Targeted chiral analysis of bioactive arachidonic Acid metabolites using liquid-chromatography-mass spectrometry

Clementina Mesaros, Ian A Blair, Clementina Mesaros, Ian A Blair

Abstract

A complex structurally diverse series of eicosanoids arises from the metabolism of arachidonic acid. The metabolic profile is further complicated by the enantioselectivity of eicosanoid formation and the variety of regioisomers that arise. In order to investigate the metabolism of arachidonic acid in vitro or in vivo, targeted methods are advantageous in order to distinguish between the complex isomeric mixtures that can arise by different metabolic pathways. Over the last several years this targeted approach has become more popular, although there are still relatively few examples where chiral targeted approaches have been employed to directly analyze complex enantiomeric mixtures. To efficiently conduct targeted eicosanoid analyses, LC separations are coupled with collision induced dissociation (CID) and tandem mass spectrometry (MS/MS). Product ion profiles are often diagnostic for particular regioisomers. The highest sensitivity that can be achieved involves the use of selected reaction monitoring/mass spectrometry (SRM/MS); whereas the highest specificity is obtained with an SRM transitions between an intense parent ion, which contains the intact molecule (M) and a structurally significant product ion. This review article provides an overview of arachidonic acid metabolism and targeted chiral methods that have been utilized for the analysis of the structurally diverse eicosanoids that arise.

Figures

Figure 1
Figure 1
Pathways of arachidonic acid metabolism. Abbreviations: COX, cyclooxygenase; CYP, cytochrome P540; EET, epoxyeicosatrienoic acid; EH, epoxide hydrolase; FLAP, 5-lipoxygenase activating protein; GGT, γ-glutamyltranspeptidase; GSH, glutathione; GST, glutathione-S-transferase; H, hydrolase; HEDH, hydroxyeicosanoid dehydrogenase; HETE, hydroxyeicosatetraenoic acid; HPETE, hydroperoxyeicosatetraenoic acid; HX, hepoxillin; LOX, lipoxygenase; LT, leukotriene; LX, lipoxins; PG, prostaglandin; PGDH, prostaglandin dehydrogenase; POX, peroxidase; S, synthase; TX thromboxane; UGT, UDP-glucuronosyltransferases.
Figure 2
Figure 2
Chiral separation of HETEs (top panel) and hydroxylated metabolites of EPA (middle panel) and DHA (lower panel). Reprinted with permission from Ref. [93].
Figure 3
Figure 3
Formation and action of COX-2-derived eicosanoids in epithelial cell models. arachidonic acid is released from membrane phospholipids by calcium-dependent cytosolic phospholipase A2 (cPLA2). The released arachidonic acid undergoes COX-2-mediated metabolism to PGs or forms the lipid hydroperoxides, 15(S)-hydroperoxyeicosatetraenoic acid (HPETE), 15(R)-HPETE and 11(R)-HPETE, which are reduced to the corresponding HETEs. PGD2 and PGE2 are inactivated by 15-PGDH-mediated conversion to their 15-oxo metabolites. Both 15-oxo-PGD2 and 15-oxo-PGE2 are converted to 13,14-dihydro-5-oxo-PG metabolites. Intact PGD2 secreted by the epithelial cells can undergo albumin-mediated dehydration to 15d-PGJ2. PGE2 secreted from the epithelial cells by the ABCC4 transporter is pro-proliferative for tumor cells. Reuptake of PGE2 by OATP2A1 into the epithelial cells leads to further 15-PGDH-mediated inactivation. In contrast to PGE2 and PGD2, 15(S)-HETE and 11(R)-HETE are activated by 15-PGDH-mediated oxidation to 15-oxo-ETE and 11-oxo-ETE, respectively. The oxo-ETEs are further conjugated to form OEGs. Secreted 15- and 11-oxo-ETE that escape further metabolism can then inhibit endothelial cell proliferation. Therefore, down-regulation of 15-PGDH and OATP2A1 would result in increased PGE2-mediated tumor and endothelial cell proliferation. Reprinted with permission from Ref [110].
