Effects of four different meal types on the population pharmacokinetics of single-dose rifapentine in healthy male volunteers

Simbarashe P Zvada, Jan-Stefan Van Der Walt, Peter J Smith, P Bernard Fourie, Giorgio Roscigno, Denis Mitchison, Ulrika S H Simonsson, Helen M McIlleron, Simbarashe P Zvada, Jan-Stefan Van Der Walt, Peter J Smith, P Bernard Fourie, Giorgio Roscigno, Denis Mitchison, Ulrika S H Simonsson, Helen M McIlleron

Abstract

Rifapentine and its primary metabolite, 25-desacetyl rifapentine, are active against mycobacterium tuberculosis. The objectives of this study were to describe the population pharmacokinetics of rifapentine and 25-desacetyl rifapentine in fasting and fed states. Thirty-five male healthy volunteers were enrolled in an open-label, randomized, sequential, five-way crossover study. Participants received a single 900-mg dose of rifapentine after meals with high fat (meal A), bulk and low fat (meal B), bulk and high fat (meal C), high fluid and low fat (meal D), or 200 ml of water (meal E). Venous blood samples were collected over 72 h after each rifapentine dose, and plasma was analyzed for rifapentine and 25-desacetyl rifapentine using high-performance liquid chromatography. Pharmacokinetic data were analyzed by nonlinear mixed-effect modeling using NONMEM. Compared with the fasting state, meal A had the greatest effect on rifapentine oral bioavailability, increasing it by 86%. Meals B, C, and D resulted in 33%, 46%, and 49% increases in rifapentine oral bioavailability, respectively. Similar trends were observed for 25-desacetyl rifapentine. As meal behavior has a substantial impact on rifapentine exposure, it should be considered in the evaluation of optimal dosing approaches.

Figures

FIG. 1.
FIG. 1.
Illustration of the parent metabolite model. All rifapentine (RFP) is assumed to be converted to the major metabolite (25-DRFP). N1 represents the first hypothetical transit compartment up to Nn compartment. ktr is the transit rate constant. ka is the absorption rate constant from the hypothetical drug depot compartment to plasma. k (calculated as CL/V) is the elimination rate constant of rifapentine. CLm is the time-varying metabolite clearance. Vm represents volume of distribution of the metabolite. k34 is the first-order rate constant of the metabolite from plasma to the peripheral compartment, and k43 is the first-order rate constant of the metabolite from the peripheral compartment back to plasma.
FIG. 2.
FIG. 2.
Visual predictive check for the final (left) and metabolite (right) models. The lower, middle, and upper solid lines are the 5th, 50th, and 95th percentiles of the observed data, respectively. The dotted and dashed-dotted (50th percentile) lines around each percentile show the 95% confidence interval from the model prediction. The circles are the observed concentration-time data points.

