Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic

Samir Andrade Mendonça, Reka Lorincz, Paul Boucher, David T Curiel, Samir Andrade Mendonça, Reka Lorincz, Paul Boucher, David T Curiel

Abstract

Adenoviral vectors have been explored as vaccine agents for a range of infectious diseases, and their ability to induce a potent and balanced immune response made them logical candidates to apply to the COVID-19 pandemic. The unique molecular characteristics of these vectors enabled the rapid development of vaccines with advanced designs capable of overcoming the biological challenges faced by early adenoviral vector systems. These successes and the urgency of the COVID-19 situation have resulted in a flurry of candidate adenoviral vector vaccines for COVID-19 from both academia and industry. These vaccines represent some of the lead candidates currently supported by Operation Warp Speed and other government agencies for rapid translational development. This review details adenoviral vector COVID-19 vaccines currently in human clinical trials and provides an overview of the new technologies employed in their design. As these vaccines have formed a cornerstone of the COVID-19 global vaccination campaign, this review provides a full consideration of the impact and development of this emerging platform.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1. Adenovirus structure organization and interaction…
Fig. 1. Adenovirus structure organization and interaction with host cell.
a Adenovirus is a dsDNA, non-enveloped virus mainly composed by the structural protein, hexon, and other components associated with its interaction with the host cells (penton base and knobbed fiber). b The early stage of the infection cycle is marked by the knob domain of the viral fiber interaction with the Coxsackie and Adenovirus Receptor (CAR), followed by the penton-base with αvβ integrins present in the cell surface. CAR is the main receptor for the adenovirus serotype 5, however other serotypes utilize different receptors for cell entry.
Fig. 2. Coronavirus structure and relevant aspects…
Fig. 2. Coronavirus structure and relevant aspects for vaccine development.
a Current vaccines are capitalizing in epitopes present in the SARS-CoV-2 proteins to elicit an immune responses. The major proteins used for vaccine development are the nucleocapsid, and the spike protein, essential for cell entry. b Spike protein can have conformation modifications protease-mediated. The stabilization of the protein in its prefusion form improves the protein expression as well as immunogenicity.

References

    1. Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473. doi: 10.1016/S0140-6736(20)30185-9.
    1. Zhu N, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.
    1. Abdool Karim SS, de Oliveira T. New SARS-CoV-2 variants - clinical, public health, and vaccine implications. N Engl. J. Med. 2021;384:1866–1868. doi: 10.1056/NEJMc2100362.
    1. Horwitz LI, et al. Trends in COVID-19 risk-adjusted mortality rates. J. Hosp. Med. 2020;16:90–92. doi: 10.12788/jhm.3552.
    1. Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: the current state of play. Paediatr. Respir. Rev. 2020;35:43–49.
    1. Izda V, Jeffries MA, Sawalha AH. COVID-19: a review of therapeutic strategies and vaccine candidates. Clin. Immunol. 2021;222:108634. doi: 10.1016/j.clim.2020.108634.
    1. Zimmer, C., Corum, J. & Wee, S.-L. Coronavirus vaccine tracker.
    1. Martinon F, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 1993;23:1719–1722. doi: 10.1002/eji.1830230749.
    1. Conry RM, et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 1995;55:1397–1400.
    1. Verbeke R, Lentacker I, Smedt SCD, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today. 2019;28:100766. doi: 10.1016/j.nantod.2019.100766.
    1. Tombácz I, Weissman D, Pardi N. Vaccination with messenger RNA: a promising alternative to DNA vaccination. Methods Mol. Biol. 2021;2197:13–31. doi: 10.1007/978-1-0716-0872-2_2.
    1. WHO. Reporting COVID-19 vaccinations in the United States. WHO. 2021.
    1. Medicine USNLo. Safety and immunogenicity study of a SARS-CoV-2 (COVID-19) variant vaccine (mRNA-1273.351) in Naïve and previously vaccinated adults.
    1. Pfizer. Pfizer and Biontech Initiate a study as part of broad development plan to evaluate COVID-19 booster and new vaccine variants. Pfizer.
    1. Abu-Raddad LJ, Chemaitelly H, Butt AA. Vaccination NSGfC-. Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N Engl. J. Med. 2021;385:187–189. doi: 10.1056/NEJMc2104974.