Figure 4
Figure 4
Targeted chiral lipidomics analysis of COX-2-derived eicosanoids from LoVo cells. LoVo cells were lysed; eicosanoids were extracted, derivatized with PFB bromide, and analyzed by LC-ECAPCI/SRM/MS. LoVo cell lysates were pretreated with 50 μM CAY10397 to inhibit 15-PGDH to be able to detect the 11-, 15-HETEs and PGE2. Representative chromatograms are shown for (top to bottom) (a) 11(R)-HETE-PFB (m/z 319 → 167), (b) [2H8]-15(S)-HETE-PFB internal standard (m/z 327 → 226), (c) 11-oxo-ETE-PFB (m/z 317 → 165) and 15-oxo-ETE-PFB (m/z 317 → 165), (d) [13C20]-15-oxo-ETE-PFB internal standard (m/z 337 → 120), (e) PGE2-PFB (m/z 351 → 271), (f) [2H4]-PGE2-PFB (m/z 355 → 275), (g) 13,14-dihydro-15-oxo-PGE2-PFB (m/z 351 → 235), (h) [2H4]-13,14-dihydro-15-oxo-PGE2-PFB (m/z 355 → 239). Reprinted with permission from Ref. [110].
Figure 5
Figure 5
5-LOX-mediated formation of arachidonic acid metabolites and dGuo-adducts. HPNE, 4-hydroperoxy-2(E)-nonenal; DOOE, dioxo-6-octenoic acid. Reprinted with permission from Ref. [108].
Figure 6
Figure 6
Amount of lipid peroxidation metabolites from CESS cells. A, 5-HETEs. B, LTB4. C, PGE2, PGD2, and PGF2α. D, 13-HODEs. NT, no treatment; CA, treated with 1.0 μm A23187; CA+VC, treated with 1.0 μm A23187 and 1.0 mm vitamin C; CA+MK, treated with 1.0 μm A23187 and 1.0 μm MK886; CA+ASP, treated with 1.0 μm A23187 and 200.0 μm aspirin. Analyses were performed by stable isotope dilution LC-ECAPCI/SRM/MS of PFB derivatives. Determinations were conducted in triplicate (means ± S.D.). Reprinted with permission from Ref. [108].
Figure 7
Figure 7
LC-SRM/MS analysis and quantitation of 15-LOX-derived eicosanoids from R15L cells and RMock cells treated with arachidonic acid. A, representative chromatograms of 15-LOX-derived lipid metabolites released by R15L cells after 5-min treatment with 10 μM arachidonic acid. SRM chromatograms are shown for 15-oxo-ETE-PFB (m/z 317 → 273) (a), [2H6]5-oxo-ETE-PFB internal standard (m/z 323 → 279) (b), 15-(R,S)-HETE-PFB (m/z 319 → 219) (c), and [2H8]15-(S)-HETE-PFB internal standard (m/z 327 → 226) (d). B, concentration-time graph of 15-HETE (R- and S-form) released by R15L or RMock cells treated with 10 μM arachidonic acid for 24 h. C, concentration-time graph of 15-oxo-ETE released by R15L or RMock cells treated with 10 μM arachidonic acid for 24 h. Cell supernatants were collected at each time point. Lipid metabolites in the cell supernatants were extracted and derivatized with PFB. Determinations were conducted in triplicate (means ± S.E.M.) by stable isotope dilution chiral LC-ECAPCI/SRM/MS analyses of PFB derivatives. Reprinted with permission from Ref [108].
Figure 8
Figure 8
Biosynthesis of epoxyeicosatrienoic acids (EETs) by CYP isoforms. Reprinted with permission from Ref. [138].
Figure 9
Figure 9
Enantioselective biosynthesis of EETs by CYP family 2 isoforms: (A) hCYP2C19 and (B) hCYP2D6. Reprinted with permission from Ref. [138].
Figure 10
Figure 10
Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using a [13C]‐analog internal standards. Reprinted with permission from Ref. [138].

References

    1. Bergstrom S., Samuelsson B. Isolation of prostaglandin E1 from human seminal plasma. Prostaglandins and related factors. 11. J. Biol. Chem. 1962;237:3005–3006.
    1. Hamberg M., Samuelsson B. Oxygenation of unsaturated fatty acids by the vesicular gland of sheep. J. Biol. Chem. 1967;242:5344–5354.
    1. DuBois R.N., Abramson S.B., Crofford L., Gupta R.A., Simon L.S., van de Putte L.B., Lipsky P.E. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–1073.
