Extracellular vesicles: exosomes, microvesicles, and friends

Graça Raposo, Willem Stoorvogel, Graça Raposo, Willem Stoorvogel

Abstract

Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.

Figures

Figure 1.
Figure 1.
Ultrastructure of exosomes. (top left) Exosomes isolated from melanoma cells were contrasted with uranyl-acetate and embedded as whole mount preparations in methylcellulose. Note their artificial cup shape appearance (examples are indicated with arrows) and heterogeneous size ranging from 30 to 100 nm. (top right) Exosomes from prostate epithelial cells (prostasomes) were directly frozen and observed by cryo–electron microscopy without chemical fixation or contrasting. Exosomes appear round and are visualized with improved resolution (arrows). The elongated structure (top right of the micrograph) is the Formvar film on the EM grid. (bottom) EBV-transformed B lymphocytes were allowed to endocytose BSA coupled to 5-nm gold particles (BSAG 5) for 10 min and then chased for 20 min in the absence of BSAG 5. Ultrathin cryosections were immunolabeled for MHC class II with 10-nm protein A gold. An MVE fusion profile (arrows) is defined by regurgitated 5-nm BSAG 5 that had previously been endocytosed. In addition to BSAG 5 (arrowheads), the exocytic profile contains exosomes labeled for MHC class II with 10-nm gold (MHC II 10; small arrows). PM, plasma membrane. Bars, 100 nm.
Figure 2.
Figure 2.
Release of MVs and exosomes. MVs bud directly from the plasma membrane, whereas exosomes are represented by small vesicles of different sizes that are formed as the ILV by budding into early endosomes and MVEs and are released by fusion of MVEs with the plasma membrane. Other MVEs fuse with lysosomes. The point of divergence between these types of MVEs is drawn at early endosomes, but the existence of distinct early endosomes feeding into these two pathways cannot be excluded. Red spots symbolize clathrin associated with vesicles at the plasma membrane (clathrin-coated vesicles [CCV]) or bilayered clathrin coats at endosomes. Membrane-associated and transmembrane proteins on vesicles are represented as triangles and rectangles, respectively. Arrows represent proposed directions of protein and lipid transport between organelles and between MVEs and the plasma membrane for exosome secretion.
Figure 3.
Figure 3.
Schematic of protein and RNA transfer by EVs. Membrane-associated (triangles) and transmembrane proteins (rectangles) and RNAs (curved symbols) are selectively incorporated into the ILV of MVEs or into MVs budding from the plasma membrane. MVEs fuse with the plasma membrane to release exosomes into the extracellular milieu. MVs and exosomes may dock at the plasma membrane of a target cell (1). Bound vesicles may either fuse directly with the plasma membrane (2) or be endocytosed (3). Endocytosed vesicles may then fuse with the delimiting membrane of an endocytic compartment (4). Both pathways result in the delivery of proteins and RNA into the membrane or cytosol of the target cell. Fusion and endocytosis are only represented for exosomal vesicles, but plasma membrane–derived MVs may have similar fates.

References

    1. Aalberts M., van Dissel-Emiliani F.M., van Adrichem N.P., van Wijnen M., Wauben M.H., Stout T.A., Stoorvogel W. 2012. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol. Reprod. 86:82 10.1095/biolreprod.111.095760
    1. Admyre C., Johansson S.M., Qazi K.R., Filén J.J., Lahesmaa R., Norman M., Neve E.P., Scheynius A., Gabrielsson S. 2007. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179:1969–1978
    1. Al-Nedawi K., Meehan B., Rak J. 2009. Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 8:2014–2018 10.4161/cc.8.13.8988
    1. Alvarez-Llamas G., de la Cuesta F., Barderas M.E., Darde V., Padial L.R., Vivanco F. 2008. Recent advances in atherosclerosis-based proteomics: new biomarkers and a future perspective. Expert Rev. Proteomics. 5:679–691 10.1586/14789450.5.5.679
    1. Andre F., Schartz N.E., Movassagh M., Flament C., Pautier P., Morice P., Pomel C., Lhomme C., Escudier B., Le Chevalier T., et al. 2002. Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 360:295–305 10.1016/S0140-6736(02)09552-1
