Cost-Effectiveness Analysis of Capecitabine Plus Oxaliplatin Versus Gemcitabine Plus Oxaliplatin as First-Line Therapy for Advanced Biliary Tract Cancers

Ruijia Chen, Yalan Zhang, Kongying Lin, Defu Huang, MaoJin You, Yanjin Lai, Jinye Wang, Yingying Hu, Na Li, Ruijia Chen, Yalan Zhang, Kongying Lin, Defu Huang, MaoJin You, Yanjin Lai, Jinye Wang, Yingying Hu, Na Li

Abstract

Background: In the first-line treatment of biliary tract cancers (BTCs), XELOX (capecitabine plus oxaliplatin) showed comparable clinical efficacy and safety to gemcitabine and oxaliplatin (GEMOX), with fewer visits and better treatment management. Our study aims to investigate the cost-effectiveness of XELOX and GEMOX as the first-line therapy for BTCs from the perspective of the Chinese healthcare systems and to provide valuable suggestions for clinical decision-making. Methods: A Markov model was developed using the phase 3 randomized clinical trial (ClinicalTrials.gov number, NCT01470443) to evaluate the cost-effectiveness of XELOX and GEMOX. Quality-adjusted life-years (QALYs) and incremental cost-effectiveness ratios (ICERs) were used as the primary outcomes of the model. Uncertainty was assessed using univariate and probabilistic sensitivity analysis. Results: The QALYs for the XELOX and GEMOX groups were 0.66 and 0.54, respectively. In China, the total cost of XELOX treatment is US $12,275.51, which is lower than that of the GEMOX regimen. In addition, XELOX is more effective than GEMOX, making it the preferred regimen. A sensitivity analysis determined that XELOX therapy has a stable economic advantage in China. Conclusion: Compared to GEMOX, XELOX is a more cost-effective treatment as a first-line treatment for advanced BTC from the perspective of the Chinese health service system.

Keywords: GEMOX; XELOX; advanced biliary tract cancers; cost-effectiveness; first-line treatment.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Chen, Zhang, Lin, Huang, You, Lai, Wang, Hu and Li.

Figures

FIGURE 1
FIGURE 1
The Markov state transition model. At the beginning of each Markov cycle, all patients entered the model in the progression-free survival (PFS) with a stable disease state and immediately commenced treatment. From this state, patients could either remain in a PFS state or experience progression and enter progression survival (PS). Patients in the PS could either remain in a PS state or transition to death. PS indicates the progression of the disease.
FIGURE 2
FIGURE 2
Univariate sensitivity analysis. The tornado plots show the ICER of the XELOX therapy versus the GEMOX therapy for different input parameters in the model. The horizontal axis of the figure represents the range of influence of each element on the results, and the vertical axis shows the name of each uncertainty factor. The horizontal bars indicate the value of the effect of each element on the result and the value of the effect of each element itself. The effects of the factors on the ICER are listed in descending order of significance. Abbreviations: EV, expected value; BSA, body surface area; BSC, best supportive care; PFS, progression-free survival; and PS, progression survival.
FIGURE 3
FIGURE 3
Probabilistic sensitivity analyses. Dots indicate the results of Monte Carlo simulations, and ellipses indicate 95% confidence intervals. The diagonal line shows WTP. Dots located below the diagonal line indicate cost-effectiveness for the experimental group compared to the corresponding control group. Abbreviations: WTP, willingness to pay. All costs are in United States dollars.
FIGURE 4
FIGURE 4
Cost-effectiveness acceptability curves (CEACs). The CEAC represents the economic probability of a drug. The curve shows the percentage of cost-effectiveness simulated using different treatment solutions.

