Effects of a Vegetarian Diet on Cardiometabolic Risk Factors, Gut Microbiota, and Plasma Metabolome in Subjects With Ischemic Heart Disease: A Randomized, Crossover Study

Demir Djekic, Lin Shi, Harald Brolin, Frida Carlsson, Charlotte Särnqvist, Otto Savolainen, Yang Cao, Fredrik Bäckhed, Valentina Tremaroli, Rikard Landberg, Ole Frøbert, Demir Djekic, Lin Shi, Harald Brolin, Frida Carlsson, Charlotte Särnqvist, Otto Savolainen, Yang Cao, Fredrik Bäckhed, Valentina Tremaroli, Rikard Landberg, Ole Frøbert

Abstract

Background A vegetarian diet (VD) may reduce future cardiovascular risk in patients with ischemic heart disease. Methods and Results A randomized crossover study was conducted in subjects with ischemic heart disease, assigned to 4-week intervention periods of isocaloric VD and meat diet (MD) with individually designed diet plans, separated by a 4-week washout period. The primary outcome was difference in oxidized low-density lipoprotein cholesterol (LDL-C) between diets. Secondary outcomes were differences in cardiometabolic risk factors, quality of life, gut microbiota, fecal short-chain and branched-chain fatty acids, and plasma metabolome. Of 150 eligible patients, 31 (21%) agreed to participate, and 27 (87%) participants completed the study. Mean oxidized LDL-C (-2.73 U/L), total cholesterol (-5.03 mg/dL), LDL-C (-3.87 mg/dL), and body weight (-0.67 kg) were significantly lower with the VD than with the MD. Differences between VD and MD were observed in the relative abundance of several microbe genera within the families Ruminococcaceae, Lachnospiraceae, and Akkermansiaceae. Plasma metabolites, including l-carnitine, acylcarnitine metabolites, and phospholipids, differed in subjects consuming VD and MD. The effect on oxidized LDL-C in response to the VD was associated with a baseline gut microbiota composition dominated by several genera of Ruminococcaceae. Conclusions The VD in conjunction with optimal medical therapy reduced levels of oxidized LDL-C, improved cardiometabolic risk factors, and altered the relative abundance of gut microbes and plasma metabolites in patients with ischemic heart disease. Our results suggest that composition of the gut microbiota at baseline may be related to the reduction of oxidized LDL-C observed with the VD. Registration URL: https://www.clini​caltr​ials.gov; Unique identifier: NCT02942628.

Keywords: coronary artery disease; gut microbiota; plasma metabolome; randomized controlled trial; trimethylamine N-oxide; vegetarian diet.

Conflict of interest statement

None.

Figures

Figure 1. Schedule of study visits and…
Figure 1. Schedule of study visits and participant flow.
Figure 2. Changes in oxidized low‐density lipoprotein…
Figure 2. Changes in oxidized low‐density lipoprotein cholesterol (LDL‐C) and cardiometabolic risk factors according to dietary intervention.
Mean change in oxidized LDL‐C (A), total cholesterol (TC) (B), LDL‐C (C), and weight (D) before and after each intervention. Error bars indicate SEM. ΔVD vs ΔMD indicates differences in risk factors between vegetarian diet (VD) and meat diet (MD) obtained using linear mixed‐effects models adjusted for sequence of diet randomization and intervention period. *P<0.05, **P<0.01, ***P<0.001. Post, 4 weeks after the dietary intervention; Pre, baseline.
Figure 3. Gut microbiota and plasma metabolites…
Figure 3. Gut microbiota and plasma metabolites discriminating the vegetarian and meat diets, and selected by multilevel random forest modeling.
Least‐squares means and 95% CIs of abundance of zero‐radius operational taxonomic units (A) and levels of metabolites (B) after 4‐week intervention of the vegetarian and isocaloric meat diet obtained from random forest multivariate modeling. Standardized values are presented for comparison. *Denotes microbial genera or metabolites significantly differing between meat and vegetarian diet when assessed using generalized linear mixed models. DG indicates diacylglycerol; PC, phosphatidylcholine; and PE, phosphatidylethanolamine.
Figure 4. Changes in plasma concentration of…
Figure 4. Changes in plasma concentration of trimethylamine N‐oxide (TMAO), choline, l‐carnitine, and acetyl‐carnitine according to dietary intervention.
Boxplots (A through D) show the concentrations of the metabolites measured at baseline, after the vegetarian diet (VD) and the isocaloric meat diet (MD). Differences were assessed by paired t test. Least‐squares means and 95% CIs of levels of metabolites (E) after 4‐week intervention of VD and MD assessed by generalized linear modeling. Standardized values are presented for comparison. *P<0.05, **P<0.01, ***P<0.001. NS indicates not significant.
Figure 5. Baseline gut microbiota associated with…
Figure 5. Baseline gut microbiota associated with response to diets in reduction of oxidized low‐density lipoprotein cholesterol (LDL‐C).
A, Intraindividual difference in oxidized LDL‐C between vegetarian diet (VD) and meat diet (MD) is presented. Responders were defined as participants who showed lower oxidized LDL‐C after VD than after MD. Patients who had higher oxidized LDL‐C after VD than after MD were considered as nonresponders. B, Discrimination of responders from nonresponders based on microbial genera at baseline. We applied random forest modeling on relative abundance of zero‐radius operational taxonomic units (ZOTUs) at baseline. Of 20 individuals, 17 could be successfully classified as responders or nonresponders. C, The optimal set of microbial genera for the successful classification (n=14). Relative abundance of ZOTUs for responders and nonresponders are presented. Boxes represent the interquartile range, and the line within represents the median. Whiskers denote the lowest and highest values within 1.5× interquartile range.