References

    1. Beal, S. L., L. B. Sheiner, and A. Boeckmann. 1996. NONMEM users' guides. University of California, San Fransisco, San Francisco, CA.
    1. Blumberg, H. M., W. J. Burman, R. E. Chaisson, C. L. Daley, S. C. Etkind, L. N. Friedman, P. Fujiwara, M. Grzemska, P. C. Hopewell, M. D. Iseman, R. M. Jasmer, V. Koppaka, R. I. Menzies, R. J. O'Brien, R. R. Reves, L. B. Reichman, P. M. Simone, J. R. Starke, and A. A. Vernon. 2003. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am. J. Respir. Crit. Care Med. 167:603-662.
    1. Bock, N. N., T. R. Sterling, C. D. Hamilton, C. Pachucki, Y. C. Wang, D. S. Conwell, A. Mosher, M. Samuels, and A. Vernon. 2002. A prospective, randomized, double-blind study of the tolerability of rifapentine 600, 900, and 1,200 mg plus isoniazid in the continuation phase of tuberculosis treatment. Am. J. Respir. Crit. Care Med. 165:1526-1530.
    1. Burman, W., D. Benator, A. Vernon, A. Khan, B. Jones, C. Silva, C. Lahart, S. Weis, B. King, B. Mangura, M. Weiner, and W. El-Sadr. 2006. Acquired rifamycin resistance with twice-weekly treatment of HIV-related tuberculosis. Am. J. Respir. Crit. Care Med. 173:350-356.
    1. Burman, W. J., K. Gallicano, and C. Peloquin. 2001. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin. Pharmacokinet. 40:327-341.
    1. Chan, S. L., W. W. Yew, J. H. Porter, K. P. McAdam, B. W. Allen, J. M. Dickinson, G. A. Ellard, and D. A. Mitchison. 1994. Comparison of Chinese and Western rifapentines and improvement of bioavailability by prior taking of various meals. Int. J. Antimicrob. Agents 3:267-274.
    1. Dooley, K., C. Flexner, J. Hackman, C. A. Peloquin, E. Nuermberger, R. E. Chaisson, and S. E. Dorman. 2008. Repeated administration of high-dose intermittent rifapentine reduces rifapentine and moxifloxacin plasma concentrations. Antimicrob. Agents Chemother. 52:4037-4042.
    1. Gordi, T., R. Xie, N. V. Huong, D. X. Huong, M. O. Karlsson, and M. Ashton. 2005. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br. J. Clin. Pharmacol. 59:189-198.
    1. Gumbo, T., A. Louie, M. R. Deziel, W. Liu, L. M. Parsons, M. Salfinger, and G. L. Drusano. 2007. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob. Agents Chemother. 51:3781-3788.
    1. Heifets, L. B., P. J. Lindholm-Levy, and M. A. Flory. 1990. Bactericidal activity in vitro of various rifamycins against Mycobacterium avium and Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 141:626-630.
    1. Holford, N. 2005. The visual predictive check-superiority to standard diagnostic (Rorschach) plots, abstr. 738. Abstr. 14th PAGE Meeting.
    1. Holford, N. H., R. J. Ambros, and K. Stoeckel. 1992. Models for describing absorption rate and estimating extent of bioavailability: application to cefetamet pivoxil. J. Pharmacokinet. Biopharm. 20:421-442.
    1. Jonsson, E. N., and M. O. Karlsson. 1999. Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput. Methods Programs Biomed. 58:51-64.
    1. Karlsson, M. O., and R. M. Savic. 2007. Diagnosing model diagnostics. Clin. Pharmacol. Ther. 82:17-20.
    1. Karlsson, M. O., and L. B. Sheiner. 1993. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J. Pharmacokinet. Biopharm. 21:735-750.
    1. Kerbusch, T., U. Wahlby, P. A. Milligan, and M. O. Karlsson. 2003. Population pharmacokinetic modelling of darifenacin and its hydroxylated metabolite using pooled data, incorporating saturable first-pass metabolism, CYP2D6 genotype and formulation-dependent bioavailability. Br. J. Clin. Pharmacol. 56:639-652.
    1. Keung, A., M. G. Eller, K. A. McKenzie, and S. J. Weir. 1999. Single and multiple dose pharmacokinetics of rifapentine in man: part II. Int. J. Tuberc. Lung Dis. 3:437-444.
    1. Langdon, G., J. Wilkins, L. McFadyen, H. McIlleron, P. Smith, and U. S. Simonsson. 2005. Population pharmacokinetics of rifapentine and its primary desacetyl metabolite in South African tuberculosis patients. Antimicrob. Agents Chemother. 49:4429-4436.
    1. Langdon, G., J. J. Wilkins, P. J. Smith, and H. McIlleron. 2004. Consecutive-dose pharmacokinetics of rifapentine in patients diagnosed with pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 8:862-867.
