Modest heterologous protection after Plasmodium falciparum sporozoite immunization: a double-blind randomized controlled clinical trial

Jona Walk, Isaie J Reuling, Marije C Behet, Lisette Meerstein-Kessel, Wouter Graumans, Geert-Jan van Gemert, Rianne Siebelink-Stoter, Marga van de Vegte-Bolmer, Thorsten Janssen, Karina Teelen, Johannes H W de Wilt, Quirijn de Mast, André J van der Ven, Ernest Diez Benavente, Susana Campino, Taane G Clark, Martijn A Huynen, Cornelus C Hermsen, Else M Bijker, Anja Scholzen, Robert W Sauerwein, Jona Walk, Isaie J Reuling, Marije C Behet, Lisette Meerstein-Kessel, Wouter Graumans, Geert-Jan van Gemert, Rianne Siebelink-Stoter, Marga van de Vegte-Bolmer, Thorsten Janssen, Karina Teelen, Johannes H W de Wilt, Quirijn de Mast, André J van der Ven, Ernest Diez Benavente, Susana Campino, Taane G Clark, Martijn A Huynen, Cornelus C Hermsen, Else M Bijker, Anja Scholzen, Robert W Sauerwein

Abstract

Background: A highly efficacious vaccine is needed for malaria control and eradication. Immunization with Plasmodium falciparum NF54 parasites under chemoprophylaxis (chemoprophylaxis and sporozoite (CPS)-immunization) induces the most efficient long-lasting protection against a homologous parasite. However, parasite genetic diversity is a major hurdle for protection against heterologous strains.

Methods: We conducted a double-blind, randomized controlled trial in 39 healthy participants of NF54-CPS immunization by bites of 45 NF54-infected (n = 24 volunteers) or uninfected mosquitoes (placebo; n = 15 volunteers) against a controlled human malaria infection with the homologous NF54 or the genetically distinct NF135.C10 and NF166.C8 clones. Cellular and humoral immune assays were performed as well as genetic characterization of the parasite clones.

Results: NF54-CPS immunization induced complete protection in 5/5 volunteers against NF54 challenge infection at 14 weeks post-immunization, but sterilely protected only 2/10 and 1/9 volunteers against NF135.C10 and NF166.C8 challenge infection, respectively. Post-immunization plasma showed a significantly lower capacity to block heterologous parasite development in primary human hepatocytes compared to NF54. Whole genome sequencing showed that NF135.C10 and NF166.C8 have amino acid changes in multiple antigens targeted by CPS-induced antibodies. Volunteers protected against heterologous challenge were among the stronger immune responders to in vitro parasite stimulation.

Conclusions: Although highly protective against homologous parasites, NF54-CPS-induced immunity is less effective against heterologous parasite clones both in vivo and in vitro. Our data indicate that whole sporozoite-based vaccine approaches require more potent immune responses for heterologous protection.

Trial registration: This trial is registered in clinicaltrials.gov, under identifier NCT02098590 .