    1. Asea A., Jean-Pierre C., Kaur P., Rao P., Linhares I.M., Skupski D., Witkin S.S. 2008. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J. Reprod. Immunol. 79:12–17 10.1016/j.jri.2008.06.001
    1. Baietti M.F., Zhang Z., Mortier E., Melchior A., Degeest G., Geeraerts A., Ivarsson Y., Depoortere F., Coomans C., Vermeiren E., et al. 2012. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14:677–685 10.1038/ncb2502
    1. Bakhti M., Winter C., Simons M. 2011. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J. Biol. Chem. 286:787–796 10.1074/jbc.M110.190009
    1. Barrès C., Blanc L., Bette-Bobillo P., André S., Mamoun R., Gabius H.J., Vidal M. 2010. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood. 115:696–705 10.1182/blood-2009-07-231449
    1. Batagov A.O., Kuznetsov V.A., Kurochkin I.V. 2011. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics. 12(Suppl. 3):S18 10.1186/1471-2164-12-S3-S18
    1. Beckett K., Monier S., Palmer L., Alexandre C., Green H., Bonneil E., Raposo G., Thibault P., Borgne R.L., Vincent J.P. 2013. Drosophila s2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic. 14:82–96
    1. Bellingham S.A., Coleman B.M., Hill A.F. 2012. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 40:10937–10949 10.1093/nar/gks832
    1. Blanchard N., Lankar D., Faure F., Regnault A., Dumont C., Raposo G., Hivroz C. 2002. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 168:3235–3241
    1. Bobrie A., Colombo M., Raposo G., Théry C. 2011. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 12:1659–1668 10.1111/j.1600-0854.2011.01225.x
    1. Booth A.M., Fang Y., Fallon J.K., Yang J.M., Hildreth J.E., Gould S.J. 2006. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172:923–935 10.1083/jcb.200508014
    1. Brouwers J.F., Aalberts M., Jansen J.W.A., van Niel G., Stout T.A.E., Helms J.B., Stoorvogel W. 2012. Distinct lipid compositions of two types of human prostasomes. Proteomics. In press
    1. Buschow S.I., Nolte-’t Hoen E.N., van Niel G., Pols M.S., ten Broeke T., Lauwen M., Ossendorp F., Melief C.J., Raposo G., Wubbolts R., et al. 2009. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic. 10:1528–1542 10.1111/j.1600-0854.2009.00963.x
    1. Buschow S.I., van Balkom B.W., Aalberts M., Heck A.J., Wauben M., Stoorvogel W. 2010. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol. Cell Biol. 88:851–856 10.1038/icb.2010.64
    1. Caby M.P., Lankar D., Vincendeau-Scherrer C., Raposo G., Bonnerot C. 2005. Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 17:879–887 10.1093/intimm/dxh267
    1. Cai H., Reinisch K., Ferro-Novick S. 2007. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell. 12:671–682 10.1016/j.devcel.2007.04.005
    1. Chaput N., Théry C. 2011. Exosomes: immune properties and potential clinical implementations. Semin. Immunopathol. 33:419–440 10.1007/s00281-010-0233-9
    1. Cocucci E., Racchetti G., Meldolesi J. 2009. Shedding microvesicles: artefacts no more. Trends Cell Biol. 19:43–51 10.1016/j.tcb.2008.11.003
    1. Conde-Vancells J., Rodriguez-Suarez E., Embade N., Gil D., Matthiesen R., Valle M., Elortza F., Lu S.C., Mato J.M., Falcon-Perez J.M. 2008. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 7:5157–5166 10.1021/pr8004887
    1. Denzer K., van Eijk M., Kleijmeer M.J., Jakobson E., de Groot C., Geuze H.J. 2000. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165:1259–1265
    1. Deregibus M.C., Cantaluppi V., Calogero R., Lo Iacono M., Tetta C., Biancone L., Bruno S., Bussolati B., Camussi G. 2007. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 110:2440–2448 10.1182/blood-2007-03-078709
    1. Eaton S. 2006. Release and trafficking of lipid-linked morphogens. Curr. Opin. Genet. Dev. 16:17–22 10.1016/j.gde.2005.12.006
    1. Eldh M., Lötvall J., Malmhäll C., Ekström K. 2012. Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol. Immunol. 50:278–286 10.1016/j.molimm.2012.02.001