References

    1. Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A, et al. Food in the Anthropocene: the EAT‐Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393:447–492.
    1. Huang T, Yang B, Zheng J, Li G, Wahlqvist ML, Li D. Cardiovascular disease mortality and cancer incidence in vegetarians: a meta‐analysis and systematic review. Ann Nutr Metab. 2012;60:233–240.
    1. Orlich MJ, Singh PN, Sabaté J, Jaceldo‐Siegl K, Fan J, Knutsen S, Beeson WL, Fraser GE. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med. 2013;173:1230–1238.
    1. Kahleova H, Levin S, Barnard ND. Vegetarian dietary patterns and cardiovascular disease. Prog Cardiovasc Dis. 2018;61:54–61.
    1. Yokoyama Y, Nishimura K, Barnard ND, Takegami M, Watanabe M, Sekikawa A, Okamura T, Miyamoto Y. Vegetarian diets and blood pressure: a meta‐analysis. JAMA Intern Med. 2014;174:577–587.
    1. Yokoyama Y, Barnard ND, Levin SM, Watanabe M. Vegetarian diets and glycemic control in diabetes: a systematic review and meta‐analysis. Cardiovasc Diagn Ther. 2014;4:373–382.
    1. Wang F, Zheng J, Yang B, Jiang J, Fu Y, Li D. Effects of vegetarian diets on blood lipids: a systematic review and meta‐analysis of randomized controlled trials. J Am Heart Assoc. 2015;4:e002408 DOI: .
    1. Ornish D, Scherwitz LW, Billings JH, Brown SE, Gould KL, Merritt TA, Sparler S, Armstrong WT, Ports TA, Kirkeeide RL, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998;280:2001–2007.
    1. Lin YH, Luck H, Khan S, Schneeberger PHH, Tsai S, Clemente‐Casares X, Lei H, Leu YL, Chan YT, Chen HY, et al. Aryl hydrocarbon receptor agonist indigo protects against obesity‐related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int J Obes (Lond). 2019;43:2407–2421.
    1. Viguiliouk E, Kendall CW, Kahleova H, Rahelic D, Salas‐Salvado J, Choo VL, Mejia SB, Stewart SE, Leiter LA, Jenkins DJ, et al. Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: a systematic review and meta‐analysis of randomized controlled trials. Clin Nutr. 2019;38:1133–1145.
    1. Sofi F, Dinu M, Pagliai G, Cesari F, Gori AM, Sereni A, Becatti M, Fiorillo C, Marcucci R, Casini A. Low‐calorie vegetarian versus Mediterranean diets for reducing body weight and improving cardiovascular risk profile: CARDIVEG Study (Cardiovascular Prevention With Vegetarian Diet). Circulation. 2018;137:1103–1113.
    1. Lea E, Worsley A. Benefits and barriers to the consumption of a vegetarian diet in Australia. Public Health Nutr. 2003;6:505–511.
    1. Jin Q, Black A, Kales SN, Vattem D, Ruiz‐Canela M, Sotos‐Prieto M. Metabolomics and microbiomes as potential tools to evaluate the effects of the Mediterranean diet. Nutrients. 2019;11:207.
    1. Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients. 2019;11:1613.
    1. Tang ZZ, Chen G, Hong Q, Huang S, Smith HM, Shah RD, Scholz M, Ferguson JF. Multi‐omic analysis of the microbiome and metabolome in healthy subjects reveals microbiome‐dependent relationships between diet and metabolites. Front Genet. 2019;10:454.
    1. Puertollano E, Kolida S, Yaqoob P. Biological significance of short‐chain fatty acid metabolism by the intestinal microbiome. Curr Opin Clin Nutr Metab Care. 2014;17:139–144.
    1. Brial F, Le Lay A, Dumas ME, Gauguier D. Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell Mol Life Sci. 2018;75:3977–3990.
    1. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al. Intestinal microbiota metabolism of L‐carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–585.