    1. Kleine-Tebbe J, et al. Severe allergic reactions to the COVID-19 vaccine - statement and practical consequences. Allergol Select. 2021;5:26–28. doi: 10.5414/ALX02215E.
    1. Cabanillas B, Akdis C, Novak N. Allergic reactions to the first COVID-19 vaccine: a potential role of Polyethylene glycol? Allergy. 2020;76:1617–1618. doi: 10.1111/all.14711.
    1. Team CC-R, Administration FaD. Interim clinical considerations for use of COVID-19 vaccines currently authorized in the United States. (2021).
    1. Bettini E, Locci M. SARS-CoV-2 mRNA vaccines: immunological mechanism and beyond. Vaccines. 2021;9:147. doi: 10.3390/vaccines9020147.
    1. Painter, M.M. et al. Rapid induction of antigen-specific CD4+ T cells guides coordinated humoral and cellular immune responses to SARS-CoV-2 mRNA vaccination. Preprint at (2021).
    1. Mullard A. How COVID vaccines are being divvied up around the world. Nature10.1038/d41586-020-03370-6 (2020).
    1. Holm MR, Poland GA. Critical aspects of packaging, storage, preparation, and administration of mRNA and adenovirus-vectored COVID-19 vaccines for optimal efficacy. Vaccine. 2021;39:457–459. doi: 10.1016/j.vaccine.2020.12.017.
    1. Pfizer. Pfizer and Biontech submit a COVID-19 vaccine stability data at standard freezer temperature to the US FDA. (2021).
    1. Moderna. First participants dosed in phase 1 study evaluating mRNA-1283, moderna’s next generation COVID-19 vaccine. (2021).
    1. Zhang NN, et al. A thermostable mRNA vaccine against COVID-19. Cell. 2020;182:1271–1283.e16. doi: 10.1016/j.cell.2020.07.024.
    1. Lukashev AN, Zamyatnin AA. Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry. 2016;81:700–708.
    1. Kang J, et al. Genomics-based re-examination of the taxonomy and phylogeny of human and simian Mastadenoviruses: an evolving whole genomes approach, revealing putative zoonosis, anthroponosis, and amphizoonosis. Cladistics. 2020;36:358–373. doi: 10.1111/cla.12422.
    1. Singh, S., Kumar, R. & Babita A. Adenoviral Vector-Based Vaccines and Gene Therapies: Current Status and Future Prospects. In: IntechOpen, ed. Adenoviruses. 2019.
    1. Coughlan L. Factors which contribute to the immunogenicity of non-replicating adenoviral vectored vaccines. Front. Immunol. 2020;11:909. doi: 10.3389/fimmu.2020.00909.
    1. Schlimgen R, et al. Risks associated with lentiviral vector exposures and prevention strategies. J. Occup. Environ. Med. 2016;58:1159–1166. doi: 10.1097/JOM.0000000000000879.
    1. Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia. 2018;32:1529–1541. doi: 10.1038/s41375-018-0106-0.
    1. He TC, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA. 1998;95:2509–2514. doi: 10.1073/pnas.95.5.2509.
    1. Raikwar, S.P., Kao, C.H. & Gardner, T.A. 10 - Targeted Adenoviral Vectors III: Transcriptional Targeting. In: Curiel D.T., ed. Adenoviral Vectors for Gene Therapy (Second Edition). Academic Press; 2016:259–292.
    1. Afkhami S, Yao Y, Xing Z. Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens. Mol. Ther. Methods Clin. Dev. 2016;3:16030. doi: 10.1038/mtm.2016.30.
    1. Barry M. Single-cycle adenovirus vectors in the current vaccine landscape. Expert Rev. Vaccines. 2018;17:163–173.
    1. Lasaro MO, Ertl HC. New insights on adenovirus as vaccine vectors. Mol. Ther. 2009;17:1333–1339. doi: 10.1038/mt.2009.130.
    1. Harro C, et al. Safety and immunogenicity of the Merck adenovirus serotype 5 (MRKAd5) and MRKAd6 human immunodeficiency virus type 1 trigene vaccines alone and in combination in healthy adults. Clin. Vaccine Immunol. 2009;16:1285–1292. doi: 10.1128/CVI.00144-09.
    1. Tapia MD, et al. Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in children in Africa: a randomised, observer-blind, placebo-controlled, phase 2 trial. Lancet. Infect. Dis. 2020;20:719–730. doi: 10.1016/S1473-3099(20)30019-0.