Keywords: Controlled human malaria infection; Heterologous protection; Immune responses; Malaria; Plasmodium falciparum; Sporozoite; Vaccine.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the Central Committee for Research Involving Human Subjects of The Netherlands (CCMO NL48732.091.14) and conducted according to the principles outlined in the Declaration of Helsinki and Good Clinical Practice standards. All participants provided written informed consent prior to enrollment in the study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Clinical trial profile
Fig. 2
Fig. 2
Parasitemia following homologous and heterologous challenge infection. The percentage of volunteers remaining qPCR negative (Kaplan–Meier survival proportions) after challenge infection with a homologous NF54 (n = 5 immunized; n = 5 controls) (a) or heterologous NF135.C10 (n = 10 immunized; n = 5 controls) (b) or NF166.C8 (n = 9 immunized; n = 5 controls) (c) strain is shown. Solid lines represent CPS-immunized volunteers and dotted lines represent placebo control-immunized volunteers. ** P < 0.01 as determined by Log-rank (Mantel Cox) test
Fig. 3
Fig. 3
Neutralizing effect of CPS-induced antibodies on in vitro sporozoite functionality of homologous and heterologous P. falciparum strains. (a) The number of primary human hepatocytes infected by homologous NF54 sporozoites in the presence of pre- or post-immunization plasma in all (n = 24) CPS-immunized volunteers was determined by microscopy. (b) P. falciparum NF54, NF135.C10, or NF166.C8 sporozoites were pre-incubated with pre- or post-immunization plasma from CPS-immunized volunteers and the percent inhibition of intra-hepatic development of NF54, NF135.C10, or NF166.C8 was calculated for post- compared to pre-immunization plasma for each individual volunteer and presented as squares (NF135.C10), triangles (NF166.C8), or circles (NF54). Data are shown as the mean of triplicate measurements for each individual volunteer (a) or the median of all data points with an interquartile range (b). Differences in the percent inhibition of intra-hepatic development between parasite strains were tested using one-way ANOVA with Bonferroni’s multiple comparison correction
Fig. 4
Fig. 4
Whole-genome sequencing shows genetic variations between study strains. Phylogenetic positions of the three P. falciparum strains (NF54, NF135.C10 and NF166.C8) used in the study relative to other known P. falciparum strains. Whole-genome sequencing was used to infer relatedness to P. falciparum strains from different areas [31]. Asian strains: THA Thailand (dark red), VIE Vietnam (light red), CAM Cambodia (orange); East African strains: KEN Kenya; West African strains: GUI Guinea (light green), GHA Ghana (dark green); NF strains and 7G8 (blue)
Fig. 5
Fig. 5
Analysis of in vitro intra-hepatic sporozoite development inhibition by CPS-induced antibodies, cellular responses and protection status in vivo. CPS-induced antibody-mediated inhibition of in vitro challenge strain intra-hepatic development and cytotoxic and cytokine-producing T cell responses to NF54-infected erythrocytes are shown. The 10th and 90th percentile of each response in all (n = 19) CPS-immunized volunteers that received a heterologous challenge infection are shown as grey box-and-whisker plots. The green triangle represents 1 out of 9 CPS-immunized volunteers sterilely protected against NF166.C8 challenge infection, while the orange square and upside down triangle represent the 2 out of 10 CPS-immunized volunteers with sterile protection against NF135.C10 challenge infection