    1. Dragsted LO. Biomarkers of meat intake and the application of nutrigenomics. Meat Sci. 2010;84:301–307.
    1. Wu W‐K, Chen C‐C, Liu P‐Y, Panyod S, Liao B‐Y, Chen P‐C, Kao H‐L, Kuo H‐C, Kuo C‐H, Chiu THT, et al. Identification of TMAO‐producer phenotype and host–diet–gut dysbiosis by carnitine challenge test in human and germ‐free mice. Gut. 2019;68:1439.
    1. Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–1584.
    1. Heianza Y, Ma W, DiDonato JA, Sun Q, Rimm EB, Hu FB, Rexrode KM, Manson JE, Qi L. Long‐term changes in gut microbial metabolite trimethylamine N‐oxide and coronary heart disease risk. J Am Coll Cardiol. 2020;75:763.
    1. Mendes‐Soares H, Raveh‐Sadka T, Azulay S, Edens K, Ben‐Shlomo Y, Cohen Y, Ofek T, Bachrach D, Stevens J, Colibaseanu D, et al. Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes. JAMA Netw Open. 2019;2:e188102.
    1. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben‐Yacov O, Lador D, Avnit‐Sagi T, Lotan‐Pompan M, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163:1079–1094.
    1. Kolodziejczyk AA, Zheng D, Elinav E. Diet‐microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17:742–753.
    1. Sonnenburg JL, Backhed F. Diet‐microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64.
    1. Christensen L, Roager HM, Astrup A, Hjorth MF. Microbial enterotypes in personalized nutrition and obesity management. Am J Clin Nutr. 2018;108:645–651.
    1. Palmnas M, Brunius C, Shi L, Rostgaard‐Hansen A, Torres NE, Gonzalez‐Dominguez R, Zamora‐Ros R, Ye YL, Halkjaer J, Tjonneland A, et al. Perspective: metabotyping‐a potential personalized nutrition strategy for precision prevention of cardiometabolic disease. Adv Nutr. 2020;11:524–532.
    1. Fogelholm M. New Nordic nutrition recommendations are here. Food Nutr Res. 2013;57:22903.
    1. World Wildlife Foundation . Köttguiden. 2015. Available at: . Accessed June 8, 2015.
    1. Holvoet P, Vanhaecke J, Janssens S, Van de Werf F, Collen D. Oxidized LDL and malondialdehyde‐modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation. 1998;98:1487–1494.
    1. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corrà U, Cosyns B, Deaton C, et al. European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol. 2016;23:NP1–NP96.
    1. Janssen MF, Pickard AS, Golicki D, Gudex C, Niewada M, Scalone L, Swinburn P, Busschbach J. Measurement properties of the EQ‐5D‐5L compared to the EQ‐5D‐3L across eight patient groups: a multi‐country study. Qual Life Res. 2013;22:1717–1727.
    1. Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva‐Datchary P, Olbers T, Fandriks L, le Roux CW, Nielsen J, Backhed F. Roux‐en‐Y gastric bypass and vertical banded gastroplasty induce long‐term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–238.
    1. Elkan AC, Sjöberg B, Kolsrud B, Ringertz B, Hafström I, Frostegård J. Gluten‐free vegan diet induces decreased LDL and oxidized LDL levels and raised atheroprotective natural antibodies against phosphorylcholine in patients with rheumatoid arthritis: a randomized study. Arthritis Res Ther. 2008;10:R34.
    1. Kay CD, Gebauer SK, West SG, Kris‐Etherton PM. Pistachios increase serum antioxidants and lower serum oxidized‐LDL in hypercholesterolemic adults. J Nutr. 2010;140:1093–1098.
    1. Shi L, Westerhuis JA, Rosen J, Landberg R, Brunius C. Variable selection and validation in multivariate modelling. Bioinformatics. 2019;35:972–980.
    1. Westerhuis JA, van Velzen EJ, Hoefsloot HC, Smilde AK. Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics. 2010;6:119–128.