    1. Steffen T, et al. Immunogenicity and efficacy of a recombinant human adenovirus Type 5 vaccine against Zika virus. Vaccines. 2020;8:170. doi: 10.3390/vaccines8020170.
    1. Hassan AO, et al. A gorilla adenovirus-based vaccine against Zika virus induces durable immunity and confers protection in pregnancy. Cell Rep. 2019;28:2634–2646.e4. doi: 10.1016/j.celrep.2019.08.005.
    1. Shiratsuchi T, et al. A potent malaria vaccine based on adenovirus with dual modifications at Hexon and pVII. Vaccine. 2017;35:6990–7000. doi: 10.1016/j.vaccine.2017.10.066.
    1. Shaw AR, Suzuki M. Immunology of adenoviral vectors in cancer therapy. Mol. Ther. Methods Clin. Dev. 2019;15:418–429. doi: 10.1016/j.omtm.2019.11.001.
    1. Fausther-Bovendo, H. & Kobinger, G. Vaccine innovation spurred by the long wait for an Ebola virus vaccine. Lancet. Infect. Dis. 10.1016/S1473-3099(20)30515-6 (2020).
    1. Johnson & Johnson announces a lead vaccine candidate for COVID-19; landmark new partnership with US department of health & human services; and commitment to supply one billion vaccines worldwide for emergency pandemic use. (2021).
    1. Curiel, D. Adenoviral vectors for gene therapy. Second edition. ed. Elsevier/Academic Press; 2016:xx, 848 pages.
    1. Shen CF, et al. Process optimization and scale-up for production of rabies vaccine live adenovirus vector (AdRG1.3) Vaccine. 2012;30:300–306. doi: 10.1016/j.vaccine.2011.10.095.
    1. Saleh, N.A., Elhaes, H. & Ibrahim, M. Chapter 2 - Design and Development of Some Viral Protease Inhibitors by QSAR and Molecular Modeling Studies. In: Gupta S.P., ed. Viral Proteases and Their Inhibitors. Academic Press; 2017:25–58.
    1. Russell WC. Update on adenovirus and its vectors. J. Gen. Virol. 2000;81:2573–2604. doi: 10.1099/0022-1317-81-11-2573.
    1. Russell WC. Adenoviruses: update on structure and function. J. Gen. Virol. 2009;90:1–20. doi: 10.1099/vir.0.003087-0.
    1. Roy-Chowdhury J, Horwitz MS. Evolution of adenoviruses as gene therapy vectors. Mol. Ther. 2002;5:340–344. doi: 10.1006/mthe.2001.0575.
    1. Swaminathan S, Thimmapaya B. Regulation of adenovirus E2 transcription unit. Curr. Top Microbiol. Immunol. 1995;199:177–194.
    1. Garofalo, M. et al. Prospects of replication-deficient adenovirus based vaccine development against SARS-CoV-2. Vaccines8, 293 (2020).
    1. Feng L, et al. An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques. Nat. Commun. 2020;11:4207. doi: 10.1038/s41467-020-18077-5.
    1. Beatty MS, Curiel DT. Chapter two-Adenovirus strategies for tissue-specific targeting. Adv. Cancer Res. 2012;115:39–67. doi: 10.1016/B978-0-12-398342-8.00002-1.
    1. Burnett RM. The structure of the adenovirus capsid. II. The packing symmetry of hexon and its implications for viral architecture. J. Mol. Biol. 1985;185:125–143. doi: 10.1016/0022-2836(85)90187-1.
    1. Nakano MY, Boucke K, Suomalainen M, Stidwill RP, Greber UF. The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J. Virol. 2000;74:7085–7095. doi: 10.1128/JVI.74.15.7085-7095.2000.
    1. Zubieta C, Blanchoin L, Cusack S. Structural and biochemical characterization of a human adenovirus 2/12 penton base chimera. FEBS J. 2006;273:4336–4345. doi: 10.1111/j.1742-4658.2006.05430.x.
    1. Rojas LA, et al. Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. J. Control Release. 2016;237:78–88. doi: 10.1016/j.jconrel.2016.07.004.
    1. Sharma PK, et al. Development of an adenovirus vector vaccine platform for targeting dendritic cells. Cancer Gene. Ther. 2018;25:27–38. doi: 10.1038/s41417-017-0002-1.
