Improved insulin sensitivity and lower postprandial triglyceride concentrations after cold-pressed turnip rapeseed oil compared to cream in patients with metabolic syndrome

Harri Juhani Saarinen, Sari Husgafvel, Hanna Pohjantähti-Maaroos, Marja Wallenius, Ari Palomäki, Harri Juhani Saarinen, Sari Husgafvel, Hanna Pohjantähti-Maaroos, Marja Wallenius, Ari Palomäki

Abstract

Background: The aim of this study was to compare acute effects of turnip rapeseed oil rich with mono- and polyunsaturated fatty acids and cream on postprandial triglyceride levels and post-glucose load measures of insulin sensitivity in population of men with metabolic syndrome.

Methods: This open-label balanced crossover study included 37 men with metabolic syndrome. They underwent an oral glucose-fat tolerance test where they ingested 75 g of glucose with either 240 mL of cream or 84 mL of turnip rapeseed oil depending on the study arm. Hourly postprandial blood samples were drawn up to 5 h after this oral glucose-fat tolerance test to determine the changes in triglyceride concentrations and to measure insulin sensitivity. Changes in insulin sensitivity were calculated with different insulin sensitivity indices (OGIS, Stumvoll, Gutt and McAuley scores) derived from measured insulin and glucose concentrations. The oral glucose-fat tolerance test was preceded by a period during which the participants consumed a daily portion of either 35 mL of turnip rapeseed oil or 37.5 g of butter depending on the study arm in addition to their habitual diets. Both dietary periods lasted from 6 to 8 weeks. After an 8-week wash-out period the subjects crossed over to the other study arm and underwent the same process with the other fat adjunct.

Results: The area under the curve for hourly triglyceride concentrations was 16% smaller after turnip rapeseed oil than after cream (13.86 [interquartile range 8.54] vs. 16.41 [9.09] mmol/l, p < 0.001). The insulin sensitivity markers of OGIS (324 [38.97] vs. 377 [68.38] p < 0.001), Stumvoll score (0.079 [0.029] vs. 0.085 [0.029], p = 0.038) and Gutt score (67.0 ± 2.78 vs. 78.8 ± 4.97 p = 0.001) were higher after turnip rapeseed oil period than after butter period. There was a non-significant change in the McAuley score.

Conclusion: Dietary turnip rapeseed oil improved postprandially measured insulin sensitivity and triglyceride concentrations compared to cream and butter. This provides a possible efficient dietary mean to treat cardiovascular risk factors.Trial registration ClinicalTrials.gov NCT01119690 (05-06-2010).

Keywords: Diabetes mellitus; Insulin resistance; Metabolic syndrome; Monounsaturated fatty acids; Polyunsaturated fatty acids; Triglycerides; Turnip rapeseed oil.

Figures

Fig. 1
Fig. 1
Study design. Design of the open, randomized cross-over study. OGFTT oral glucose-fat tolerance test containing 75 g of glucose and portion of either CPTRO or cream
Fig. 2
Fig. 2
Fasting and postprandial concentrations of TG, glucose and insulin. The continuous curve represents measured concentrations after cream and the dashed curve represents measured concentrations after CPTRO

