Immune biomarkers in thymic epithelial tumors: expression patterns, prognostic value and comparison of diagnostic tests for PD-L1

Isabelle Rouquette, Estelle Taranchon-Clermont, Julia Gilhodes, Maria-Virginia Bluthgen, Romain Perallon, Lara Chalabreysse, Anne De Muret, Veronique Hofman, Alexander Marx, Marie Parrens, Veronique Secq, Vincent Thomas de Montpreville, Françoise Galateau-Salle, Pierre Brousset, Julie Milia, Nicolas Girard, Benjamin Besse, Thierry Jo Molina, Julien Mazières, Isabelle Rouquette, Estelle Taranchon-Clermont, Julia Gilhodes, Maria-Virginia Bluthgen, Romain Perallon, Lara Chalabreysse, Anne De Muret, Veronique Hofman, Alexander Marx, Marie Parrens, Veronique Secq, Vincent Thomas de Montpreville, Françoise Galateau-Salle, Pierre Brousset, Julie Milia, Nicolas Girard, Benjamin Besse, Thierry Jo Molina, Julien Mazières

Abstract

Background: Immunotherapy is currently under investigation in B3 Thymoma (TB3) and Thymic Carcinoma (TC). PD-L1 expression has been evaluated on a limited number of patients with selected antibodies. We aimed to analyze cohort of TB3 and TC with a panel of antibodies to assess the prevalence of PD-L1 expression, its prognostic value and to set up a reproducible test.

Methods: We retrospectively studied 103 patients samples of FFPE histologically confirmed TB3 (n = 53) and TC (n = 50) by expert pathologists within the RYTHMIC national network. We compared PD-L1, PD1, CD8 and PD-L2 expression and performed correlation with tumor types and patients outcomes. Four PD-L1 antibodies were tested, three of them validated as companion tests in lung cancer, one tested on two automates on whole section of tumors. We evaluated the percentage and intensity of both epithelial and immune stained cells.

Results: TB3 epithelial cells had a higher and more diffuse expression of PD-L1 than TC regardless the antibodies tested (p < 0.0001). Three out of four antibodies targeting PD-L1 tested on the DAKO autostainer gave similar staining. Concordance between antibodies was lower for PD-L1 staining on immune cells with no significant difference between TB3 and TC except on E1L3N antibody. PD-L2 antibody stained no tumor epithelial cells. High PD-L1 expression was correlated with a better overall survival for TB3 and was not correlated with tumor staging.

Conclusion: Frequent PD-L1 expression, particularly in TB3, paves the way for immunotherapy in TET (Thymic Epithelial Tumor). Otherwise, we have set up three reproducible LDT (laboratory-developed test) for four PD-L1 antibodies.

Keywords: B3 thymoma; Immunotherapy; PD-L1; Thymic carcinoma.

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

© The Author(s). 2019.

Figures

Fig. 1
Fig. 1
PD-L1 Thymoma staining comparaison. Commercial Assays (CA): PDL1 22C3 PharmDx Dako (a); Ventana PD-L1 SP142 Assay (b), Ventana PD-L1 S263 Assay (c) Laboratory developed test (LDT): PD-L 1-E1L3N cell signaling technology (d); PDL1-SP142 Ventana (e)
Fig. 2
Fig. 2
Comparison of B3 Thymomas (TB3) (a to h) and Thymic Carcinoma (TC) (I to p) staining with Commercial Assays (CA) and Laboratory developed tests (LDT). HE staining (a, i); CA, PD-L1 22C3 PharmDx Dako (b, j); CA, Ventana PDL1 SP142 Assay (c, k); CA, Ventana PD-L1 S263 Assay (d, l); LDT PD-L1-E1L3N cell signaling technology (e, m); LDT PD-L1-SP142 Ventana (f, n); CA CD8-SP57 (g, o); CA PD1-NAT105 (h,p)
Fig. 3
Fig. 3
Overall survival according to histology
Fig. 4
Fig. 4
Relapse free survival according to histology
Fig. 5
Fig. 5
Relapse free survival according to antibody and 50% or 1% threshold