    1. Menéndez-Conejero R, et al. Structure of a reptilian adenovirus reveals a phage tailspike fold stabilizing a vertebrate virus capsid. Structure. 2017;25:1562–1573.e5. doi: 10.1016/j.str.2017.08.007.
    1. Morral N, O’Neal W, Zhou H, Langston C, Beaudet A. Immune responses to reporter proteins and high viral dose limit duration of expression with adenoviral vectors: comparison of E2a wild type and E2a deleted vectors. Hum. Gene. Ther. 1997;8:1275–1286. doi: 10.1089/hum.1997.8.10-1275.
    1. Sumida SM, et al. Neutralizing antibodies and CD8+ T lymphocytes both contribute to immunity to adenovirus serotype 5 vaccine vectors. J. Virol. 2004;78:2666–2673. doi: 10.1128/JVI.78.6.2666-2673.2004.
    1. Barouch DH, et al. Plasmid chemokines and colony-stimulating factors enhance the immunogenicity of DNA priming-viral vector boosting human immunodeficiency virus type 1 vaccines. J. Virol. 2003;77:8729–8735. doi: 10.1128/JVI.77.16.8729-8735.2003.
    1. Barouch DH, et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J. Immunol. 2004;172:6290–6297. doi: 10.4049/jimmunol.172.10.6290.
    1. Catanzaro AT, et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J. Infect. Dis. 2006;194:1638–1649. doi: 10.1086/509258.
    1. Koup RA, et al. Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PLoS One. 2010;5:e9015. doi: 10.1371/journal.pone.0009015.
    1. Buchbinder SP, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 2008;372:1881–1893. doi: 10.1016/S0140-6736(08)61591-3.
    1. Yang ZY, et al. Overcoming immunity to a viral vaccine by DNA priming before vector boosting. J. Virol. 2003;77:799–803. doi: 10.1128/JVI.77.1.799-803.2003.
    1. Ledgerwood JE, et al. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults. Vaccine. 2010;29:304–313. doi: 10.1016/j.vaccine.2010.10.037.
    1. Zhu J, Huang X, Yang Y. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J. Virol. 2007;81:3170–3180. doi: 10.1128/JVI.02192-06.
    1. Appledorn DM, et al. Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo. J. Immunol. 2008;181:2134–2144. doi: 10.4049/jimmunol.181.3.2134.
    1. Atasheva S, Shayakhmetov DM. Adenovirus sensing by the immune system. Curr. Opin. Virol. 2016;21:109–113. doi: 10.1016/j.coviro.2016.08.017.
    1. Fejer G, Freudenberg M, Greber UF, Gyory I. Adenovirus-triggered innate signalling pathways. Eur. J. Microbiol. Immunol. 2011;1:279–288. doi: 10.1556/EuJMI.1.2011.4.3.
    1. Leen AM, et al. Identification of hexon-specific CD4 and CD8 T-cell epitopes for vaccine and immunotherapy. J. Virol. 2008;82:546–554. doi: 10.1128/JVI.01689-07.
    1. Onion D, et al. The CD4+ T-cell response to adenovirus is focused against conserved residues within the hexon protein. J. Gen. Virol. 2007;88:2417–2425. doi: 10.1099/vir.0.82867-0.
    1. Ophorst OJ, et al. Immunogenicity and protection of a recombinant human adenovirus serotype 35-based malaria vaccine against Plasmodium yoelii in mice. Infect. Immun. 2006;74:313–320. doi: 10.1128/IAI.74.1.313-320.2006.
    1. Geisbert TW, et al. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J. Virol. 2011;85:4222–4233. doi: 10.1128/JVI.02407-10.
    1. Guo J, Mondal M, Zhou D. Development of novel vaccine vectors: Chimpanzee adenoviral vectors. Hum. Vaccin. Immunother. 2018;14:1679–1685. doi: 10.1080/21645515.2017.1419108.
    1. Ewer K, et al. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum. Vaccin. Immunother. 2017;13:3020–3032. doi: 10.1080/21645515.2017.1383575.
    1. Moffatt S, Hays J, HogenEsch H, Mittal SK. Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology. 2000;272:159–167. doi: 10.1006/viro.2000.0350.
    1. Veltrop-Duits LA, et al. Human CD4+ T cells stimulated by conserved adenovirus 5 hexon peptides recognize cells infected with different species of human adenovirus. Eur. J. Immunol. 2006;36:2410–2423. doi: 10.1002/eji.200535786.