    1. Menzies, D., A. Benedetti, A. Paydar, I. Martin, S. Royce, M. Pai, A. Vernon, C. Lienhardt, and W. Burman. 2009. Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med. 6:e1000146.
    1. Mitchison, D. A. 1998. Development of rifapentine: the way ahead. Int. J. Tuberc. Lung Dis. 2:612-615.
    1. Niemi, M., J. T. Backman, M. F. Fromm, P. J. Neuvonen, and K. T. Kivisto. 2003. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin. Pharmacokinet. 42:819-850.
    1. Relling, M. V., R. R. Evans, S. Groom, W. R. Crom, and C. B. Pratt. 1993. Saturable elimination and saturable protein binding account for flavone acetic acid pharmacokinetics. J. Pharmacokinet. Biopharm. 21:639-651.
    1. Roberts, M. S., B. M. Magnusson, F. J. Burczynski, and M. Weiss. 2002. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin. Pharmacokinet. 41:751-790.
    1. Rosenthal, I. M., K. Williams, S. Tyagi, C. A. Peloquin, A. A. Vernon, W. R. Bishai, J. H. Grosset, and E. L. Nuermberger. 2006. Potent twice-weekly rifapentine-containing regimens in murine tuberculosis. Am. J. Respir. Crit. Care Med. 174:94-101.
    1. Rosenthal, I. M., M. Zhang, K. N. Williams, C. A. Peloquin, S. Tyagi, A. A. Vernon, W. R. Bishai, R. E. Chaisson, J. H. Grosset, and E. L. Nuermberger. 2007. Daily dosing of rifapentine cures tuberculosis in three months or less in the murine model. PLoS Med. 4:e344.
    1. Rousseau, A., F. Leger, Y. Le Meur, F. Saint-Marcoux, G. Paintaud, M. Buchler, and P. Marquet. 2004. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther. Drug Monit. 26:23-30.
    1. Savic, R. M., D. M. Jonker, T. Kerbusch, and M. O. Karlsson. 2007. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J. Pharmacokinet. Pharmacodyn. 34:711-726.
    1. Sirgel, F. A., P. B. Fourie, P. R. Donald, N. Padayatchi, R. Rustomjee, J. Levin, G. Roscigno, J. Norman, H. McIlleron, and D. A. Mitchison. 2005. The early bactericidal activities of rifampin and rifapentine in pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 172:128-135.
    1. Taft, D. R., G. R. Iyer, L. Behar, and R. V. DiGregorio. 1997. Application of a first-pass effect model to characterize the pharmacokinetic disposition of venlafaxine after oral administration to human subjects. Drug Metab. Dispos. 25:1215-1218.
    1. Wahlby, U., E. N. Jonsson, and M. O. Karlsson. 2001. Assessment of actual significance levels for covariate effects in NONMEM. J. Pharmacokinet. Pharmacodyn. 28:231-252.
    1. Wehrli, W. 1983. Rifampin: mechanisms of action and resistance. Rev. Infect. Dis. 5(Suppl. 3):S407-S411.
    1. Weiner, M., D. Benator, W. Burman, C. A. Peloquin, A. Khan, A. Vernon, B. Jones, C. Silva-Trigo, Z. Zhao, and T. Hodge. 2005. Association between acquired rifamycin resistance and the pharmacokinetics of rifabutin and isoniazid among patients with HIV and tuberculosis. Clin. Infect. Dis. 40:1481-1491.
    1. Weiner, M., N. Bock, C. A. Peloquin, W. J. Burman, A. Khan, A. Vernon, Z. Zhao, S. Weis, T. R. Sterling, K. Hayden, and S. Goldberg. 2004. Pharmacokinetics of rifapentine at 600, 900, and 1,200 mg during once-weekly tuberculosis therapy. Am. J. Respir. Crit. Care Med. 169:1191-1197.
    1. Wilkins, J. J. 2005. NONMEMory: a run management tool for NONMEM. Comput. Methods Programs Biomed. 78:259-267.
    1. Zai, H., M. Kusano, H. Hosaka, Y. Shimoyama, A. Nagoshi, M. Maeda, O. Kawamura, and M. Mori. 2009. Monosodium L-glutamate added to a high-energy, high-protein liquid diet promotes gastric emptying. Am. J. Clin. Nutr. 89:431-435.
    1. Zhang, T., M. Zhang, I. M. Rosenthal, J. H. Grosset, and E. L. Nuermberger. 2009. Short-course therapy with daily rifapentine in a murine model of latent tuberculosis infection. Am. J. Respir. Crit. Care Med. 180:1151-1157.
    1. Zhu, M., S. Kaul, P. Nandy, D. M. Grasela, and M. Pfister. 2009. Model-based approach to characterize efavirenz autoinduction and concurrent enzyme induction with carbamazepine. Antimicrob. Agents Chemother. 53:2346-2353.

Source: PubMed

3
Suscribir