    1. Emmanouilidou E., Melachroinou K., Roumeliotis T., Garbis S.D., Ntzouni M., Margaritis L.H., Stefanis L., Vekrellis K. 2010. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30:6838–6851 10.1523/JNEUROSCI.5699-09.2010
    1. Escola J.M., Kleijmeer M.J., Stoorvogel W., Griffith J.M., Yoshie O., Geuze H.J. 1998. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273:20121–20127 10.1074/jbc.273.32.20121
    1. Fader C.M., Sánchez D.G., Mestre M.B., Colombo M.I. 2009. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta. 1793:1901–1916 10.1016/j.bbamcr.2009.09.011
    1. Fauré J., Lachenal G., Court M., Hirrlinger J., Chatellard-Causse C., Blot B., Grange J., Schoehn G., Goldberg Y., Boyer V., et al. 2006. Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31:642–648 10.1016/j.mcn.2005.12.003
    1. Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., Laude H., Raposo G. 2004. Cells release prions in association with exosomes. Proc. Natl. Acad. Sci. USA. 101:9683–9688 10.1073/pnas.0308413101
    1. Géminard C., De Gassart A., Blanc L., Vidal M. 2004. Degradation of AP2 during reticulocyte maturation enhances binding of hsc70 and Alix to a common site on TFR for sorting into exosomes. Traffic. 5:181–193 10.1111/j.1600-0854.2004.0167.x
    1. Gibbings D.J., Ciaudo C., Erhardt M., Voinnet O. 2009. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11:1143–1149 10.1038/ncb1929
    1. Gomes C., Keller S., Altevogt P., Costa J. 2007. Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci. Lett. 428:43–46 10.1016/j.neulet.2007.09.024
    1. Gross J.C., Chaudhary V., Bartscherer K., Boutros M. 2012. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14:1036–1045 10.1038/ncb2574
    1. György B., Szabó T.G., Pásztói M., Pál Z., Misják P., Aradi B., László V., Pállinger E., Pap E., Kittel A., et al. 2011. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68:2667–2688 10.1007/s00018-011-0689-3
    1. Harding C., Heuser J., Stahl P. 1984. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 35:256–263
    1. Harding C.V., Heuser J.E., Stahl P.D. 2013. Exosomes: Looking back three decades and into the future. J. Cell Biol. 200:367–371 10.1083/jcb.201212113
    1. Heijnen H.F., Debili N., Vainchencker W., Breton-Gorius J., Geuze H.J., Sixma J.J. 1998. Multivesicular bodies are an intermediate stage in the formation of platelet alpha-granules. Blood. 91:2313–2325
    1. Heijnen H.F., Schiel A.E., Fijnheer R., Geuze H.J., Sixma J.J. 1999. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 94:3791–3799
    1. Hemler M.E. 2003. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 19:397–422 10.1146/annurev.cellbio.19.111301.153609
    1. Hemler M.E. 2008. Targeting of tetraspanin proteins—potential benefits and strategies. Nat. Rev. Drug Discov. 7:747–758 10.1038/nrd2659
    1. Hess C., Sadallah S., Hefti A., Landmann R., Schifferli J.A. 1999. Ectosomes released by human neutrophils are specialized functional units. J. Immunol. 163:4564–4573
    1. Holme P.A., Solum N.O., Brosstad F., Røger M., Abdelnoor M. 1994. Demonstration of platelet-derived microvesicles in blood from patients with activated coagulation and fibrinolysis using a filtration technique and western blotting. Thromb. Haemost. 72:666–671
    1. Hood J.L., San R.S., Wickline S.A. 2011. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71:3792–3801 10.1158/0008-5472.CAN-10-4455
    1. Hristov M., Erl W., Linder S., Weber P.C. 2004. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood. 104:2761–2766 10.1182/blood-2003-10-3614
    1. Hsu C., Morohashi Y., Yoshimura S., Manrique-Hoyos N., Jung S., Lauterbach M.A., Bakhti M., Grønborg M., Möbius W., Rhee J., et al. 2010. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A–C. J. Cell Biol. 189:223–232 10.1083/jcb.200911018
    1. Hunter M.P., Ismail N., Zhang X., Aguda B.D., Lee E.J., Yu L., Xiao T., Schafer J., Lee M.L., Schmittgen T.D., et al. 2008. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE. 3:e3694 10.1371/journal.pone.0003694
    1. Hupalowska A., Miaczynska M. 2012. The new faces of endocytosis in signaling. Traffic. 13:9–18 10.1111/j.1600-0854.2011.01249.x