References

    1. Girard N. Thymic tumors: adopting an orphan thoracic tumor as a model of personalized medicine. J Thorac Oncol. 2014;9(12):1737–1739. doi: 10.1097/JTO.0000000000000392.
    1. Marx A, Strobel P, Badve SS, Chalabreysse L, Chan JK, Chen G, et al. ITMIG consensus statement on the use of the WHO histological classification of thymoma and thymic carcinoma: refined definitions, histological criteria, and reporting. J Thorac Oncol. 2014;9(5):596–611. doi: 10.1097/JTO.0000000000000154.
    1. Girard N. Chemotherapy and targeted agents for thymic malignancies. Expert Rev Anticancer Ther. 2012;12(5):685–695. doi: 10.1586/era.12.29.
    1. Remon J, Girard N, Mazieres J, Dansin E, Pichon E, Greillier L, et al. Sunitinib in patients with advanced thymic malignancies: cohort from the French RYTHMIC network. Lung Cancer. 2016;97:99–104. doi: 10.1016/j.lungcan.2016.04.024.
    1. Giaccone G, Rajan A, Ruijter R, Smit E, van Groeningen C, Hogendoorn PC. Imatinib mesylate in patients with WHO B3 thymomas and thymic carcinomas. J Thorac Oncol. 2009;4(10):1270–1273. doi: 10.1097/JTO.0b013e3181b6be57.
    1. Wheler J, Hong D, Swisher SG, Falchook G, Tsimberidou AM, Helgason T, et al. Thymoma patients treated in a phase I clinic at MD Anderson Cancer Center: responses to mTOR inhibitors and molecular analyses. Oncotarget. 2013;4(6):890–898. doi: 10.18632/oncotarget.1015.
    1. Guibert N, Delaunay M, Mazieres J. Targeting the immune system to treat lung cancer: rationale and clinical experience. Ther Adv Respir Dis. 2015;9(3):105–120. doi: 10.1177/1753465815578349.
    1. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–1846. doi: 10.1016/S0140-6736(16)00587-0.
    1. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung Cancer. N Engl J Med. 2015;373(17):1627–1639. doi: 10.1056/NEJMoa1507643.
    1. Giaccone G, Kim C, Thompson J, McGuire C, Kallakury B, Chahine JJ, et al. Pembrolizumab in patients with thymic carcinoma: a single-arm, single-Centre, phase 2 study. Lancet Oncol. 2018;19(3):347–355. doi: 10.1016/S1470-2045(18)30062-7.
    1. Padda SK, Riess JW, Schwartz EJ, Tian L, Kohrt HE, Neal JW, et al. Diffuse high intensity PD-L1 staining in thymic epithelial tumors. J Thorac Oncol. 2015;10(3):500–508. doi: 10.1097/JTO.0000000000000429.
    1. Yokoyama S, Miyoshi H, Nishi T, Hashiguchi T, Mitsuoka M, Takamori S, et al. Clinicopathologic and prognostic implications of programmed death ligand 1 expression in Thymoma. Ann Thorac Surg. 2016;101(4):1361–1369. doi: 10.1016/j.athoracsur.2015.10.044.
    1. Katsuya Y, Fujita Y, Horinouchi H, Ohe Y, Watanabe S, Tsuta K. Immunohistochemical status of PD-L1 in thymoma and thymic carcinoma. Lung Cancer. 2015;88(2):154–159. doi: 10.1016/j.lungcan.2015.03.003.
    1. Chalabreysse L. Thomas De Montpreville V, De Muret a, Hofman V, Lantuejoul S, Parrens M, et al. [Rythmic-pathology: the French national pathology network for thymic epithelial tumours] Ann Pathol. 2014;34(1):87–91. doi: 10.1016/j.annpat.2014.01.010.
    1. Marx A, Chan JK, Coindre JM, Detterbeck F, Girard N, Harris NL, et al. The 2015 World Health Organization classification of tumors of the Thymus: continuity and changes. J Thorac Oncol. 2015;10(10):1383–1395. doi: 10.1097/JTO.0000000000000654.
    1. Weissferdt A, Fujimoto J, Kalhor N, Rodriguez J, Bassett R, Wistuba II, et al. Expression of PD-1 and PD-L1 in thymic epithelial neoplasms. Mod Pathol. 2017;30(6):826–833. doi: 10.1038/modpathol.2017.6.
    1. Marchevsky AM, Walts AE. PD-L1, PD-1, CD4, and CD8 expression in neoplastic and nonneoplastic thymus. Hum Pathol. 2017;60:16–23. doi: 10.1016/j.humpath.2016.09.023.
    1. Owen D, Chu B, Lehman AM, Annamalai L, Yearley JH, Shilo K, et al. Expression patterns, prognostic value, and Intratumoral heterogeneity of PD-L1 and PD-1 in Thymoma and Thymic carcinoma. J Thorac Oncol. 2018;13(8):1204–1212. doi: 10.1016/j.jtho.2018.04.013.
    1. Wei YF, Chu CY, Chang CC, Lin SH, Su WC, Tseng YL, et al. Different pattern of PD-L1, IDO, and FOXP3 Tregs expression with survival in thymoma and thymic carcinoma. Lung Cancer. 2018;125:35–42. doi: 10.1016/j.lungcan.2018.09.002.
    1. Hakiri S, Fukui T, Mori S, Kawaguchi K, Nakamura S, Ozeki N, et al. Clinicopathologic features of Thymoma with the expression of programmed death ligand 1. Ann Thorac Surg. 2019;107(2):418–424. doi: 10.1016/j.athoracsur.2018.08.037.
    1. Duan J, Liu X, Chen H, Sun Y, Liu Y, Bai H, et al. Impact of PD-L1, transforming growth factor-beta expression and tumor-infiltrating CD8(+) T cells on clinical outcome of patients with advanced thymic epithelial tumors. Thorac Cancer. 2018;9(11):1341–1353. doi: 10.1111/1759-7714.12826.
    1. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–1550. doi: 10.1016/S0140-6736(15)01281-7.
    1. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–2028. doi: 10.1056/NEJMoa1501824.
    1. Inoue M, Starostik P, Zettl A, Strobel P, Schwarz S, Scaravilli F, et al. Correlating genetic aberrations with World Health Organization-defined histology and stage across the spectrum of thymomas. Cancer Res. 2003;63(13):3708–3715.
    1. Wang X, Li M. Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunol. 2019;20(1):4. doi: 10.1186/s12865-018-0285-5.
    1. Yu L, Ke J, Du X, Yu Z, Gao D. Genetic characterization of thymoma. Sci Rep. 2019;9(1):2369. doi: 10.1038/s41598-019-38878-z.
    1. Cho J, Kim HS, Ku BM, Choi YL, Cristescu R, Han J, et al. Pembrolizumab for patients with refractory or relapsed Thymic epithelial tumor: an open-label phase II trial. J Clin Oncol. 2019;37(24):2162–2170. doi: 10.1200/JCO.2017.77.3184.
    1. Giaccone G, Thompson J, McGuire C, Manning M, Kallakury B, Chahine JJ, et al. Pembrolizumab in patients with recurrent thymic carcinoma: Results of a phase II study. J Clin Oncol. 2017;35(15_suppl):8573. doi: 10.1200/JCO.2017.35.15_suppl.8573.

Source: PubMed

3
Suscribir