levey A.S., Coresh J., Balk E., Kausz A.T., Levin A., Steffes M.W., Hogg R.J., Perrone R.D., Lau J., Eknoyan G. National Kidney Foundation: National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003;139:137–147. doi: 10.7326/0003-4819-139-2-200307150-00013.
    1. Small D.M., Gobe G.C. Oxidative Stress and Antioxidant Therapy in Chronic Kidney and Cardiovascular Disease. Intech; Rijeka, Croatia: 2018. [(accessed on 22 May 2013)]. pp. 233–264. Available online: .
    1. Small D.M., Coombes J.S., Bennet N., Johnson N., Gobe G.C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology. 2012;17:311–321. doi: 10.1111/j.1440-1797.2012.01572.x.
    1. Che R., Yuan Y., Huang S., Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am. J. Physiol. Renal. Physiol. 2014;306:F367–F378. doi: 10.1152/ajprenal.00571.2013.
    1. Granata S., Gassa A.D., Tomei P., Lupo A., Zaza G. Mitochondria: A new therapeutic target in chronic kidney disease. Nutr.Metab. 2015;12:49. doi: 10.1186/s12986-015-0044-z.
    1. Wei P.Z., Szeto C.C. Mitochondrial dysfunction in diabetic kidney disease. Clin. Chim. Acta. 2019;496:108–116. doi: 10.1016/j.cca.2019.07.005.
    1. Turunen M., Swiezewska E., Chojnacki T., Sindelar P., Dallner G. Regulatory aspects of coenzyme q metabolism. Free Radic. Res. 2002;36:437–443. doi: 10.1080/10715760290021298.
    1. Hernandéz-Camacho J.D., Bernier M., López-Lluch G., Navas P. Coenzyme Q10 supplementation in ageing and disease. Front. Physiol. 2018;9:44. doi: 10.3389/fphys.2018.00044.
    1. Alftani A., Riou M., Charles A.L., Meyer A., Barning C., Andres E., Lejay A., Talha S., Geny B. Peripheral blood mononuclear cells and platelets mitochondrial dysfunction, oxidative stress, and circulating mtDNA in cardiovascular diseases. J. Clin. Med. 2020;9:311. doi: 10.3390/jcm9020311.
    1. Hargreaves I., Mantle D., Milford D. Chronic kidney disease and coenzyme Q10 supplementation. J. Kidney Care. 2019;4 doi: 10.12968/jokc.2019.4.2.82.
    1. Dalbhi S.K.A., Alquarni F.A., Bahatheq N.M., Alrasheed R.S., Alkhowaiter R.A., Alnughaimshi A.A. Mitochondrial dysfunction and kidney diseases. J. Nephropathol. 2019;8:e18. doi: 10.15171/jnp.2019.18.
    1. Granata S., Zaza G., Simone S., Villani G., Latorre D., Pontrelli P., Carella M., Schena F.P., Grandaliano G., Petrosa G. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genom. 2009;10:388. doi: 10.1186/1471-2164-10-388.
    1. Wang L., Wu Q., Fan Z., Xie R., Wang Z., Lu Y. Platelet mitochondrial dysfunction and the correlation with human disease. Biochem. Soc. Trans. 2017;45:1213. doi: 10.1042/BST20170291.
    1. Melchiner H., Jain K., Tyagi T., Hwa J. Role of platelet mitochondria: Life in a nucleus-free zone. Front. Cardiovasc. Med. 2019;6:153. doi: 10.3389/fcvm.2019.00153.
    1. Fišar Z., Jirák R., Zvěřová M., Setnička V., Habrtová L., Hroudová J., Vaníčková Z., Raboch J. Plasma amyloid beta levels and platelet mitochondrial respiration in patients with Alzheimer’s disease. Clin. Biochem. 2019;72:71–80. doi: 10.1016/j.clinbiochem.2019.04.003.
    1. Ghose A., Taylor C.M., Hargreaves I., Milford D.V. Measurement of respiratory chain enzyme activity in human renal biopsy species. J. Clin. Med. 2017;6:90. doi: 10.3390/jcm6090090.
    1. Hroudová J., Fišar Z., Kitzlerová E., Zvěřová M., Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13:795–800. doi: 10.1016/j.mito.2013.05.005.
    1. Sumbalová Z., Droescher S., Hiller E., Chang S., Garcia L., Calabria E., Volani C., Krumschnabel G., Gnaiger E. O2k-Protocols: Isolation of peripheral blood mononuclear cells and platelets from human blood for HRR. Mitochondr. Physiol. Netw. 2018;17:1–16.
    1. Pesta D., Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 2012;810:25–58.
    1. Sjövall F., Ehinger J.K., Marelsson S.E., Morota S., Frostner E.A., Uchino H., Lundgren J., Arnbjörnsson E., Hansson M.J., Fellman V., et al. Mitochondrial respiration in human viable platelets--methodology and influence of gender, age and storage. Mitochondrion. 2013;13:7–14. doi: 10.1016/j.mito.2012.11.001.
    1. Doerrier C., Sumbalová Z., Krumschnabel G., Hiller E., Gnaiger E. SUIT reference protocol for OXPHOS analysis by high-resolution respirometry. Mitochondr. Physiol. Netw. 2016;21:1–12.