    1. Crofford L.J. COX-1 and COX-2 tissue expression: implications and predictions. J. Rheumatol. Suppl. 1997;49:15–19.
    1. Pong S.S., Hong S.L., Levine L. Prostaglandin production by methylcholanthrene-transformed mouse BALB/3T3. Requirement for protein synthesis. J. Biol. Chem. 1977;252:1408–1413.
    1. Hassid A., Levine L. Induction of fatty acid cyclooxygenase activity in canine kidney cells (MDCK) by benzo(a)pyrene. J. Biol. Chem. 1977;252:6591–6593.
    1. Hla T., Neilson K. Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci. USA. 1992;89:7384–7388.
    1. Tazawa R., Xu X.M., Wu K.K., Wang L.H. Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem. Biophys. Res. Commun. 1994;203:190–199. doi: 10.1006/bbrc.1994.2167.
    1. Rizzo M.T. Cyclooxygenase-2 in oncogenesis. Clinica Chimica Acta. 2011;412:671–687. doi: 10.1016/j.cca.2010.12.026.
    1. Eberhart C.E., Coffey R.J., Radhika A., Giardiello F.M., Ferrenbach S., DuBois R.N. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107:1183–1188.
    1. Zimmermann K.C., Sarbia M., Weber A.A., Borchard F., Gabbert H.E., Schror K. Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res. 1999;59:198–204.
    1. Tucker O.N., Dannenberg A.J., Yang E.K., Zhang F., Teng L., Daly J.M., Soslow R.A., Masferrer J.L., Woerner B.M., Koki A.T., Fahey T.J., III. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res. 1999;59:987–990.
    1. Goulet A.C., Einsphar J.G., Alberts D.S., Beas A., Burk C., Bhattacharyya A., Bangert J., Harmon J.M., Fujiwara H., Koki A., Nelson M.A. Analysis of cyclooxygenase 2 (COX-2) expression during malignant melanoma progression. Cancer Biol. Ther. 2003;2:713–718.
    1. Richardsen E., Uglehus R.D., Due J., Busch C., Busund L.T. COX-2 is overexpressed in primary prostate cancer with metastatic potential and may predict survival. A comparison study between COX-2, TGF-beta, IL-10 and Ki67. Cancer Epidemiol. 2010;34:316–322. doi: 10.1016/j.canep.2010.03.019.
    1. Mrena J., Wiksten J.P., Kokkola A., Nordling S., Ristimaki A., Haglund C. COX-2 is associated with proliferation and apoptosis markers and serves as an independent prognostic factor in gastric cancer. Tumour. Biol. 2010;31:1–7.
    1. Denkert C., Winzer K.J., Muller B.M., Weichert W., Pest S., Kobel M., Kristiansen G., Reles A., Siegert A., Guski H., Hauptmann S. Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer. 2003;97:2978–2987.
    1. Denkert C., Winzer K.J., Hauptmann S. Prognostic impact of cyclooxygenase-2 in breast cancer. Clin. Breast Cancer. 2004;4:428–433. doi: 10.3816/CBC.2004.n.006.
    1. Wang D., DuBois R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29:781–788. doi: 10.1038/onc.2009.421.
    1. Lee S.H., Rangiah K., Williams M.V., Wehr A.Y., DuBois R.N., Blair I.A. Cyclooxygenase-2-mediated metabolism of arachidonic acid to 15-oxo-eicosatetraenoic acid by rat intestinal epithelial cells. Chem. Res. Toxicol. 2007;20:1665–1675. doi: 10.1021/tx700130p.
    1. Liu X., Zhang S., Arora J.S., Snyder N.W., Shah S.J., Blair I.A. 11-Oxoeicosatetraenoic Acid Is a Cyclooxygenase-2/15-Hydroxyprostaglandin Dehydrogenase-Derived Antiproliferative Eicosanoid. Chem. Res. Toxicol. :2011.
    1. Xin X., Yang S., Kowalski J., Gerritsen M.E. Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J. Biol. Chem. 1999;274:9116–9121.
    1. Backlund M.G., Mann J.R., Holla V.R., Shi Q., Daikoku T., Dey S.K., DuBois R.N. Repression of 15-hydroxyprostaglandin dehydrogenase involves histone deacetylase 2 and snail in colorectal cancer. Cancer Res. 2008;68:9331–9337. doi: 10.1158/0008-5472.CAN-08-2893.