    1. McIntosh K, Reed DE, Schneider T, Dang F, Keshteli AH, De Palma G, Madsen K, Bercik P, Vanner S. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut. 2017;66:1241–1251.
    1. Maier TV, Lucio M, Lee LH, VerBerkmoes NC, Brislawn CJ, Bernhardt J, Lamendella R, McDermott JE, Bergeron N, Heinzmann SS, et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. mBio. 2017;8:e01343 ‐17.
    1. Valdes L, Cuervo A, Salazar N, Ruas‐Madiedo P, Gueimonde M, Gonzalez S. The relationship between phenolic compounds from diet and microbiota: impact on human health. Food Funct. 2015;6:2424–2439.
    1. Pagliai G, Russo E, Niccolai E, Dinu M, Di Pilato V, Magrini A, Bartolucci G, Baldi S, Menicatti M, Giusti B, et al. Influence of a 3‐month low‐calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG Study. Eur J Nutr. 2020;59:2011–2024.
    1. Yan QGY, Li X, Yang W, Jia L, Chen C, Han X, Huang Y, Zhao L, Li P, Fang Z, et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol. 2017;24:381.
    1. Piening BD, Zhou W, Contrepois K, Röst H, Gu Urban GJ, Mishra T, Hanson BM, Bautista EJ, Leopold S, Yeh CY, et al. Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 2018;6:157–170.e8.
    1. Wang W, Pan Y, Wang L, Zhou H, Song G, Wang Y, Liu J, Li A. Optimal dietary ferulic acid for suppressing the obesity‐related disorders in leptin‐deficient obese C57BL/6J ‐ob/ob mice. J Agric Food Chem. 2019;67:4250–4258.
    1. Haro C, Montes‐Borrego M, Rangel‐Zuniga OA, Alcala‐Diaz JF, Gomez‐Delgado F, Perez‐Martinez P, Delgado‐Lista J, Quintana‐Navarro GM, Tinahones FJ, Landa BB, et al. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocrinol Metab. 2016;101:233–242.
    1. Kappel BA, De Angelis L, Heiser M, Ballanti M, Stoehr R, Goettsch C, Mavilio M, Artati A, Paoluzi OA, Adamski J, et al. Cross‐omics analysis revealed gut microbiome‐related metabolic pathways underlying atherosclerosis development after antibiotics treatment. Mol Metab. 2020;36:100976.
    1. Peterson CT, Sharma V, Uchitel S, Denniston K, Chopra D, Mills PJ, Peterson SN. Prebiotic potential of herbal medicines used in digestive health and disease. J Altern Complement Med. 2018;24:656–665.
    1. Dao MC, Everard A, Aron‐Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–436.
    1. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590.
    1. Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ, Soininen P, Wang Z, Ala‐Korpela M, Hazen SL, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017;18:70.
    1. de Mello VD, Paananen J, Lindstrom J, Lankinen MA, Shi L, Kuusisto J, Pihlajamaki J, Auriola S, Lehtonen M, Rolandsson O, et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep. 2017;7:46337.
    1. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–141.
    1. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier‐Colame V, Duong CPM, Flament C, Lepage P, Roberti MP, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide‐induced therapeutic immunomodulatory effects. Immunity. 2016;45:931–943.
    1. Steinberg D. Lewis A. Conner Memorial Lecture: oxidative modification of LDL and atherogenesis. Circulation. 1997;95:1062–1071.
    1. Chatterjee M, Rath D, Schlotterbeck J, Rheinlaender J, Walker‐Allgaier B, Alnaggar N, Zdanyte M, Müller I, Borst O, Geisler T, et al. Regulation of oxidized platelet lipidome: implications for coronary artery disease. Eur Heart J. 2017;38:1993–2005.
    1. Duggan C, Tapsoba JD, Wang CY, Campbell KL, Foster‐Schubert K, Gross MD, McTiernan A. Dietary weight loss, exercise, and oxidative stress in postmenopausal women: a randomized controlled trial. Cancer Prev Res (Phila). 2016;9:835–843.