    1. Leen AM, et al. Conserved CTL epitopes on the adenovirus hexon protein expand subgroup cross-reactive and subgroup-specific CD8+ T cells. Blood. 2004;104:2432–2440. doi: 10.1182/blood-2004-02-0646.
    1. Heemskerk B, et al. Extensive cross-reactivity of CD4+ adenovirus-specific T cells: implications for immunotherapy and gene therapy. J. Virol. 2003;77:6562–6566. doi: 10.1128/JVI.77.11.6562-6566.2003.
    1. Hutnick NA, et al. Adenovirus-specific human T cells are pervasive, polyfunctional, and cross-reactive. Vaccine. 2010;28:1932–1941. doi: 10.1016/j.vaccine.2009.10.091.
    1. Wu S, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nat. Commun. 2020;11:4081. doi: 10.1038/s41467-020-17972-1.
    1. Zhu FC, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395:1845–1854. doi: 10.1016/S0140-6736(20)31208-3.
    1. Zhu FC, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020;396:479–488. doi: 10.1016/S0140-6736(20)31605-6.
    1. CanSinoBIO. NMPA accepts the application for conditional marketing authorization of CanSinoBIO’s COVID-19 vaccine Convidecia T M. (2021).
    1. Reuters. China approves two more domestic COVID-19 vaccines for public use. (2021).
    1. Reuters. Mexico approves China’s CanSino and Sinovac COVID-19 vaccines. (2021).
    1. Reuters. Pakistan approves Chinese CanSinoBIO COVID vaccine for emergency use. (2021).
    1. Reuters. Hungary approves new Chinese vaccine and CoviShield for emergency use. (2021).
    1. Korber B, et al. Tracking Changes in SARS-CoV-2 Spike: evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182:812–827.e19. doi: 10.1016/j.cell.2020.06.043.
    1. Grubaugh ND, Hanage WP, Rasmussen AL. Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear. Cell. 2020;182:794–795. doi: 10.1016/j.cell.2020.06.040.
    1. Dutta NK, Mazumdar K, Gordy JT. The nucleocapsid protein of SARS–CoV-2: a target for vaccine development. J. Virol. 2020;94:e00647–20. doi: 10.1128/JVI.00647-20.
    1. Rice, A. et al. A next generation Bivalent human Ad5 COVID-19 vaccine delivering both spike and nucleocapsid antigens Elicits Th1 dominant CD4+, CD8+ T-cell and neutralizing antibody responses. Preprint at (2020).
    1. Liebowitz D, et al. Efficacy, immunogenicity, and safety of an oral influenza vaccine: a placebo-controlled and active-controlled phase 2 human challenge study. Lancet. Infect. Dis. 2020;20:435–444. doi: 10.1016/S1473-3099(19)30584-5.
    1. van Doremalen N, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586:578–582. doi: 10.1038/s41586-020-2608-y.
    1. Moore, A.C. et al. Pre-clinical studies of a recombinant adenoviral mucosal vaccine to prevent SARS-CoV-2 infection. Preprint at (2020).
    1. Vaxart. Vaxart announces positive preliminary data from phase 1 clinical trial evaluating its oral COVID-19 tablet vaccine candidate. (2021).
    1. Vaxart. New data from vaxart oral COVID-19 vaccine phase I study suggests broad cross-reactivity against other coronaviruses. (2021).
    1. Gil-Etayo FJ, et al. T-helper cell subset response is a determining factor in COVID-19 progression. Original research. Front. Cell Infect Microbiol. 2021;11:624483. doi: 10.3389/fcimb.2021.624483.
    1. King, R. G. et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 in mice. Preprint at (2020).
    1. Bos R, et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines. 2020;5:91. doi: 10.1038/s41541-020-00243-x.
    1. Tostanoski LH, et al. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat. Med. 2020;26:1694–1700. doi: 10.1038/s41591-020-1070-6.
    1. Imai M, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci. USA. 2020;117:16587–16595. doi: 10.1073/pnas.2018975117.
    1. Mercado NB, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020;586:583–588. doi: 10.1038/s41586-020-2607-z.
    1. Sadoff J, et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N Engl. J. Med. 2021;384:1824–1835. doi: 10.1056/NEJMoa2034201.