    1. Hurley J.H. 2010. The ESCRT complexes. Crit. Rev. Biochem. Mol. Biol. 45:463–487 10.3109/10409238.2010.502516
    1. Irion U., St Johnston D. 2007. bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature. 445:554–558 10.1038/nature05503
    1. Kalra H., Simpson R.J., Ji H., Aikawa E., Altevogt P., Askenase P., Bond V.C., Borràs F.E., Breakefield X., Budnik V., et al. 2012. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10:e1001450 10.1371/journal.pbio.1001450
    1. Klibi J., Niki T., Riedel A., Pioche-Durieu C., Souquere S., Rubinstein E., Le Moulec S., Guigay J., Hirashima M., Guemira F., et al. 2009. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood. 113:1957–1966 10.1182/blood-2008-02-142596
    1. Krämer-Albers E.M., Bretz N., Tenzer S., Winterstein C., Möbius W., Berger H., Nave K.A., Schild H., Trotter J. 2007. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin. Appl. 1:1446–1461 10.1002/prca.200700522
    1. Kujala P., Raymond C.R., Romeijn M., Godsave S.F., van Kasteren S.I., Wille H., Prusiner S.B., Mabbott N.A., Peters P.J. 2011. Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog. 7:e1002449 10.1371/journal.ppat.1002449
    1. Lachenal G., Pernet-Gallay K., Chivet M., Hemming F.J., Belly A., Bodon G., Blot B., Haase G., Goldberg Y., Sadoul R. 2011. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 46:409–418 10.1016/j.mcn.2010.11.004
    1. Laulagnier K., Motta C., Hamdi S., Roy S., Fauvelle F., Pageaux J.F., Kobayashi T., Salles J.P., Perret B., Bonnerot C., Record M. 2004. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 380:161–171 10.1042/BJ20031594
    1. Liégeois S., Benedetto A., Garnier J.M., Schwab Y., Labouesse M. 2006. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 173:949–961 10.1083/jcb.200511072
    1. Luga V., Zhang L., Viloria-Petit A.M., Ogunjimi A.A., Inanlou M.R., Chiu E., Buchanan M., Hosein A.N., Basik M., Wrana J.L. 2012. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151:1542–1556 10.1016/j.cell.2012.11.024
    1. Mallegol J., Van Niel G., Lebreton C., Lepelletier Y., Candalh C., Dugave C., Heath J.K., Raposo G., Cerf-Bensussan N., Heyman M. 2007. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology. 132:1866–1876 10.1053/j.gastro.2007.02.043
    1. Manohar S., Harlow M., Nguyen H., Li J., Hankins G.R., Park M. 2011. Chromatin modifying protein 1A (Chmp1A) of the endosomal sorting complex required for transport (ESCRT)-III family activates ataxia telangiectasia mutated (ATM) for PanC-1 cell growth inhibition. Cell Cycle. 10:2529–2539 10.4161/cc.10.15.15926
    1. Marshansky V., Futai M. 2008. The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr. Opin. Cell Biol. 20:415–426 10.1016/j.ceb.2008.03.015
    1. Masyuk A.I., Huang B.Q., Ward C.J., Gradilone S.A., Banales J.M., Masyuk T.V., Radtke B., Splinter P.L., LaRusso N.F. 2010. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G990–G999 10.1152/ajpgi.00093.2010
    1. Michael A., Bajracharya S.D., Yuen P.S., Zhou H., Star R.A., Illei G.G., Alevizos I. 2010. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16:34–38 10.1111/j.1601-0825.2009.01604.x
    1. Mittelbrunn M., Gutiérrez-Vázquez C., Villarroya-Beltri C., González S., Sánchez-Cabo F., González M.A., Bernad A., Sánchez-Madrid F. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2:282 10.1038/ncomms1285
    1. Möbius W., Ohno-Iwashita Y., van Donselaar E.G., Oorschot V.M., Shimada Y., Fujimoto T., Heijnen H.F., Geuze H.J., Slot J.W. 2002. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50:43–55 10.1177/002215540205000105
    1. Montecalvo A., Larregina A.T., Shufesky W.J., Stolz D.B., Sullivan M.L., Karlsson J.M., Baty C.J., Gibson G.A., Erdos G., Wang Z., et al. 2012. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 119:756–766 10.1182/blood-2011-02-338004
    1. Morelli A.E. 2006. The immune regulatory effect of apoptotic cells and exosomes on dendritic cells: its impact on transplantation. Am. J. Transplant. 6:254–261 10.1111/j.1600-6143.2005.01197.x
    1. Muralidharan-Chari V., Clancy J., Plou C., Romao M., Chavrier P., Raposo G., D’Souza-Schorey C. 2009. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19:1875–1885 10.1016/j.cub.2009.09.059