References

    1. Vanhala MJ, Kumpusalo EA, Pitkäjärvi TK, Takala JK. Metabolic syndrome in a middle-aged Finnish population. J Cardiovasc Risk. 1997;4:291–295. doi: 10.1097/00043798-199708000-00010.
    1. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288:2709–2716. doi: 10.1001/jama.288.21.2709.
    1. Sattar N, Allan Gaw, Scherbakova O, Ford I, O´Reilly D, Haffner S, et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland coronary prevention study. Circulation. 2003;108:414–419. doi: 10.1161/01.CIR.0000080897.52664.94.
    1. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III) J Am Med Assoc. 2001;285:2486–2697. doi: 10.1001/jama.285.19.2486.
    1. Vilmi-Kerälä T, Koivistoinen T, Palomäki O, Uotila J, Palomäki A. Arterial stiffness in fertile women with metabolic syndrome. Ann Med. 2017;49:636–643. doi: 10.1080/07853890.2017.1339907.
    1. El Akoum S, Lamontagne V, Cloutier I, Tanguay J-F. Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice. Diabetol Metab Syndr. 2011;3:34. doi: 10.1186/1758-5996-3-34.
    1. Perez-Martinez P, Garcia-Quintana J, Yubero-Serrano E, Tasset-Cuevas I, Tunez I, Garcia-Rios A, et al. Postprandial oxidative stress is modified by dietary fat: evidence from a human intervention study. Clin Sci. 2010;119:251–261. doi: 10.1042/CS20100015.
    1. Dutheil N, Lesourd B, Courteix D, Chapier R, Doré E, Lac G. Blood lipids and adipokines concentrations during a 6-month nutritional and physical activity intervention for metabolic syndrome treatment. Lipids Health Dis. 2010;9:148. doi: 10.1186/1476-511X-9-148.
    1. Roche HM, Gibney MJ. Long-chain n-3 polyunsaturated fatty acids and triacylglycerol metabolism in the postprandial state. Lipids. 1999;34(Suppl):S259–S265. doi: 10.1007/BF02562313.
    1. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58:2047–2067. doi: 10.1016/j.jacc.2011.06.063.
    1. Harris WS, Connor WE, Alam N, Illingworth RD. Reduction of postprandial triglyceridemia in humans by dietary n-3 fatty acids. J Lipid Res. 1988;29:1451–1460.
    1. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–194. doi: 10.2337/diacare.14.3.173.
    1. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992;15:318–368. doi: 10.2337/diacare.15.3.318.
    1. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:E214–E223.
    1. Singh B, Saxena A. Surrogate markers of insulin resistance: a review. World J Diabetes. 2010;15:36–47. doi: 10.4239/wjd.v1.i2.36.
    1. Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks FM, et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA. 1996;276:882–888. doi: 10.1001/jama.1996.03540110036029.
    1. Catapano AL, Graham I, De Backer G, Wilkund O, Chapman MJ, Drexel H, et al. ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2016;37(39):2999. doi: 10.1093/eurheartj/ehw272.
    1. Palomäki A, Pohjantähti-Maaroos H, Wallenius M, Kankkunen P, Aro H, Husgafvel S, et al. Effects of dietary cold-pressed turnip rapeseed oil and butter on serum lipids, oxidized LDL and arterial elasticity in men with metabolic syndrome. Lipids Health Dis. 2010;9:137. doi: 10.1186/1476-511X-9-137.
    1. Saarinen HJ, Sittiwet C, Simonen P, Nissinen MJ, Stenman U, Gylling H, et al. Determining the mechanisms of dietary turnip rapeseed oil on cholesterol metabolism in men with metabolic syndrome. J Investig Med. 2017
    1. Pohjantähti-Maaroos H, Palomäki A, Kankkunen P, Husgafvel S, Knuth T, Vesterinen K, et al. Arterial elasticity and oxidized LDL among men with metabolic syndrome and different 10-year cardiovascular risk estimated by FINRISK and SCORE models. Ann Med. 2012;44:503–512. doi: 10.3109/07853890.2011.590520.
    1. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care. 2001;24:539–548. doi: 10.2337/diacare.24.3.539.
    1. McAuley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, Temple LA, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001;24:460–464. doi: 10.2337/diacare.24.3.460.
    1. Stumvoll M, Van Haeften T, Fritsche A, Gerich J. Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care. 2001;24:796–797. doi: 10.2337/diacare.24.4.796.
    1. Gutt M, Davis CL, Spitzer SB, Llabre MM, Kumar M, Czarnecki EM, et al. Validation of the insulin sensitivityindex (ISI(0,120)): comparison with other measures. Diabetes Res Clin Pract. 2000;47:177–184. doi: 10.1016/S0168-8227(99)00116-3.
    1. Mari A. OGIS insulin sensitivity from the oral glucose test. 2001. . Accessed 6 May 2017.