    1. Lotzer K., Funk C.D., Habenicht A.J. The 5-lipoxygenase pathway in arterial wall biology and atherosclerosis. Biochim. Biophys. Acta. 2005;1736:30–37.
    1. Woods J.W., Evans J.F., Ethier D., Scott S., Vickers P.J., Hearn L., Heibein J.A., Charleson S., Singer I.I. 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J. Exp. Med. 1993;178:1935–1946.
    1. Zhao L., Funk C.D. Lipoxygenase pathways in atherogenesis. Trends Cardiovasc. Med. 2004;14:191–195. doi: 10.1016/j.tcm.2004.04.003.
    1. Murphy R.C., Gijon M.A. Biosynthesis and metabolism of leukotrienes. Biochem. J. 2007;405:379–395.
    1. Werz O. 5-lipoxygenase: cellular biology and molecular pharmacology. Curr. Drug Targets Inflamm. Allergy. 2002;1:23–44. doi: 10.2174/1568010023344959.
    1. Sharma J.N., Mohammed L.A. The role of leukotrienes in the pathophysiology of inflammatory disorders: is there a case for revisiting leukotrienes as therapeutic targets? Inflammopharmacology . 2006;14:10–16. doi: 10.1007/s10787-006-1496-6.
    1. Hicks A., Monkarsh S.P., Hoffman A.F., Goodnow R., Jr. Leukotriene B4 receptor antagonists as therapeutics for inflammatory disease: preclinical and clinical developments. Expert. Opin. Investig. Drugs. 2007;16:1909–1920. doi: 10.1517/13543784.16.12.1909.
    1. Wymann M.P., Schneiter R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 2008;9:162–176.
    1. Peters-Golden M. Expanding roles for leukotrienes in airway inflammation. Curr. Allergy Asthma Rep. 2008;8:367–373. doi: 10.1007/s11882-008-0057-z.
    1. Fairweather D., Frisancho-Kiss S. Mast cells and inflammatory heart disease: potential drug targets. Cardiovasc. Hematol. Disord. Drug Targets. 2008;8:80–90. doi: 10.2174/187152908783884957.
    1. Gupta S., Srivastava M., Ahmad N., Sakamoto K., Bostwick D.G., Mukhtar H. Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer. 2001;91:737–743.
    1. Hennig R., Ding X.Z., Tong W.G., Schneider M.B., Standop J., Friess H., Buchler M.W., Pour P.M., Adrian T.E. 5-Lipoxygenase and leukotriene B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am. J. Pathol. 2002;161:421–428. doi: 10.1016/S0002-9440(10)64198-3.
    1. Hennig R., Grippo P., Ding X.Z., Rao S.M., Buchler M.W., Friess H., Talamonti M.S., Bell R.H., Adrian T.E. 5-Lipoxygenase, a marker for early pancreatic intraepithelial neoplastic lesions. Cancer Res. 2005;65:6011–6016.
    1. Chen X., Sood S., Yang C.S., Li N., Sun Z. Five-lipoxygenase pathway of arachidonic acid metabolism in carcinogenesis and cancer chemoprevention. Curr. Cancer Drug Targets. 2006;6:613–622. doi: 10.2174/156800906778742451.
    1. Powell W.S., Gravelle F., Gravel S. Metabolism of 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid and other 5(S)-hydroxyeicosanoids by a specific dehydrogenase in human polymorphonuclear leukocytes. J. Biol. Chem. 1992;267:19233–19241.
    1. Grant G.E., Rokach J., Powell W.S. 5-Oxo-ETE and the OXE receptor. Prostaglandins Other Lipid Mediat. 2009;89:98–104. doi: 10.1016/j.prostaglandins.2009.05.002.
    1. Bowers R.C., Hevko J., Henson P.M., Murphy R.C. A novel glutathione containing eicosanoid (FOG7) chemotactic for human granulocytes. J. Biol. Chem. 2000;275:29931–29934.
    1. Jian W., Lee S.H., Williams M.V., Blair I.A. 5-Lipoxygenase-mediated endogenous DNA damage. J. Biol. Chem. 2009;284:16799–16807.
    1. Kuhn H., O'Donnell V.B. Inflammation and immune regulation by 12/15-lipoxygenases. Prog. Lipid Res. 2006;45:334–356. doi: 10.1016/j.plipres.2006.02.003.
