Body weight, body composition and energy balance related behaviour during the transition to parenthood: study protocol of a multi-centre observational follow-up study (TRANSPARENTS)

Tom Deliens, Vickà Versele, Hannelore Vanden Eynde, Peter Clarys, Roland Devlieger, Annick Bogaerts, Leonardo Gucciardo, Annick Schreurs, Caroline Van Holsbeke, Dirk Aerenhouts, Tom Deliens, Vickà Versele, Hannelore Vanden Eynde, Peter Clarys, Roland Devlieger, Annick Bogaerts, Leonardo Gucciardo, Annick Schreurs, Caroline Van Holsbeke, Dirk Aerenhouts

Abstract

Background: The transition to parenthood is a cornerstone event for both parents, potentially leading to relevant changes in lifestyle and behaviour. In women, the metabolic changes during and after pregnancy and the deleterious effects of excessive gestational weight gain and postpartum weight retention have been extensively described. However, there is no full understanding about which specific energy balance related behaviours (EBRB) contribute to unfavourable weight gain and weight retention. Furthermore, information on how transition to parenthood affects men is lacking. Therefore, this study aims to investigate changes in body weight, body composition and EBRB in couples transitioning to parenthood.

Methods: TRANSPARENTS is a multi-centre observational follow-up study that focuses on body weight, body composition and EBRB during the transition to parenthood. Couples (women and men) will be recruited during the first trimester of their first pregnancy. Study visits will occur at four occasions (12 weeks of pregnancy, 6 weeks postpartum, 6 months postpartum and 12 months postpartum). Anthropometrics of the parents and new-borns will be assessed including body weight, height/length, body composition (using bio-electrical impedance analysis and measurement of four skinfold thicknesses (biceps, triceps, subscapular and supraspinal/suprailiac)) and waist and hip circumference. Dietary intake, physical activity, sedentary behaviour, smoking habits, sleeping pattern, fatigue, diet and exercise related partner support, mental health, breastfeeding, contraception use, and socio-demographics will be assessed using a questionnaire. In addition, accelerometry will be used to assess physical activity and sedentary behaviour objectively. Also data from women's medical record, such as pre-pregnancy weight and pregnancy outcomes, will be included. Multilevel modelling will be used to evaluate maternal and paternal changes in body weight, body composition and EBRB during and after pregnancy (primary outcomes). Multiple linear regression analyses will be performed to identify predictors of changes in body weight, body composition and EBRB. All analyses will be adjusted for possible confounders.

Discussion: TRANSPARENTS is a unique project identifying vulnerable parents and (un)favourable changes in EBRB throughout this potentially critical life period. Provided insights will facilitate the development of effective intervention strategies to help couples towards a healthy transition to parenthood.

Trial registration: Clinicaltrials.gov Identifier: NCT03454958. Registered March 2018.

Keywords: Body composition; Energy balance related behaviour; Parenthood; Pregnancy.

Conflict of interest statement

Ethics approval and consent to participate

The trial will be conducted in compliance with the principles of the Declaration of Helsinki (current version), the principles of good clinical practice (GCP) and in accordance with all applicable regulatory requirements. The protocol and related documents were submitted for review and approved by the leading Medical Ethics Committee of the University Hospital of the Vrije Universiteit Brussel (UZ Brussel, Brussels, Belgium) on May 16th 2018 (B.U.N. 143201835875). This approval includes the advices of the non-leading Medical Ethics Committees of the participating hospitals, i.e. UZ Leuven (KULeuven), Jessa Ziekenhuis Hasselt and Ziekenhuis Oost-Limburg Genk. In addition, an amendment of the protocol was submitted for review and approved by the same leading Medical Ethics Committee on October 29th 2018. Any other amendments will be communicated with the leading Medical Ethics Committee. The study can and will be conducted only on the basis of prior written informed consent by the subjects to participate in the study. All data will be coded, the subjects’ names or other identifiers will be stored separately from the research data and replaced by unique codes to create new identities for each individual subject. Only researchers involved in the study will have access to the data.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Timeline of the TRANSPARENTS observational follow-up study