    1. Muralidharan-Chari V., Clancy J.W., Sedgwick A., D’Souza-Schorey C. 2010. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Sci. 123:1603–1611 10.1242/jcs.064386
    1. Nabhan J.F., Hu R., Oh R.S., Cohen S.N., Lu Q. 2012. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl. Acad. Sci. USA. 109:4146–4151
    1. Neumann S., Coudreuse D.Y., van der Westhuyzen D.R., Eckhardt E.R., Korswagen H.C., Schmitz G., Sprong H. 2009. Mammalian Wnt3a is released on lipoprotein particles. Traffic. 10:334–343 10.1111/j.1600-0854.2008.00872.x
    1. Nolte-’t Hoen E.N., Buschow S.I., Anderton S.M., Stoorvogel W., Wauben M.H. 2009. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood. 113:1977–1981 10.1182/blood-2008-08-174094
    1. Nolte-’t Hoen E.N., Buermans H.P., Waasdorp M., Stoorvogel W., Wauben M.H., ’t Hoen P.A. 2012a. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40:9272–9285 10.1093/nar/gks658
    1. Nolte-’t Hoen E.N., van der Vlist E.J., Aalberts M., Mertens H.C., Bosch B.J., Bartelink W., Mastrobattista E., van Gaal E.V., Stoorvogel W., Arkesteijn G.J., Wauben M.H. 2012b. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine. 8:712–720 10.1016/j.nano.2011.09.006
    1. Nolte-’t Hoen E.N., van der Vlist E.J., de Boer-Brouwer M., Arkesteijn G.J., Stoorvogel W., Wauben M.H. 2012c. Dynamics of dendritic cell-derived vesicles: high-resolution flow cytometric analysis of extracellular vesicle quantity and quality. J. Leukoc. Biol. 10.1189/jlb.0911480
    1. Obregon C., Rothen-Rutishauser B., Gitahi S.K., Gehr P., Nicod L.P. 2006. Exovesicles from human activated dendritic cells fuse with resting dendritic cells, allowing them to present alloantigens. Am. J. Pathol. 169:2127–2136 10.2353/ajpath.2006.060453
    1. Ogawa Y., Miura Y., Harazono A., Kanai-Azuma M., Akimoto Y., Kawakami H., Yamaguchi T., Toda T., Endo T., Tsubuki M., Yanoshita R. 2011. Proteomic analysis of two types of exosomes in human whole saliva. Biol. Pharm. Bull. 34:13–23 10.1248/bpb.34.13
    1. Ostrowski M., Carmo N.B., Krumeich S., Fanget I., Raposo G., Savina A., Moita C.F., Schauer K., Hume A.N., Freitas R.P., et al. 2010. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12:19–30 10.1038/ncb2000
    1. Pan B.T., Teng K., Wu C., Adam M., Johnstone R.M. 1985. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101:942–948 10.1083/jcb.101.3.942
    1. Panáková D., Sprong H., Marois E., Thiele C., Eaton S. 2005. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature. 435:58–65 10.1038/nature03504
    1. Park K.H., Kim B.J., Kang J., Nam T.S., Lim J.M., Kim H.T., Park J.K., Kim Y.G., Chae S.W., Kim U.H. 2011. Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility. Sci. Signal. 4:ra31 10.1126/scisignal.2001595
    1. Pisitkun T., Shen R.F., Knepper M.A. 2004. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. USA. 101:13368–13373 10.1073/pnas.0403453101
    1. Prado N., Marazuela E.G., Segura E., Fernández-García H., Villalba M., Théry C., Rodríguez R., Batanero E. 2008. Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J. Immunol. 181:1519–1525
    1. Proux-Gillardeaux V., Raposo G., Irinopoulou T., Galli T. 2007. Expression of the Longin domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. Biol. Cell. 99:261–271 10.1042/BC20060097
    1. Qazi K.R., Torregrosa Paredes P., Dahlberg B., Grunewald J., Eklund A., Gabrielsson S. 2010. Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax. 65:1016–1024 10.1136/thx.2009.132027
    1. Rabinowits G., Gerçel-Taylor C., Day J.M., Taylor D.D., Kloecker G.H. 2009. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer. 10:42–46 10.3816/CLC.2009.n.006
    1. Raiborg C., Stenmark H. 2009. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature. 458:445–452 10.1038/nature07961
    1. Rajendran L., Honsho M., Zahn T.R., Keller P., Geiger K.D., Verkade P., Simons K. 2006. Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA. 103:11172–11177 10.1073/pnas.0603838103
    1. Rak J. 2010. Microparticles in cancer. Semin. Thromb. Hemost. 36:888–906 10.1055/s-0030-1267043