References

    1. Al-Ziftawi N. H., Shafie A. A., Mohamed Ibrahim M. I. (2021). Cost-effectiveness Analyses of Breast Cancer Medications Use in Developing Countries: a Systematic Review. Expert Rev. Pharmacoecon Outcomes Res. 21 (4), 655–666. 10.1080/14737167.2020.1794826
    1. Atieno O. M., Opanga S., Martin A., Kurdi A., Godman B. (2018). Pilot Study Assessing the Direct Medical Cost of Treating Patients with Cancer in Kenya; Findings and Implications for the Future. J. Med. Econ. 21 (9), 878–887. 10.1080/13696998.2018.1484372
    1. Banales J. M., Marin J. J. G., Lamarca A., Rodrigues P. M., Khan S. A., Roberts L. R., et al. (2020). Cholangiocarcinoma 2020: the Next Horizon in Mechanisms and Management. Nat. Rev. Gastroenterol. Hepatol. 17 (9), 557–588. 10.1038/s41575-020-0310-z
    1. Bergquist A., von Seth E. (2015). Epidemiology of Cholangiocarcinoma. Best. Pract. Res. Clin. Gastroenterol. 29 (2), 221–232. 10.1016/j.bpg.2015.02.003
    1. Bridgewater J. A., Goodman K. A., Kalyan A., Mulcahy M. F. (2016). Biliary Tract Cancer: Epidemiology, Radiotherapy, and Molecular Profiling. Am. Soc. Clin. Oncol. Educ. Book 35, e194–203. 10.1200/EDBK_160831
    1. Doherty B., Nambudiri V. E., Palmer W. C. (2017). Update on the Diagnosis and Treatment of Cholangiocarcinoma. Curr. Gastroenterol. Rep. 19 (1), 2. 10.1007/s11894-017-0542-4
    1. Fiteni F., Nguyen T., Vernerey D., Paillard M. J., Kim S., Demarchi M., et al. (2014). Cisplatin/gemcitabine or Oxaliplatin/gemcitabine in the Treatment of Advanced Biliary Tract Cancer: a Systematic Review. Cancer Med. 3 (6), 1502–1511. 10.1002/cam4.299
    1. Gamboa A. C., Maithel S. K. (2020). The Landmark Series: Gallbladder Cancer. Ann. Surg. Oncol. 27 (8), 2846–2858. 10.1245/s10434-020-08654-9
    1. Gershon N., Berchenko Y., Hall P. S., Goldstein D. A. (2019). Cost Effectiveness and Affordability of Trastuzumab in Sub-saharan Africa for Early Stage HER2-Positive Breast Cancer. Cost. Eff. Resour. Alloc. 17, 5. 10.1186/s12962-019-0174-7
    1. Godman B., Hill A., Simoens S., Selke G., Selke Krulichová I., Zampirolli Dias C., et al. (2021). Potential Approaches for the Pricing of Cancer Medicines across Europe to Enhance the Sustainability of Healthcare Systems and the Implications. Expert Rev. Pharmacoecon Outcomes Res. 21 (4), 527–540. 10.1080/14737167.2021.1884546
    1. Kim S. T., Kang J. H., Lee J., Lee H. W., Oh S. Y., Jang J. S., et al. (2019). Capecitabine Plus Oxaliplatin versus Gemcitabine Plus Oxaliplatin as First-Line Therapy for Advanced Biliary Tract Cancers: a Multicenter, Open-Label, Randomized, Phase III, Noninferiority Trial. Ann. Oncol. 30 (5), 788–795. 10.1093/annonc/mdz058
    1. Laviana A. A., Luckenbaugh A. N., Resnick M. J. (2020). Trends in the Cost of Cancer Care: Beyond Drugs. J. Clin. Oncol. 38 (4), 316–322. 10.1200/JCO.19.01963
    1. Lee J., Park S. H., Chang H. M., Kim J. S., Choi H. J., Lee M. A., et al. (2012). Gemcitabine and Oxaliplatin with or without Erlotinib in Advanced Biliary-Tract Cancer: a Multicentre, Open-Label, Randomised, Phase 3 Study. Lancet Oncol. 13 (2), 181–188. 10.1016/S1470-2045(11)70301-1
    1. Li N., Zheng H., Huang Y., Zheng B., Cai H., Liu M. (2021). Cost-Effectiveness Analysis of Olaparib Maintenance Treatment for Germline BRCA-Mutated Metastatic Pancreatic Cancer . Front. Pharmacol. 12, 632818. 10.3389/fphar.2021.632818
    1. Liubao P., Xiaomin W., Chongqing T., Karnon J., Gannong C., Jianhe L., et al. (2009). Cost-effectiveness Analysis of Adjuvant Therapy for Operable Breast Cancer from a Chinese Perspective: Doxorubicin Plus Cyclophosphamide versus Docetaxel Plus Cyclophosphamide. Pharmacoeconomics 27 (10), 873–886. 10.2165/11314750-000000000-00000
    1. Markussen A., Jensen L. H., Diness L. V., Larsen F. O. (2020). Treatment of Patients with Advanced Biliary Tract Cancer with Either Oxaliplatin, Gemcitabine, and Capecitabine or Cisplatin and Gemcitabine-A Randomized Phase II Trial. Cancers (Basel) 12 (7), 1975. Published 2020 Jul 20. 10.3390/cancers12071975
    1. National Bureau of Statistics of China Annual Data. Available at: (Accessed August 21, 2021).