    1. Lang J.K., Gohil K., Packer L. Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions. Analyt. Biochem. 1986;157:106–116. doi: 10.1016/0003-2697(86)90203-4.
    1. Kucharská J., Gvozdjáková A., Mizera S., Braunová Z., Schreinerová Z., Schrameková E., Pecháň I., Fabián J. Participation of coenzyme Q10 in the rejection development of the transplanted heart. Physiol. Res. 1998;47:399–404.
    1. Niklowitz P., Menke T., Andler W., Okun J.G. Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: Comparison of the antioxidant level in blood cells and their enviroment in healthy children and after oral supplementation in adults. Clin. Chim. Acta. 2004;342:219–226. doi: 10.1016/j.cccn.2003.12.020.
    1. Mosca F., Fattorini D., Bompadre S., Littarru G.P. Assay of coenzyme Q10 in plasma by a single dilution step. Analyt. Biochem. 2002;305:49–54. doi: 10.1006/abio.2002.5653.
    1. Janero D.R., Burghardt B. Thiobarbituric acid-reactive malondialdehyd formation during suproxide-dependent, iron-catalyzed lipid peroxidation: Influence of peroxidation conditions. Lipids. 1989;24:125–131. doi: 10.1007/BF02535249.
    1. Ates O., Bilen H., Keles S., Alp H.H., Keles M.S., Yildirim K., Ondas O., Pinar L.C., Civelekler M., Baykal O. Plasma coenzyme Q10 levels in type 2 diabetic patients with retinopathy. Int. J. Ophthalmol. 2013;6:675–679.
    1. Protti A., Fortunato F., Artoni A., Lecchi A., Motta G., Mistraletti G., Novembrino C., Comi G.P., Gattinoni L. Platelet mitochondrial dysfunction in critically ill patients: Comparison between sepsis and cardiogenic shock. Crit. Care. 2015;19:39. doi: 10.1186/s13054-015-0762-7.
    1. Zharikov S., Shiva S. Platelet mitochondrial function: From regulation of thrombosis to biomarker of disease. Biochem. Society Transact. 2013;41:118–123. doi: 10.1042/BST20120327.
    1. Vevera J., Fisar Z., Nekovarova T., Vrablík M., Zlatohlávek L., Hroudová J., Singh N., Raboch J., Valeš K. Statin-induced changes in mitochondrial respiration in blood platelets in rats and human with dyslipidemia. Physiol. Res. 2016;65:777–788. doi: 10.33549/physiolres.933264.
    1. Gazdíková K., Gvozdjáková A., Kucharská J., Spustová V., Braunová Z., Dzúrik R. Clinical and pharmacologic aspects of mitochondrial nephropathy. Brat. Med. J. 2000;101:618–619.
    1. Hsiao C.P., Hoppel C. Analysing mitochondrial function in human peripheral blood mononuclear cells. Analyt. Biochem. 2018;549:2–20. doi: 10.1016/j.ab.2018.03.003.
    1. Heeringa S.F., Chernin G., Chaki M., Zhou W., Sloan A.J., Ji Z., Xie L.X., Salviati L., Hurd T.W., Vega-Warner V., et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Investig. 2011;12:2013–20124. doi: 10.1172/JCI45693.
    1. Menke T., Niklowitz P., Wiesel T., Andler W. Antioxidant level and redox status of coenzyme Q10 in the plasma and blood cells of children with diabetes mellitus type 1. Pediatr. Diabetes. 2008;9:540–545. doi: 10.1111/j.1399-5448.2008.00389.x.
    1. Kucharská J., Gvozdjáková A., Štefek M., Sotníková R., Sumbalová Z. Adaptive changes of antioxidant status in development of experimental diabetes. Bratisl. Med. J. 2001;102:515–519.
    1. Kuželová M., Adamcová A., Sumbalová Z., Paulíková I., Harčárová A., Švec P., Kucharská J. The effect of simvastatin on coenzyme Q and antioxidant/oxidant balance in diabetic-hypercholesterolemic rats. Gen. Physiol. Biophys. 2008;27:291–298.
    1. Sumbalová Z., Gvozdjáková A., Kucharská J., Rausová Z., Vančová O., Kuzmiaková Z., Kubalová M., Uličná O., Chládeková A., Komlosi M., et al. Platelet mitochondrial function, coenzyme Q10, and oxidative stress in patients with chronic kidney diseases; Proceedings of the 14th Conference on Mitochondrial Physiology MiP2019/MitoEAGLE; Belgrade, Serbia. 13–16 October 2019; pp. 35–36.
    1. Gvozdjáková A., Sumbalová Z., Kucharská J., Chládeková A., Rausová Z., Vančová O., Komlosi M., Uličná O., Mojto V. Platelet mitochondrial bioenergetic analysis in patients with nephropathies and non-communicable diseases: A new method. Bratisl. Med. J. 2019;120:630–635. doi: 10.4149/BLL_2019_104.
    1. Gazdíková K., Gvozdjáková A., Kucharská J., Spustová V., Braunová Z., Dzúrik R. Oxidative stress and plasma concentration of coenzyme Q10, α-tocopherol, and β-carotene in patients with a mild to moderate decrease of kidney function. Nephron. 2001;88:285. doi: 10.1159/000046007.

Source: PubMed

3
Suscribir