    1. Rana S., Yue S., Stadel D., Zöller M. 2012. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int. J. Biochem. Cell Biol. 44:1574–1584 10.1016/j.biocel.2012.06.018
    1. Rao S.K., Huynh C., Proux-Gillardeaux V., Galli T., Andrews N.W. 2004. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J. Biol. Chem. 279:20471–20479 10.1074/jbc.M400798200
    1. Raposo G., Nijman H.W., Stoorvogel W., Liejendekker R., Harding C.V., Melief C.J., Geuze H.J. 1996. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183:1161–1172 10.1084/jem.183.3.1161
    1. Raposo G., Tenza D., Mecheri S., Peronet R., Bonnerot C., Desaymard C. 1997. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol. Biol. Cell. 8:2631–2645
    1. Raposo G., Marks M.S., Cutler D.F. 2007. Lysosome-related organelles: driving post-Golgi compartments into specialisation. Curr. Opin. Cell Biol. 19:394–401 10.1016/j.ceb.2007.05.001
    1. Ratajczak J., Wysoczynski M., Hayek F., Janowska-Wieczorek A., Ratajczak M.Z. 2006. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 20:1487–1495 10.1038/sj.leu.2404296
    1. Ronquist G., Brody I. 1985. The prostasome: its secretion and function in man. Biochim. Biophys. Acta. 822:203–218 10.1016/0304-4157(85)90008-5
    1. Savina A., Vidal M., Colombo M.I. 2002. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci. 115:2505–2515
    1. Savina A., Fader C.M., Damiani M.T., Colombo M.I. 2005. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic. 6:131–143 10.1111/j.1600-0854.2004.00257.x
    1. Segura E., Guérin C., Hogg N., Amigorena S., Théry C. 2007. CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J. Immunol. 179:1489–1496
    1. Sheldon H., Heikamp E., Turley H., Dragovic R., Thomas P., Oon C.E., Leek R., Edelmann M., Kessler B., Sainson R.C., et al. 2010. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood. 116:2385–2394 10.1182/blood-2009-08-239228
    1. Shen B., Fang Y., Wu N., Gould S.J. 2011. Biogenesis of the posterior pole is mediated by the exosome/microvesicle protein-sorting pathway. J. Biol. Chem. 286:44162–44176 10.1074/jbc.M111.274803
    1. Simons M., Raposo G. 2009. Exosomes—vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21:575–581 10.1016/j.ceb.2009.03.007
    1. Simpson R.J., Lim J.W., Moritz R.L., Mathivanan S. 2009. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomics. 6:267–283 10.1586/epr.09.17
    1. Skog J., Würdinger T., van Rijn S., Meijer D.H., Gainche L., Sena-Esteves M., Curry W.T., Jr, Carter B.S., Krichevsky A.M., Breakefield X.O. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10:1470–1476 10.1038/ncb1800
    1. Soo C.Y., Song Y., Zheng Y., Campbell E.C., Riches A.C., Gunn-Moore F., Powis S.J. 2012. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 136:192–197 10.1111/j.1365-2567.2012.03569.x
    1. Stegmayr B., Ronquist G. 1982. Promotive effect on human sperm progressive motility by prostasomes. Urol. Res. 10:253–257 10.1007/BF00255932
    1. Stuffers S., Sem Wegner C., Stenmark H., Brech A. 2009. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic. 10:925–937 10.1111/j.1600-0854.2009.00920.x
    1. Subra C., Laulagnier K., Perret B., Record M. 2007. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie. 89:205–212 10.1016/j.biochi.2006.10.014
    1. Tamai K., Tanaka N., Nakano T., Kakazu E., Kondo Y., Inoue J., Shiina M., Fukushima K., Hoshino T., Sano K., et al. 2010. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem. Biophys. Res. Commun. 399:384–390 10.1016/j.bbrc.2010.07.083
    1. Theos A.C., Truschel S.T., Tenza D., Hurbain I., Harper D.C., Berson J.F., Thomas P.C., Raposo G., Marks M.S. 2006. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev. Cell. 10:343–354 10.1016/j.devcel.2006.01.012
    1. Théry C., Regnault A., Garin J., Wolfers J., Zitvogel L., Ricciardi-Castagnoli P., Raposo G., Amigorena S. 1999. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147:599–610 10.1083/jcb.147.3.599
    1. Théry C., Boussac M., Véron P., Ricciardi-Castagnoli P., Raposo G., Garin J., Amigorena S. 2001. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166:7309–7318
