RAMIC: Design of a randomized, double-blind, placebo-controlled trial to evaluate the efficacy of ramipril in patients with COVID-19

Veeral Ajmera, Wesley K Thompson, Davey M Smith, Atul Malhotra, Ravindra L Mehta, Vaishal Tolia, Jeffrey Yin, Krishna Sriram, Paul A Insel, Summer Collier, Lisa Richards, Rohit Loomba, Veeral Ajmera, Wesley K Thompson, Davey M Smith, Atul Malhotra, Ravindra L Mehta, Vaishal Tolia, Jeffrey Yin, Krishna Sriram, Paul A Insel, Summer Collier, Lisa Richards, Rohit Loomba

Abstract

Background and aims: Retrospective studies have shown that angiotensin-converting-enzyme (ACE) inhibitors are associated with a reduced risk of complications and mortality in persons with novel coronavirus disease 2019 (COVID-19). Thus, we aimed to examine the efficacy of ramipril, an ACE-inhibitor, in preventing ICU admission, mechanical ventilation and/or mortality while also minimizing the risk of transmission and use of personal protective equipment (PPE).

Methods: RAMIC is a multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial comparing the efficacy of treatment with ramipril 2.5 mg orally daily compared to placebo for 14 days. The study population includes adult patients with COVID-19 who were admitted to a hospital or assessed in an emergency department or ambulatory clinic. Key exclusion criteria include ICU admission or need for mechanical ventilation at screening, use of an ACE inhibitor or angiotensin-receptor-II blocker within 7 days, glomerular filtration rate < 40 mL/min or a systolic blood pressure (BP) < 100 mmHg or diastolic BP < 65 mmHg. Patients are randomized 2:1 to receive ramipril (2.5 mg) or placebo daily. Informed consent and study visits occur virtually to minimize the risk of SARS-CoV-2 transmission and preserve PPE. The primary composite endpoint of ICU admission, invasive mechanical ventilation and death are adjudicated virtually.

Conclusions: RAMIC is designed to assess the efficacy of treatment with ramipril for 14 days to decrease ICU admission, mechanical ventilator use and mortality in patients with COVID-19 and leverages virtual study visits and endpoint adjudication to mitigate risk of infection and to preserve PPE (ClinicalTrials.gov, NCT04366050).

Keywords: Covid-19; Mechanical ventilation; SARS-CoV2; Virtual visit.

Conflict of interest statement

Dr. Malhotra reports funding related to medical education from Livanova, Equillium and Corvus. ResMed provided a philanthropic donation to UCSD. Rohit Loomba: Potential conflict of interest for Rohit Loomba: Dr. Loomba serves as a consultant or advisory board member for Bird Rock Bio, Celgene, Enanta, GRI Bio, Madrigal, Metacrine, NGM, Sanofi, Arrowhead Research, Galmed, NGM, GNI, NovoNordisk, Merck, Siemens, Pfizer, Gilead. Glympsebio, In addition, his institution has received grant support from Allergan, BMS, BI, Daiichi-Sankyo Inc., Eli-Lilly, Galectin, Galmed, GE, Genfit, Intercept, Janssen Inc., Madrigal, Merck, NGM, Pfizer, Prometheus, Siemens, and Sirius. He is also co-founder of Liponexus Inc. Paul Insel is not currently but within the past 3 years has served as a consultant or received research support from Merck, Pfizer, and Bristol Myers Squibb. Davey Smith serves a consultant for Arena Pharmaceuticals, Nitto Pharmaceuticals and Bayer. He also serves on the Scientific Advisory Board of Safe Aloha and FluxErgy.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
RAMIC study design.
Fig. 2
Fig. 2
Remote Consent Process for RAMIC: A) Patient receives paper consent and sends a photograph or obtains impartial witness attestations or B) electronic consent and signature using IRB approved platform.