References

    1. von Ruesten A, Steffen A, Floegel A, van der AD, Masala G, Tjonneland A, et al. Trend in obesity prevalence in European adult cohort populations during follow-up since 1996 and their predictions to 2015. PLoS One. 2011;6(11):e27455. doi: 10.1371/journal.pone.0027455.
    1. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. Jama. 2012;307(5):491–497. doi: 10.1001/jama.2012.39.
    1. WHO. Obesity and overweight: World Health Organisation; 2016. . Accessed 2018.
    1. WHO. Global status report on noncommunicable diseases 2014. World Health Organisation. 2014. . Accessed 2018.
    1. Eurostat. Overweight and obesity - BMI statistics. 2015. . Accessed 2018.
    1. Drieskens S. Voedingsstatus. In: Gisle L, Demarest S, editors. Gezondheidsenquête 2013. Rapport 2: Gezondheidsgedrag en leefstijl. Brussel: WIV-ISP; 2014.
    1. Devlieger R, Benhalima K, Damm P, Van Assche A, Mathieu C, Mahmood T, et al. Maternal obesity in Europe: where do we stand and how to move forward?: a scientific paper commissioned by the European board and College of Obstetrics and Gynaecology (EBCOG) Eur J Obstet Gynecol Reprod Biol. 2016;201:203–208. doi: 10.1016/j.ejogrb.2016.04.005.
    1. Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring) 2008;16(10):2323–2330. doi: 10.1038/oby.2008.351.
    1. Sanchez-Romero LM, Pineda E, Brown M, Jaccard A, McPherson K, Webber L. Forecasting/projecting adulthood obesity in 53 WHO EU region countries (unpublished report). World Health Organisation. 2015.
    1. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. doi: 10.1186/1471-2458-9-88.
    1. Dixon JB. The effect of obesity on health outcomes. Mol Cell Endocrinol. 2010;316(2):104–108. doi: 10.1016/j.mce.2009.07.008.
    1. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378(9793):815–825. doi: 10.1016/S0140-6736(11)60814-3.
    1. Malnick SD, Knobler H. The medical complications of obesity. QJM. 2006;99(9):565–579. doi: 10.1093/qjmed/hcl085.
    1. Engberg E, Alen M, Kukkonen-Harjula K, Peltonen JE, Tikkanen HO, Pekkarinen H. Life events and change in leisure time physical activity: a systematic review. Sports Med. 2012;42(5):433–447. doi: 10.2165/11597610-000000000-00000.
    1. O'Brien CM, Grivell RM, Dodd JM. Systematic review of antenatal dietary and lifestyle interventions in women with a normal body mass index. Acta Obstet Gynecol Scand. 2016;95(3):259–269. doi: 10.1111/aogs.12829.
    1. Catalano PM, Ehrenberg HM. The short- and long-term implications of maternal obesity on the mother and her offspring. Bjog. 2006;113(10):1126–1133. doi: 10.1111/j.1471-0528.2006.00989.x.
    1. Chu SY, Callaghan WM, Kim SY, Schmid CH, Lau J, England LJ, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care. 2007;30(8):2070–2076. doi: 10.2337/dc06-2559a.
    1. Poobalan AS, Aucott LS, Gurung T, Smith WC, Bhattacharya S. Obesity as an independent risk factor for elective and emergency caesarean delivery in nulliparous women--systematic review and meta-analysis of cohort studies. Obes Rev. 2009;10(1):28–35. doi: 10.1111/j.1467-789X.2008.00537.x.
    1. Poston L, Caleyachetty R, Cnattingius S, Corvalan C, Uauy R, Herring S, et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016;4(12):1025–1036. doi: 10.1016/S2213-8587(16)30217-0.