    1. Johnson & Johnson announces single-shot Janssen COVID-19 vaccine candidate met primary endpoints in interim analysis of its phase 3 ENSEMBLE trial. (2021).
    1. Bai, N. How effective Is the Johnson & Johnson COVID-19 vaccine? Here’s what you should know. University of California San Francisco. (2021).
    1. Basta, N. E. & Moodie, E. E. COVID 19 vaccine tracker. (2021).
    1. Bussel, J. B. et al. Thrombosis with Thrombocytopenia Syndrome (also termed Vaccine-induced Thrombotic Thrombocytopenia). (2021).
    1. Ledford, H. COVID vaccines and blood clots: five key questions. (2021).
    1. Lu S. Heterologous prime-boost vaccination. Curr. Opin. Immunol. 2009;21:346–351. doi: 10.1016/j.coi.2009.05.016.
    1. Dolzhikova IV, et al. Safety and immunogenicity of GamEvac-Combi, a heterologous VSV- and Ad5-vectored Ebola vaccine: an open phase I/II trial in healthy adults in Russia. Hum. Vaccin. Immunother. 2017;13:613–620. doi: 10.1080/21645515.2016.1238535.
    1. Logunov DY, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396:887–897. doi: 10.1016/S0140-6736(20)31866-3.
    1. Logunov, D. Y. et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet2021.
    1. Craven, J. COVID-19 vaccine tracker. (2021).
    1. Capone, S. et al. Immunogenicity of a new gorilla adenovirus vaccine candidate for COVID-19. Mol Ther. 10.1016/j.ymthe.2021.04.022 (2021).
    1. Pallesen J, et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl. Acad. Sci. USA. 2017;114:E7348–E7357. doi: 10.1073/pnas.1707304114.
    1. Reithera. Reithera announces its GrAd-COV2 COVID-19 vaccine candidate is well tolerated and induces clear immune responses in healthy subjects aged 18–55 years phase 1 trial to advance into elderly subjects aged 65–85 years. (2021).
    1. Dicks MD, et al. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One. 2012;7:e40385. doi: 10.1371/journal.pone.0040385.
    1. van Doremalen N, et al. A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Sci. Adv. 2020;6:eaba8399. doi: 10.1126/sciadv.aba8399.
    1. Folegatti PM, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396:467–478. doi: 10.1016/S0140-6736(20)31604-4.
    1. Voysey M, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet. 2021;397:881–891. doi: 10.1016/S0140-6736(21)00432-3.
    1. Zimmer, C., Corum, JaW, Sui-Lee. Coronavirus Vaccine Tracker. (2021).
    1. AstraZeneca. AZD1222 US Phase III primary analysis confirms safety and efficacy. (2021).
    1. OXFORD Uo. ChAdOx1 nCov-19 provides minimal protection against mild moderate COVID-19 infection from B.1.351 coronavirus varian in young South African adults. (2021).
    1. OXFORD Uo. University of Oxford to study nasal administration of COVID-19 vaccine. (2021).
    1. Mallapaty SaC, Ewen. What scientists do and don’t know about the Oxford-AstraZeneca COVID vaccine. Nature. (2021).
    1. AstraZeneca. UK and EU regulatory agencies confirm COVID-19 Vaccine AstraZeneca is safe and effective. (2021).
    1. Signal assessment report on embolic and thrombotic events (SMQ) with COVID-19 Vaccine (ChAdOx1-S [recombinant]) – COVID-19 Vaccine AstraZeneca (Other viral vaccines) (2021).
    1. Jordans, F. Germany to restrict AstraZeneca in under-60s over clots. AP news. (2021).
    1. Gillies, R. Canada pauses AstraZeneca vaccine for under 55. AP news. (2021).
    1. Wrapp D, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507.
    1. Morris SJ, Sebastian S, Spencer AJ, Gilbert SC. Simian adenoviruses as vaccine vectors. Future virol. 2016;11:649–659. doi: 10.2217/fvl-2016-0070.
    1. Hassan AO, et al. A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell. 2020;183:169–184.e13. doi: 10.1016/j.cell.2020.08.026.
    1. Bricker, T. L. et al. A single intranasal or intramuscular immunization with chimpanzee adenovirus vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters. Cell Reports.36 (2020).