References

    1. WHO, WHO Coronavirus Disease (COVID-19) Dashboard 2020. Accessed September 4 2020.
    1. Beigel J., Tomashek K., Dodd L., Mehta A., Zingman B., Kalil A., Hohmann E., Chu H., Luetkemeyer A., Kline S., de Castilla D. Lopez, Finberg R., Dierberg K., Tapson V., Hsieh L., Patterson T., Paredes R., Sweeney D., Short W., Touloumi G., Lye D., Ohmagari N., Oh M., Ruiz-Palacios G., Benfield T., Fätkenheuer G., Kortepeter M., Atmar R., Creech C., Lundgren J., Babiker A., Pett S., Neaton J., Burgess T., Bonnett T., Green M., Makowski M., Osinusi A., Nayak S., Lane H. Remdesivir for the treatment of Covid-19 - preliminary report. New England J. Med. 2020;383(19):1813–1826.
    1. Horby P., Lim W.S., Emberson J.R., Mafham M., Bell J.L., Linsell L., Staplin N., Brightling C., Ustianowski A., Elmahi E., Prudon B., Green C., Felton T., Chadwick D., Rege K., Fegan C., Chappell L.C., Faust S.N., Jaki T., Jeffery K., Montgomery A., Rowan K., Juszczak E., Baillie J.K., Haynes R., Landray M.J. Dexamethasone in hospitalized patients with Covid-19 - preliminary report. N. Engl. J. Med. 2020 Online ahead of print.
    1. Pan H., Peto R., Henao-Restrepo A.M., Preziosi M.P., Sathiyamoorthy V., Karim Q. Abdool, Alejandria M.M., García C. Hernández, Kieny M.P., Malekzadeh R., Murthy S., Reddy K.S., Periago M. Roses, Hanna P. Abi, Ader F., Al-Bader A.M., Alhasawi A., Allum E., Alotaibi A., Alvarez-Moreno C.A., Appadoo S., Asiri A., Aukrust P., Barratt-Due A., Bellani S., Branca M., Cappel-Porter H.B.C., Cerrato N., Chow T.S., Como N., Eustace J., García P.J., Godbole S., Gotuzzo E., Griskevicius L., Hamra R., Hassan M., Hassany M., Hutton D., Irmansyah I., Jancoriene L., Kirwan J., Kumar S., Lennon P., Lopardo G., Lydon P., Magrini N., Maguire T., Manevska S., Manuel O., McGinty S., Medina M.T., Rubio M.L. Mesa, Miranda-Montoya M.C., Nel J., Nunes E.P., Perola M., Portolés A., Rasmin M.R., Raza A., Rees H., Reges P.P.S., Rogers C.A., Salami K., Salvadori M.I., Sinani N., Sterne J.A.C., Stevanovikj M., Tacconelli E., Tikkinen K.A.O., Trelle S., Zaid H., Røttingen J.A., Swaminathan S. Repurposed antiviral drugs for Covid-19 - interim WHO solidarity trial results. N. Engl. J. Med. 2021 Feb 11;384(6):497–511.
    1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. Jama. 2020 Apr 7;323(13):1239–1242.
    1. Ferrario C., Jessup J., Chappell M., Averill D., Brosnihan K., Tallant E., Diz D., Gallagher P. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20)
    1. Klimas J., Olvedy M., Ochodnicka-Mackovicova K., Kruzliak P., Cacanyiova S., Kristek F., Krenek P., Ochodnicky P. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal mas receptor in spontaneously hypertensive rats. J. Cell. Mol. Med. 2015;19(8)
    1. Soro-Paavonen A., Gordin D., Forsblom C., Rosengard-Barlund M., Waden J., Thorn L., Sandholm N., Thomas M., Groop P. Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications. J. Hypertens. 2012;30(2)
    1. Shang J., Ye G., Shi K., Wan Y., Luo C., Aihara H., Geng Q., Auerbach A., Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807)
    1. Fosbøl E., Butt J., Østergaard L., Andersson C., Selmer C., Kragholm K., Schou M., Phelps M., Gislason G., Gerds T., Torp-Pedersen C., Køber L. Association of Angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with COVID-19 diagnosis and mortality. JAMA. 2020 Jul 14;324(2):168–177.