References

    1. World Health Organization . World Malaria Report 2015. Geneva: WHO; 2015.
    1. Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–91. doi: 10.1146/annurev.ento.45.1.371.
    1. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371(5):411–23. doi: 10.1056/NEJMoa1314981.
    1. Tran TM, Li S, Doumbo S, Doumtabe D, Huang CY, Dia S, Bathily A, Sangala J, Kone Y, Traore A, et al. An intensive longitudinal cohort study of Malian children and adults reveals no evidence of acquired immunity to Plasmodium falciparum infection. Clin Infect Dis. 2013;57(1):40–7. doi: 10.1093/cid/cit174.
    1. European Medicines Agency. First malaria vaccine receives positive scientific opinion from EMA. Mosquirix to be used for vaccination of young children, together with established antimalarial interventions. 2015. . Accessed 17 Aug 2017.
    1. Kester KE, Cummings JF, Ofori-Anyinam O, Ockenhouse CF, Krzych U, Moris P, Schwenk R, Nielsen RA, Debebe Z, Pinelis E, et al. Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS, S/AS01B and RTS, S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J Infect Dis. 2009;200(3):337–46. doi: 10.1086/600120.
    1. Moorthy VS, Okwo-Bele JM. Final results from a pivotal phase 3 malaria vaccine trial. Lancet. 2015;386(9988):5–7. doi: 10.1016/S0140-6736(15)60767-X.
    1. Olotu A, Fegan G, Wambua J, Nyangweso G, Awuondo KO, Leach A, Lievens M, Leboulleux D, Njuguna P, Peshu N, et al. Four-year efficacy of RTS, S/AS01E and its interaction with malaria exposure. N Engl J Med. 2013;368(12):1111–20. doi: 10.1056/NEJMoa1207564.
    1. Hickey BW, Lumsden JM, Reyes S, Sedegah M, Hollingdale MR, Freilich DA, Luke TC, Charoenvit Y, Goh LM, Berzins MP, et al. Mosquito bite immunization with radiation-attenuated Plasmodium falciparum sporozoites: safety, tolerability, protective efficacy and humoral immunogenicity. Malar J. 2016;15:377. doi: 10.1186/s12936-016-1435-y.
    1. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, Holman LA, James ER, Billingsley PF, Gunasekera A, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013;341(6152):1359–65. doi: 10.1126/science.1241800.
    1. Bijker EM, Teirlinck AC, Schats R, van Gemert GJ, van de Vegte-Bolmer M, van Lieshout L, IntHout J, Hermsen CC, Scholzen A, Visser LG, et al. Cytotoxic markers associate with protection against malaria in human volunteers immunized with Plasmodium falciparum sporozoites. J Infect Dis. 2014;210(10):1605–15. doi: 10.1093/infdis/jiu293.
    1. Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, van de Vegte-Bolmer M, van Schaijk B, Teelen K, Arens T, et al. Protection against a malaria challenge by sporozoite inoculation. N Engl J Med. 2009;361(5):468–77. doi: 10.1056/NEJMoa0805832.
    1. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A, Gmeiner M, Campo JJ, Esen M, Ruben AJ, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542(7642):445–9. doi: 10.1038/nature21060.
    1. Roestenberg M, Teirlinck AC, McCall MB, Teelen K, Makamdop KN, Wiersma J, Arens T, Beckers P, van Gemert G, van de Vegte-Bolmer M, et al. Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet. 2011;377(9779):1770–6. doi: 10.1016/S0140-6736(11)60360-7.
    1. Behet MC, Foquet L, van Gemert GJ, Bijker EM, Meuleman P, Leroux-Roels G, Hermsen CC, Scholzen A, Sauerwein RW. Sporozoite immunization of human volunteers under chemoprophylaxis induces functional antibodies against pre-erythrocytic stages of Plasmodium falciparum. Malar J. 2014;13:136. doi: 10.1186/1475-2875-13-136.
    1. Felgner PL, Roestenberg M, Liang L, Hung C, Jain A, Pablo J, Nakajima-Sasaki R, Molina D, Teelen K, Hermsen CC, et al. Pre-erythrocytic antibody profiles induced by controlled human malaria infections in healthy volunteers under chloroquine prophylaxis. Sci Rep. 2013;3:3549. doi: 10.1038/srep03549.
    1. Nahrendorf W, Scholzen A, Bijker EM, Teirlinck AC, Bastiaens GJ, Schats R, Hermsen CC, Visser LG, Langhorne J, Sauerwein RW. Memory B-cell and antibody responses induced by Plasmodium falciparum sporozoite immunization. J Infect Dis. 2014;210(12):1981–90. doi: 10.1093/infdis/jiu354.
    1. Lyke KE, Ishizuka AS, Berry AA, Chakravarty S, DeZure A, Enama ME, James ER, Billingsley PF, Gunasekera A, Manoj A, et al. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc Natl Acad Sci U S A. 2017;114(10):2711–6. doi: 10.1073/pnas.1615324114.
    1. Schats R, Bijker EM, van Gemert GJ, Graumans W, van de Vegte-Bolmer M, van Lieshout L, Haks MC, Hermsen CC, Scholzen A, Visser LG, et al. Heterologous protection against malaria after immunization with Plasmodium falciparum sporozoites. PLoS One. 2015;10(5):e0124243. doi: 10.1371/journal.pone.0124243.
    1. Bijker EM, Schats R, Obiero JM, Behet MC, van Gemert GJ, van de Vegte-Bolmer M, Graumans W, van Lieshout L, Bastiaens GJ, Teelen K, et al. Sporozoite immunization of human volunteers under mefloquine prophylaxis is safe, immunogenic and protective: a double-blind randomized controlled clinical trial. PLoS One. 2014;9(11):e112910. doi: 10.1371/journal.pone.0112910.