    1. Le Bert N, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584:457–462. doi: 10.1038/s41586-020-2550-z.
    1. Blakney AK, Ip S, Geall AJ. An Update on Self-Amplifying mRNA Vaccine Development. Vaccines. 2021;9:97. doi: 10.3390/vaccines9020097.
    1. Greinacher, A. et al. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl. J. Med. 384, (2021).
    1. Muir KL, Kallam A, Koepsell SA, Gundabolu K. Thrombotic Thrombocytopenia after Ad26.COV2.S Vaccination. N Engl. J. Med. 2021;384:1964–1965. doi: 10.1056/NEJMc2105869.
    1. Cines DB, Bussel JB. SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia. N Engl. J. Med. 2021;384:2254–2256. doi: 10.1056/NEJMe2106315.
    1. Greinacher A. CLINICAL PRACTICE. Heparin-Induced Thrombocytopenia. N. Engl. J. Med. 2015;373:252–261. doi: 10.1056/NEJMcp1411910.
    1. Andreas, G. et al. Anti-SARS-CoV-2 Spike Protein and Anti-Platelet Factor 4 Antibody Responses Induced by COVID-19 Disease and ChAdOx1 nCov-19 vaccination. Res. Square. 10.21203/-404769/v1 (2021).
    1. Mercier S, et al. Distinct roles of adenovirus vector-transduced dendritic cells, myoblasts, and endothelial cells in mediating an immune response against a transgene product. J. Virol. 2002;76:2899–2911. doi: 10.1128/JVI.76.6.2899-2911.2002.
    1. Othman M, Labelle A, Mazzetti I, Elbatarny HS, Lillicrap D. Adenovirus-induced thrombocytopenia: the role of von Willebrand factor and P-selectin in mediating accelerated platelet clearance. Blood. 2007;109:2832–2839. doi: 10.1182/blood-2006-06-032524.
    1. Greinacher, A. et al. Towards Understanding ChAdOx1nCov-19 Vaccine-induced Immune Thrombotic Thrombocytopenia (VITT). 10.21203/-440461/v1 (2021).
    1. Lea, K., Reinhild, R., Sebastian, W. & Stefan K. Process-related impurities in the ChAdOx1 nCov-19 vaccine. Res. Square. 10.21203/-477964/v1 (2021).
    1. Goldman, M. Autoimmune Thrombotic Thrombocytopathy Associated with COVID-19 Infection or Vaccination: Learning from Heparin-induced Thrombocytopenia. 2021
    1. Organization. W. -W. H. Draft landscape and tracker of COVID-19 candidate vaccines. (2021).
    1. Belousova N, et al. Genetically targeted adenovirus vector directed to CD40-expressing cells. J. Virol. 2003;77:11367–11377. doi: 10.1128/JVI.77.21.11367-11377.2003.
    1. Korokhov N, et al. A single-component CD40-targeted adenovirus vector displays highly efficient transduction and activation of dendritic cells in a human skin substrate system. Mol. Pharm. 2005;2:218–223. doi: 10.1021/mp050002w.
    1. Belousova N, Krendelchtchikova V, Curiel DT, Krasnykh V. Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. J. Virol. 2002;76:8621–8631. doi: 10.1128/JVI.76.17.8621-8631.2002.
    1. Abe S, et al. Adenovirus type 5 with modified hexons induces robust transgene-specific immune responses in mice with pre-existing immunity against adenovirus type 5. J. Gene Med. 2009;11:570–579. doi: 10.1002/jgm.1332.
    1. Baden LR. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl. J. Med. 2020;384:403–416. doi: 10.1056/NEJMoa2035389.
    1. Polack FP, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J. Med. 2020;383:2603–2615. doi: 10.1056/NEJMoa2034577.
    1. Ramasamy MN, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2021;396:1979–1993. doi: 10.1016/S0140-6736(20)32466-1.
    1. Price GE, Lo CY, Misplon JA, Epstein SL. Mucosal immunization with a candidate universal influenza vaccine reduces virus transmission in a mouse model. J. Virol. 2014;88:6019–6030. doi: 10.1128/JVI.03101-13.
    1. Croyle MA, et al. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice. PLoS One. 2008;3:e3548. doi: 10.1371/journal.pone.0003548.
    1. Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery. Hum. Vaccin. Immunother. 2017;13:34–45. doi: 10.1080/21645515.2016.1239668.

Source: PubMed

3
Suscribir