    1. Mancia G., Rea F., Ludergnani M., Apolone G., Corrao G. Renin-angiotensin-aldosterone system blockers and the risk of Covid-19. N. Engl. J. Med. 2020;382(25)
    1. Reynolds H., Adhikari S., Pulgarin C., Troxel A., Iturrate E., Johnson S., Hausvater A., Newman J., Berger J., Bangalore S., Katz S., Fishman G., Kunichoff D., Chen Y., Ogedegbe G., Hochman J. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. N. Engl. J. Med. 2020;382(25)
    1. Sriram K., Insel P.A. Risks of ACE inhibitor and ARB usage in COVID-19: evaluating the evidence. Clin. Pharmacol. & Ther. 2020;108(2):236–241.
    1. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y., Deng W., Bao L., Zhang B., Liu G., Wang Z., Chappell M., Liu Y., Zheng D., Leibbrandt A., Wada T., Slutsky A., Liu D., Qin C., Jiang C., Penninger J. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005;11(8)
    1. Haga S., Yamamoto N., Nakai-Murakami C., Osawa Y., Tokunaga K., Sata T., Yamamoto N., Sasazuki T., Ishizaka Y. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc. Natl. Acad. Sci. U. S. A. 2008;105(22)
    1. Zhang H., Penninger J., Li Y., Zhong N., Slutsky A. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4)
    1. Sriram K., Insel P. A hypothesis for pathobiology and treatment of COVID-19: the centrality of ACE1/ACE2 imbalance. Br. J. Pharmacol. 2020 Nov;177(21):4825–4844.
    1. Guo X., Zhu Y., Hong Y. Decreased mortality of COVID-19 with renin-angiotensin-aldosterone system inhibitors therapy in patients with hypertension: a meta-analysis. Hypertension. 2020;76(2):e13–e14.
    1. Liu X., Long C., Xiong Q., Chen C., Ma J., Su Y., Hong K. Association of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with risk of COVID-19, inflammation level, severity, and death in patients with COVID-19: A rapid systematic review and meta-analysis. Clin. Cardiol. 2020 Aug 5
    1. Baral R., White M., Vassiliou V.S. Effect of renin-angiotensin-aldosterone system inhibitors in patients with COVID-19: a systematic review and meta-analysis of 28,872 patients. Curr. Atheroscler. Rep. 2020;22(10):61.
    1. Van Griensven J.M.T., Schoemaker R.C., Cohen A.F., Luus H.G., Seibert-Grafe M., Röthig H.-J. Pharmacokinetics, pharmacodynamics and bioavailability of the ACE inhibitor ramipril. Eur. J. Clin. Pharmacol. 1995;47(6):513–518.
    1. Yusuf S., Sleight P., Pogue J., Bosch J., Davies R., Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, Ramipril, on cardiovascular events in high-risk patients. N. Engl. J. Med. 2000;342(3)
    1. Moran A., Simon J.A., Shiboski S., Pickering T.G., Waters D., Rotter J.I., Lyon C., Nickerson D., Yang H., Saad M., Hsueh W., Krauss R.M. Differential effects of ramipril on ambulatory blood pressure in African Americans and Caucasians. Am. J. Hypertens. 2007;20(8):884–891.
    1. Zhang P., Zhu L., Cai J., Lei F., Qin J., Xie J., Liu Y., Zhao Y., Huang X., Lin L., Xia M., Chen M., Cheng X., Zhang X., Guo D., Peng Y., Ji Y., Chen J., She Z., Wang Y., Xu Q., Tan R., Wang H., Lin J., Luo P., Fu S., Cai H., Ye P., Xiao B., Mao W., Liu L., Yan Y., Liu M., Chen M., Zhang X., Wang X., Touyz R., Xia J., Zhang B., Huang X., Yuan Y., Loomba R., Liu P., Li H. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ. Res. 2020;126(12)
    1. Sriram K., Loomba R., Insel P.A. Targeting the renin-angiotensin signaling pathway in COVID-19: unanswered questions, opportunities, and challenges. Proc. Natl. Acad. Sci. U. S. A. 2020;117(47):29274–29282.

Source: PubMed

3
Suscribir