    1. Oh D.-Y., He A. R., Qin S., Chen L.-T., Okusaka T., Vogel A., et al. (2022). A Phase 3 Randomized, Double-Blind, Placebo-Controlled Study of Durvalumab in Combination with Gemcitabine Plus Cisplatin (GemCis) in Patients (Pts) with Advanced Biliary Tract Cancer (BTC): TOPAZ-1. J. Clin. Oncol. 40 (4_Suppl. l), 378. 10.1200/jco.2022.40.4_suppl.378
    1. Paoletti X., Lewsley L. A., Daniele G., Cook A., Yanaihara N., Tinker A., et al. (2020). Assessment of Progression-free Survival as a Surrogate End Point of Overall Survival in First-Line Treatment of Ovarian Cancer: A Systematic Review and Meta-Analysis. JAMA Netw. Open 3 (1), e1918939. 10.1001/jamanetworkopen.2019.18939
    1. Prasad V., Kim C., Burotto M., Vandross A. (2015). The Strength of Association between Surrogate End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-Analyses. JAMA Intern Med. 175 (8), 1389–1398. 10.1001/jamainternmed.2015.2829
    1. Qin S., Kruger E., Tan S. C., Cheng S., Wang N., Liang J. (2018). Cost-effectiveness Analysis of FOLFOX4 and Sorafenib for the Treatment of Advanced Hepatocellular Carcinoma in China. Cost. Eff. Resour. Alloc. 16, 29. 10.1186/s12962-018-0112-0
    1. Rizzo A., Ricci A. D., Brandi G. (2021). Recent Advances of Immunotherapy for Biliary Tract Cancer. Expert Rev. Gastroenterol. Hepatol. 15 (5), 527–536. 10.1080/17474124.2021.1853527
    1. Rizzo A., Brandi G. (2021). First-line Chemotherapy in Advanced Biliary Tract Cancer Ten Years after the ABC-02 Trial: "And yet it Moves!". Cancer Treat. Res. Commun. 27, 100335. 10.1016/j.ctarc.2021.100335
    1. Rizzo A., Brandi G. (2021). Pitfalls, Challenges, and Updates in Adjuvant Systemic Treatment for Resected Biliary Tract Cancer. Expert Rev. Gastroenterol. Hepatol. 15 (5), 547–554. 10.1080/17474124.2021.1890031
    1. Roth J. A., Carlson J. J. (2012). Cost-effectiveness of Gemcitabine + Cisplatin vs. Gemcitabine Monotherapy in Advanced Biliary Tract Cancer. J. Gastrointest. Cancer 43 (2), 215–223. 10.1007/s12029-010-9242-0
    1. Siegel R. L., Miller K. D., Jemal A. (2015). Cancer Statistics, 2015. CA Cancer J. Clin. 65 (1), 5–29. 10.3322/caac.21254
    1. Tsukiyama I., Ejiri M., Yamamoto Y., Nakao H., Yoneda M., Matsuura K., et al. (2017). A Cost-Effectiveness Analysis of Gemcitabine Plus Cisplatin versus Gemcitabine Alone for Treatment of Advanced Biliary Tract Cancer in Japan. J. Gastrointest. Cancer 48 (4), 326–332. 10.1007/s12029-016-9885-6
    1. Valle J., Wasan H., Palmer D. H., Cunningham D., Anthoney A., Maraveyas A., et al. (2010). Cisplatin Plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. N. Engl. J. Med. 362 (14), 1273–1281. 10.1056/NEJMoa0908721
    1. Valle J. W., Lamarca A., Goyal L., Barriuso J., Zhu A. X. (2017). New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov. 7 (9), 943–962. 10.1158/-17-0245
    1. Valle J. W., Kelley R. K., Nervi B., Oh D. Y., Zhu A. X. (2021). Biliary Tract Cancer. Lancet 397 (10272), 428–444. 10.1016/S0140-6736(21)00153-7
    1. Wild C., Grössmann N., Bonanno P. V., Bucsics A., Furst J., Garuoliene K., et al. (2016). Utilisation of the ESMO-MCBS in Practice of HTA. Ann. Oncol. 27 (11), 2134–2136. 10.1093/annonc/mdw297
    1. Wu B., Li T., Cai J., Xu Y., Zhao G. (2014). Cost-effectiveness Analysis of Adjuvant Chemotherapies in Patients Presenting with Gastric Cancer after D2 Gastrectomy. BMC Cancer 14, 984. 10.1186/1471-2407-14-984
    1. Yamada Y., Higuchi K., Nishikawa K., Gotoh M., Fuse N., Sugimoto N., et al. (2015). Phase III Study Comparing Oxaliplatin Plus S-1 with Cisplatin Plus S-1 in Chemotherapy-Naïve Patients with Advanced Gastric Cancer. Ann. Oncol. 26 (1), 141–148. 10.1093/annonc/mdu472
    1. Yaozh, Drug Information Inquiry (2021). Available at: . Accessed Aug30, 2021.
    1. Zheng H., Xie L., Zhan M., Wen F., Xu T., Li Q. (2018). Cost-effectiveness Analysis of the Addition of Bevacizumab to Chemotherapy as Induction and Maintenance Therapy for Metastatic Non-squamous Non-small-cell Lung Cancer. Clin. Transl. Oncol. 20 (3), 286–293. 10.1007/s12094-017-1715-1

Source: PubMed

3
Suscribir