    1. Bogaerts A, Van den Bergh BR, Ameye L, Witters I, Martens E, Timmerman D, et al. Interpregnancy weight change and risk for adverse perinatal outcome. Obstet Gynecol. 2013;122(5):999–1009. doi: 10.1097/AOG.0b013e3182a7f63e.
    1. Gillman MW. Gestational weight gain: now and the future. Circulation. 2012;125(11):1339–1340. doi: 10.1161/CIRCULATIONAHA.112.091751.
    1. Umberson D, Liu H, Mirowsky J, Reczek C. Parenthood and trajectories of change in body weight over the life course. Soc Sci Med (1982) 2011;73(9):1323–1331. doi: 10.1016/j.socscimed.2011.08.014.
    1. Bogaerts A, De Baetselier E, Ameye L, Dilles T, Van Rompaey B, Devlieger R. Postpartum weight trajectories in overweight and lean women. Midwifery. 2017;49(Supplement C):134–141. doi: 10.1016/j.midw.2016.08.010.
    1. Gunderson EP, Abrams B. Epidemiology of gestational weight gain and body weight changes after pregnancy. Epidemiol Rev. 2000;22(2):261–274. doi: 10.1093/oxfordjournals.epirev.a018038.
    1. Widen EM, Gallagher D. Body composition changes in pregnancy: measurement, predictors and outcomes. Eur J Clin Nutr. 2014;68(6):643–652. doi: 10.1038/ejcn.2014.40.
    1. Bassett-Gunter RL, Levy-Milne R, Naylor PJ, Symons Downs D, Benoit C, Warburton DE, et al. Oh baby! Motivation for healthy eating during parenthood transitions: a longitudinal examination with a theory of planned behavior perspective. Int J Behav Nutr Phys Act. 2013;10:88. doi: 10.1186/1479-5868-10-88.
    1. Olson CM, Strawderman MS, Hinton PS, Pearson TA. Gestational weight gain and postpartum behaviors associated with weight change from early pregnancy to 1 y postpartum. Int J Obes Relat Metab Disord. 2003;27(1):117–127. doi: 10.1038/sj.ijo.0802156.
    1. Stuebe AM, Oken E, Gillman MW. Associations of diet and physical activity during pregnancy with risk for excessive gestational weight gain. Am J Obstet Gynecol. 2009;201(1):58 e1–58 e8. doi: 10.1016/j.ajog.2009.02.025.
    1. Harrison CL, Brown WJ, Hayman M, Moran LJ, Redman LM. The role of physical activity in preconception, pregnancy and postpartum health. Semin Reprod Med. 2016;34(2):e28–e37. doi: 10.1055/s-0036-1583530.
    1. Evenson KR, Mottola MF, Owe KM, Rousham EK, Brown WJ. Summary of international guidelines for physical activity after pregnancy. Obstet Gynecol Surv. 2014;69(7):407–414. doi: 10.1097/OGX.0000000000000077.
    1. Bellows-Riecken KH, Rhodes RE. A birth of inactivity? A review of physical activity and parenthood. Prev Med. 2008;46(2):99–110. doi: 10.1016/j.ypmed.2007.08.003.
    1. Perales F, del Pozo-Cruz J, del Pozo-Cruz B. Long-term dynamics in physical activity behaviour across the transition to parenthood. Int J Public Health. 2015;60(3):301–308. doi: 10.1007/s00038-015-0653-3.
    1. Rhodes RE, Blanchard CM, Benoit C, Levy-Milne R, Naylor PJ, Symons Downs D, et al. Physical activity and sedentary behavior across 12 months in cohort samples of couples without children, expecting their first child, and expecting their second child. J Behav Med. 2014;37(3):533–542. doi: 10.1007/s10865-013-9508-7.
    1. Ramakrishnan U, Grant F, Goldenberg T, Zongrone A, Martorell R. Effect of Women's nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26:285–301. doi: 10.1111/j.1365-3016.2012.01281.x.
    1. Smith KJ, McNaughton SA, Gall SL, Otahal P, Dwyer T, Venn AJ. Associations between partnering and parenting transitions and dietary habits in young adults. J Acad Nutr Diet. 2017.