    1. Walter DH, Fichtlscherer S, Sellwig M, Auch‐Schwelk W, Schächinger V, Zeiher AM. Preprocedural C‐reactive protein levels and cardiovascular events after coronary stent implantation. J Am Coll Cardiol. 2001;37:839–846.
    1. Haghighatdoost F, Bellissimo N, Totosy de Zepetnek JO, Rouhani MH. Association of vegetarian diet with inflammatory biomarkers: a systematic review and meta‐analysis of observational studies. Public Health Nutr. 2017;20:2713–2721.
    1. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.
    1. Rajilic‐Stojanovic M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38:996–1047.
    1. Liu JP, Zou WL, Chen SJ, Wei HY, Yin YN, Zou YY, Lu FG. Effects of different diets on intestinal microbiota and nonalcoholic fatty liver disease development. World J Gastroenterol. 2016;22:7353–7364.
    1. Byrne CS, Chambers ES, Morrison DJ, Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes (Lond). 2015;39:1331–1338.
    1. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Vosa U, Mujagic Z, Masclee AAM, Jonkers D, Oosting M, et al. Causal relationships among the gut microbiome, short‐chain fatty acids and metabolic diseases. Nat Genet. 2019;51:600–605.
    1. Flint HJ. Obesity and the gut microbiota. J Clin Gastroenterol. 2011;45(suppl):S128–S132.
    1. Hilvo M, Meikle PJ, Pedersen ER, Tell GS, Dhar I, Brenner H, Schottker B, Laaperi M, Kauhanen D, Koistinen KM, et al. Development and validation of a ceramide‐ and phospholipid‐based cardiovascular risk estimation score for coronary artery disease patients. Eur Heart J. 2020;41:371–380.
    1. Koeth RA, Lam‐Galvez BR, Kirsop J, Wang Z, Levison BS, Gu X, Copeland MF, Bartlett D, Cody DB, Dai HJ, et al. L‐carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest. 2019;129:373–387.
    1. Manor O, Zubair N, Conomos MP, Xu X, Rohwer JE, Krafft CE, Lovejoy JC, Magis AT. A multi‐omic association study of trimethylamine N‐oxide. Cell Rep. 2018;24:935–946.
    1. Mueller DM, Allenspach M, Othman A, Saely CH, Muendlein A, Vonbank A, Drexel H, von Eckardstein A. Plasma levels of trimethylamine‐N‐oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis. 2015;243:638–644.
    1. Tuomainen M, Lindstrom J, Lehtonen M, Auriola S, Pihlajamaki J, Peltonen M, Tuomilehto J, Uusitupa M, de Mello VD, Hanhineva K. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low‐grade inflammation in high‐risk individuals. Nutr Diabetes. 2018;8:35.
    1. Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio. 2016;7:e01018 ‐16.
    1. Chamorro A, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke. 2006;37:291–293.
    1. Hansson GK. Inflammation and immune response in atherosclerosis. Curr Atheroscler Rep. 1999;1:150–155.
    1. Rhoads JP, Major AS. How oxidized low‐density lipoprotein activates inflammatory responses. Crit Rev Immunol. 2018;38:333–342.
    1. Lea EJ, Crawford D, Worsley A. Public views of the benefits and barriers to the consumption of a plant‐based diet. Eur J Clin Nutr. 2006;60:828–837.
    1. Holvoet P, De Keyzer D, Jacobs DR. Oxidized LDL and the metabolic syndrome. Future Lipidol. 2008;3:637–649.
    1. Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101:47–64.
    1. Mullish BH, Pechlivanis A, Barker GF, Thursz MR, Marchesi JR, McDonald JAK. Functional microbiomics: evaluation of gut microbiota‐bile acid metabolism interactions in health and disease. Methods. 2018;149:49–58.

Source: PubMed

3
Suscribir