    1. Hermsen CC, Telgt DS, Linders EH, van de Locht LA, Eling WM, Mensink EJ, Sauerwein RW. Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. Mol Biochem Parasitol. 2001;118(2):247–51. doi: 10.1016/S0166-6851(01)00379-6.
    1. Walk J, Schats R, Langenberg MC, Reuling IJ, Teelen K, Roestenberg M, Hermsen CC, Visser LG, Sauerwein RW. Diagnosis and treatment based on quantitative PCR after controlled human malaria infection. Malar J. 2016;15(1):398. doi: 10.1186/s12936-016-1434-z.
    1. Delemarre BJ, van der Kaay HJ. Tropical malaria contracted the natural way in the Netherlands. Ned Tijdschr Geneeskd. 1979;123(46):1981–2.
    1. Teirlinck AC, Roestenberg M, van de Vegte-Bolmer M, Scholzen A, Heinrichs MJ, Siebelink-Stoter R, Graumans W, van Gemert GJ, Teelen K, Vos MW, et al. NF135.C10: a new Plasmodium falciparum clone for controlled human malaria infections. J Infect Dis. 2013;207(4):656–60. doi: 10.1093/infdis/jis725.
    1. McCall MBB, Wammes LJ, Langenberg MCC, van Gemert GJ, Walk J, Hermsen CC, Graumans W, Koelewijn R, Franetich JF, Chishimba S, et al. Infectivity of Plasmodium falciparum sporozoites determines emerging parasitemia in infected volunteers. Sci Transl Med. 2017;9(395).
    1. Ifediba T, Vanderberg JP. Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature. 1981;294(5839):364–6. doi: 10.1038/294364a0.
    1. Ponnudurai T, Lensen AH, Leeuwenberg AD, Meuwissen JH. Cultivation of fertile Plasmodium falciparum gametocytes in semi-automated systems. 1. Static cultures. Trans R Soc Trop Med Hyg. 1982;76(6):812–8. doi: 10.1016/0035-9203(82)90116-X.
    1. Ponnudurai T, Lensen AH, Meis JF, Meuwissen JH. Synchronization of Plasmodium falciparum gametocytes using an automated suspension culture system. Parasitology. 1986;93(Pt 2):263–74. doi: 10.1017/S003118200005143X.
    1. Ponnudurai T, Lensen AH, Van Gemert GJ, Bensink MP, Bolmer M, Meuwissen JH. Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes. Parasitology. 1989;98(Pt 2):165–73. doi: 10.1017/S0031182000062065.
    1. Kastenmuller et al. Full-Length Plasmodium falciparum Circumsporozoite Protein Administered with Long-Chain Poly(I·C) or the Toll-Like Receptor 4 Agonist Glucopyranosyl Lipid Adjuvant-Stable Emulsion Elicits Potent Antibody and CD4 T Cell Immunity and Protection in Mice. Infection and Immunity. 2013;81(3):789–800.
    1. Campino S, Benavente ED, Assefa S, Thompson E, Drought LG, Taylor CJ, Gorvett Z, Carret CK, Flueck C, Ivens AC, et al. Genomic variation in two gametocyte non-producing Plasmodium falciparum clonal lines. Malar J. 2016;15:229. doi: 10.1186/s12936-016-1254-1.
    1. Bijker EM, Bastiaens GJ, Teirlinck AC, van Gemert GJ, Graumans W, van de Vegte-Bolmer M, Siebelink-Stoter R, Arens T, Teelen K, Nahrendorf W, et al. Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc Natl Acad Sci U S A. 2013;110(19):7862–7. doi: 10.1073/pnas.1220360110.
    1. McCall MB, Sauerwein RW. Interferon-gamma--central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol. 2010;88(6):1131–43. doi: 10.1189/jlb.0310137.
    1. Doolan DL, Dobano C, Baird JK. Acquired immunity to malaria. Clin Microbiol Rev. 2009;22(1):13–36. doi: 10.1128/CMR.00025-08.
    1. Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, Lievens M, Abdulla S, Adjei S, Agbenyega T, et al. Genetic diversity and protective efficacy of the RTS, S/AS01 malaria vaccine. N Engl J Med. 2015;373(21):2025–37. doi: 10.1056/NEJMoa1505819.
    1. Takala SL, Coulibaly D, Thera MA, Dicko A, Smith DL, Guindo AB, Kone AK, Traore K, Ouattara A, Djimde AA, et al. Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali. PLoS Med. 2007;4(3):e93. doi: 10.1371/journal.pmed.0040093.
    1. Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Ouattara A, Kone AK, Guindo AB, Traore K, Traore I, Kouriba B, et al. A field trial to assess a blood-stage malaria vaccine. N Engl J Med. 2011;365(11):1004–13. doi: 10.1056/NEJMoa1008115.
    1. Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, Sacci J, de la Vega P, Dowler M, Paul C, et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis. 2002;185(8):1155–64. doi: 10.1086/339409.
    1. Epstein JE, Paolino KM, Richie TL, Sedegah M, Singer A, Ruben AJ, Chakravarty S, Stafford A, Ruck RC, Eappen AG, et al. Protection against Plasmodium falciparum malaria by PfSPZ vaccine. JCI Insight. 2017;2(1):e89154. doi: 10.1172/jci.insight.89154.
    1. Nganou-Makamdop K, Sauerwein RW. Liver or blood-stage arrest during malaria sporozoite immunization: the later the better? Trends Parasitol. 2013;29(6):304–10. doi: 10.1016/j.pt.2013.03.008.
    1. Epstein JE, Tewari K, Lyke KE, Sim BK, Billingsley PF, Laurens MB, Gunasekera A, Chakravarty S, James ER, Sedegah M, et al. Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science. 2011;334(6055):475–80. doi: 10.1126/science.1211548.
    1. Verhave JP, Leeuwenberg AD, Ponnudurai T, Meuwissen JH, van Druten JA. The biotin-streptavidin system in a two-site ELISA for the detection of plasmodial sporozoite antigen in mosquitoes. Parasite Immunol. 1988;10(1):17–31. doi: 10.1111/j.1365-3024.1988.tb00200.x.

Source: PubMed

3
Suscribir