    1. Pot N, Keizer R. Physical activity and sport participation: a systematic review of the impact of fatherhood. Prev Med Rep. 2016;4:121–127. doi: 10.1016/j.pmedr.2016.05.018.
    1. te Velde SJ, ChinAPaw MJ, De Bourdeaudhuij I, Bere E, Maes L, Moreno L, et al. Parents and friends both matter: simultaneous and interactive influences of parents and friends on European schoolchildren’s energy balance-related behaviours – the ENERGY cross-sectional study. Int J Behav Nutr Phys Act. 2014;11(1):82. doi: 10.1186/1479-5868-11-82.
    1. Wu BN, O'Sullivan AJ. Sex differences in energy metabolism need to be considered with lifestyle modifications in humans. J Nutr Metab. 2011;2011.
    1. Deforche B, Van Dyck D, Deliens T, De Bourdeaudhuij I. Changes in weight, physical activity, sedentary behaviour and dietary intake during the transition to higher education: a prospective study. Int J Behav Nutr Phys Act. 2015;12(1):16. doi: 10.1186/s12966-015-0173-9.
    1. Marfell-Jones MJ, Stewart A, De Ridder J. International standards for anthropometric assessment 2012.
    1. TANITA. Frequently Asked Questions - Can anybody use a body fat monitor? . Accessed 2018.
    1. Matthys C, Meulemans A, Van Der Schueren B. Development and validation of general FFQ for use in clinical practice. Ann Nutr Metab. 2015;67(suppl.1):239.
    1. Matton L, Wijndaele K, Duvigneaud N, Duquet W, Philippaerts R, Thomis M, et al. Reliability and validity of the Flemish physical activity computerized questionnaire in adults. Res Q Exerc Sport. 2007;78(4):293–306. doi: 10.1080/02701367.2007.10599427.
    1. Busschaert C, De Bourdeaudhuij I, Van Holle V, Chastin SF, Cardon G, De Cocker K. Reliability and validity of three questionnaires measuring context-specific sedentary behaviour and associated correlates in adolescents, adults and older adults. Int J Behav Nutr Phys Act. 2015;12(1):117. doi: 10.1186/s12966-015-0277-2.
    1. Sallis JF, Grossman RM, Pinski RB, Patterson TL, Nader PR. The development of scales to measure social support for diet and exercise behaviors. Prev Med. 1987;16(6):825–836. doi: 10.1016/0091-7435(87)90022-3.
    1. Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781. doi: 10.1097/00005768-199805000-00021.
    1. Field A, Miles J, Field Z. Discovering statistics using R: sage publications; 2012.
    1. Bogaerts A, Van den Bergh B, Nuyts E, Martens E, Witters I, Devlieger R. Socio-demographic and obstetrical correlates of pre-pregnancy body mass index and gestational weight gain. Clin Obes. 2012;2(5–6):150–159. doi: 10.1111/cob.12004.
    1. Hanson M, Barker M, Dodd JM, Kumanyika S, Norris S, Steegers E, et al. Interventions to prevent maternal obesity before conception, during pregnancy, and post partum. Lancet Diabetes Endocrinol. 2017;5(1):65–76. doi: 10.1016/S2213-8587(16)30108-5.
    1. Choi J, Fukuoka Y, Lee JH. The effects of physical activity and physical activity plus diet interventions on body weight in overweight or obese women who are pregnant or in postpartum: a systematic review and meta-analysis of randomized controlled trials. Prev Med. 2013;56(6):351–364. doi: 10.1016/j.ypmed.2013.02.021.
    1. Regber S, Novak M, Eiben G, Lissner L, Hense S, Sandstrom TZ, et al. Assessment of selection bias in a health survey of children and families - the IDEFICS Sweden-study. BMC Public Health. 2013;13:418. doi: 10.1186/1471-2458-13-418.

Source: PubMed

3
Suscribir