    1. Théry C., Amigorena S., Raposo G., Clayton A. 2006. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3:Unit 3.22.
    1. Théry C., Ostrowski M., Segura E. 2009. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9:581–593 10.1038/nri2567
    1. Tian T., Wang Y., Wang H., Zhu Z., Xiao Z. 2010. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell. Biochem. 111:488–496 10.1002/jcb.22733
    1. Trajkovic K., Hsu C., Chiantia S., Rajendran L., Wenzel D., Wieland F., Schwille P., Brügger B., Simons M. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 319:1244–1247 10.1126/science.1153124
    1. Trams E.G., Lauter C.J., Salem N., Jr, Heine U. 1981. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta. 645:63–70 10.1016/0005-2736(81)90512-5
    1. Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9:654–659 10.1038/ncb1596
    1. van der Vlist E.J., Nolte-’t Hoen E.N., Stoorvogel W., Arkesteijn G.J., Wauben M.H. 2012. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc. 7:1311–1326 10.1038/nprot.2012.065
    1. van Niel G., Raposo G., Candalh C., Boussac M., Hershberg R., Cerf-Bensussan N., Heyman M. 2001. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 121:337–349 10.1053/gast.2001.26263
    1. van Niel G., Mallegol J., Bevilacqua C., Candalh C., Brugière S., Tomaskovic-Crook E., Heath J.K., Cerf-Bensussan N., Heyman M. 2003. Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut. 52:1690–1697 10.1136/gut.52.12.1690
    1. van Niel G., Porto-Carreiro I., Simoes S., Raposo G. 2006. Exosomes: a common pathway for a specialized function. J. Biochem. 140:13–21 10.1093/jb/mvj128
    1. van Niel G., Charrin S., Simoes S., Romao M., Rochin L., Saftig P., Marks M.S., Rubinstein E., Raposo G. 2011. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell. 21:708–721 10.1016/j.devcel.2011.08.019
    1. Vella L.J., Sharples R.A., Lawson V.A., Masters C.L., Cappai R., Hill A.F. 2007. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J. Pathol. 211:582–590 10.1002/path.2145
    1. Wang S., Cesca F., Loers G., Schweizer M., Buck F., Benfenati F., Schachner M., Kleene R. 2011. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J. Neurosci. 31:7275–7290 10.1523/JNEUROSCI.6476-10.2011
    1. White I.J., Bailey L.M., Aghakhani M.R., Moss S.E., Futter C.E. 2006. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 25:1–12 10.1038/sj.emboj.7600759
    1. Wilson H.L., Francis S.E., Dower S.K., Crossman D.C. 2004. Secretion of intracellular IL-1 receptor antagonist (type 1) is dependent on P2X7 receptor activation. J. Immunol. 173:1202–1208
    1. Wolfers J., Lozier A., Raposo G., Regnault A., Théry C., Masurier C., Flament C., Pouzieux S., Faure F., Tursz T., et al. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7:297–303 10.1038/85438
    1. Wubbolts R., Leckie R.S., Veenhuizen P.T., Schwarzmann G., Möbius W., Hoernschemeyer J., Slot J.W., Geuze H.J., Stoorvogel W. 2003. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J. Biol. Chem. 278:10963–10972 10.1074/jbc.M207550200
    1. Yu X., Harris S.L., Levine A.J. 2006. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66:4795–4801 10.1158/0008-5472.CAN-05-4579
    1. Zhang H.G., Grizzle W.E. 2011. Exosomes and cancer: a newly described pathway of immune suppression. Clin. Cancer Res. 17:959–964 10.1158/1078-0432.CCR-10-1489
    1. Zitvogel L., Regnault A., Lozier A., Wolfers J., Flament C., Tenza D., Ricciardi-Castagnoli P., Raposo G., Amigorena S. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4:594–600 10.1038/nm0598-594
    1. Zöller M. 2009. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer. 9:40–55 10.1038/nrc2543

Source: PubMed

3
Suscribir