    1. Razny U, Kiec-Wilk B, Polus A, Goralska J, Malczewska-Malec M, Wnek D, et al. Effect of caloric restriction with or without n-3 polyunsaturated fatty acids on insulin sensitivity on obese subjects: a randomized placebo controlled trial. BBA Clin. 2015;22:7–13. doi: 10.1016/j.bbacli.2015.05.001.
    1. Hutchins AM, Brown BD, Cunnane SC, Domitrovich SG, Adams ER, Bobowiec CE. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. Nutr Res. 2013;33:367–375. doi: 10.1016/j.nutres.2013.02.012.
    1. Taghizadeh M, Jamilian M, Mazloomi M, Sanami M, Asemi Z. A randomized controlled clinical trial investigating the effect of omega-3 fatty acids and vitamin E co-supplementation on markers of insulin metabolism and lipid profiles in gestational diabetes. J Clin Lipidol. 2016;10:386–393. doi: 10.1016/j.jacl.2015.12.017.
    1. Karhunen LJ, Juvonen KR, Huotari A, Purhonen AK, Herzig KH. Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept. 2008;149:70–78. doi: 10.1016/j.regpep.2007.10.008.
    1. Kalupahana NS, Claycombe K, Newman SJ, Stewart T, Siriwardhana N, Matthan N, et al. Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J Nutr. 2010;140:1915–1922. doi: 10.3945/jn.110.125732.
    1. Saraswathi V, Morrow JD, Hasty AH. Dietary Fish Oil Exerts Hypolipidemic Effects in Lean and Insulin Sensitizing Effects in Obese LDLR −/− Mice. J Nutr. 2009;139:2380–2386. doi: 10.3945/jn.109.111567.
    1. Wu JHY, Cahill LE, Mozaffarian D. Effect of fish oil on circulating adiponectin: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2013;98:2451–2459. doi: 10.1210/jc.2012-3899.
    1. Ramezani A, Koohdani F, Djazayeri A, Nematipour E, Keshavarz SA, Saboor Yaraghi AA, et al. Effects of administration of omega-3 fatty acids with or without vitamin E supplementation on adiponectingene expression in PBMCs and serum adiponectin and adipocyte fatty acid-binding protein levels in male patients with CAD. Anatol J Cardiol. 2015;15:981–989. doi: 10.5152/akd.2015.5849.
    1. Poreba M, Mostowik M, Siniarski A, Golebiowska-Wiatrak R, Haberka M, Konduracka E, et al. Treatment with high-dose n-3 PUFAs has no effect on platelet function, coagulation, metabolic status or inflammation in patients with atherosclerosis and type 2 diabetes. Cardiovasc Diabetol. 2017;16:50. doi: 10.1186/s12933-017-0523-9.
    1. Ansar S, Koska J, Reaven PD. Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc Diabetol. 2011;10:61. doi: 10.1186/1475-2840-10-61.
    1. Mora S, Rifai N, Buring JE, Ridker PM. Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation. 2008;118:993–1001. doi: 10.1161/CIRCULATIONAHA.108.777334.
    1. Stalenhoef AF, de Graaf J. Association of fasting and nonfasting triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL. Curr Opin Lipidol. 2008;19:355–361. doi: 10.1097/MOL.0b013e328304b63c.
    1. Eberly LE, Stamler J, Neaton JD. Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease. Arch Intern Med. 2003;163:1077–1083. doi: 10.1001/archinte.163.9.1077.
    1. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298:309–316. doi: 10.1001/jama.298.3.309.
    1. Nikkilä M, Solakivi T, Lehtimäki T, Koivula T, Laippala P, Aström B. Postprandial plasma lipoprotein changes in relation to apolipoprotein E phenotypes and low density lipoprotein size in men with and without coronary artery disease. Atherosclerosis. 1994;106:149–157. doi: 10.1016/0021-9150(94)90120-1.
    1. HPS2-THRIVE Collaborative Group. Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, et al. Effects of extended release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–212. doi: 10.1056/NEJMoa1300955.
    1. The BIP Study Group Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation. 2000;102:21–27. doi: 10.1161/01.CIR.102.1.21.
    1. Araujo MC, Yokoo EM, Pereira RA. Validation and calibration of a semiquantitative food frequency questionnaire designed for adolescents. J Am Diet Assoc. 2010;110:1170–1177. doi: 10.1016/j.jada.2010.05.008.
    1. Brehm BJ, Lattin BL, Summer SS, Boback JA, Gilchrist GM, Jandacek RJ, et al. One-year comparison of a high-monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes. Diabetes Care. 2009;32:215–220. doi: 10.2337/dc08-0687.
    1. Kratz M, Callahan HS, Yang PY, Matthys CC, Weigle DS. Dietary n-3-polyunsaturated fatty acids and energy balance in overweight or moderately obese men and women: a randomized controlled trial. Nutr Metab. 2009;6:24. doi: 10.1186/1743-7075-6-24.
    1. Mero N, Malmström R, Steiner G, Taskinen MR, Syvänne M. Postprandial metabolism of apolipoprotein B-48- and B-100-containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease. Atherosclerosis. 2000;150:167–177. doi: 10.1016/S0021-9150(99)00364-0.

Source: PubMed

3
Suscribir