    1. Kuhn H., Borchert A. Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radic. Biol. Med. 2002;33:154–172.
    1. Brinckmann R., Schnurr K., Heydeck D., Rosenbach T., Kolde G., Kuhn H. Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme. Blood. 1998;91:64–74.
    1. Bryant R.W., Bailey J.M., Schewe T., Rapoport S.M. Positional specificity of a reticulocyte lipoxygenase. Conversion of arachidonic acid to 15-S-hydroperoxy-eicosatetraenoic acid. J. Biol. Chem. 1982;257:6050–6055.
    1. Kuhn H., Chan L. The role of 15-lipoxygenase in atherogenesis: pro- and antiatherogenic actions. Curr. Opin. Lipidol. 1997;8:111–117. doi: 10.1097/00041433-199704000-00009.
    1. Walther M., Wiesner R., Kuhn H. Investigations into calcium-dependent membrane association of 15-lipoxygenase-1. Mechanistic roles of surface-exposed hydrophobic amino acids and calcium. J. Biol. Chem. 2004;279:3717–3725.
    1. Viita H., Markkanen J., Eriksson E., Nurminen M., Kinnunen K., Babu M., Heikura T., Turpeinen S., Laidinen S., Takalo T., Yla-Herttuala S. 15-lipoxygenase-1 prevents vascular endothelial growth factor A- and placental growth factor-induced angiogenic effects in rabbit skeletal muscles via reduction in growth factor mRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. Circ. Res. 2008;102:177–184. doi: 10.1161/CIRCRESAHA.107.155556.
    1. Harats D., Ben-Shushan D., Cohen H., Gonen A., Barshack I., Goldberg I., Greenberger S., Hodish I., Harari A., Varda-Bloom N., Levanon K., Grossman E., Chaitidis P., Kuhn H., Shaish A. Inhibition of carcinogenesis in transgenic mouse models over-expressing 15-lipoxygenase in the vascular wall under the control of murine preproendothelin-1 promoter. Cancer Lett. 2005;229:127–134. doi: 10.1016/j.canlet.2005.02.017.
    1. Wittwer J., Hersberger M. The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot. Essent. Fatty Acids. 2007;77:67–77. doi: 10.1016/j.plefa.2007.08.001.
    1. Fierro I.M., Colgan S.P., Bernasconi G., Petasis N.A., Clish C.B., Arita M., Serhan C.N. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit human neutrophil migration: comparisons between synthetic 15 epimers in chemotaxis and transmigration with microvessel endothelial cells and epithelial cells. J. Immunol. 2003;170:2688–2694.
    1. Bannenberg G.L., Chiang N., Ariel A., Arita M., Tjonahen E., Gotlinger K.H., Hong S., Serhan C.N. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 2005;174:4345–4355.
    1. Brash A.R., Boeglin W.E., Chang M.S. Discovery of a second 15S-lipoxygenase in humans. Proc. Natl. Acad. Sci. U. S. A. 1997;94:6148–6152.
    1. Shappell S.B., Boeglin W.E., Olson S.J., Kasper S., Brash A.R. 15-lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. Am. J. Pathol. 1999;155:235–245. doi: 10.1016/S0002-9440(10)65117-6.
    1. Daurkin I., Eruslanov E., Stoffs T., Perrin G.Q., Algood C., Gilbert S.M., Rosser C.J., Su L.M., Vieweg J., Kusmartsev S. Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res. 2011;71:6400–6409.
    1. Yeung J., Holinstat M. 12-lipoxygenase: a potential target for novel anti-platelet therapeutics. Cardiovasc. Hematol. Agents Med. Chem. 2011;9:154–164. doi: 10.2174/187152511797037619.
    1. Boeglin W.E., Kim R.B., Brash A.R. A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression. Proc. Natl. Acad. Sci. U. S. A. 1998;95:6744–6749. doi: 10.1073/pnas.95.12.6744.
    1. Chen Y.Q., Duniec Z.M., Liu B., Hagmann W., Gao X., Shimoji K., Marnett L.J., Johnson C.R., Honn K.V. Endogenous 12(S)-HETE production by tumor cells and its role in metastasis. Cancer Res. 1994;54:1574–1579.
    1. Guo Y., Zhang W., Giroux C., Cai Y., Ekambaram P., Dilly A.K., Hsu A., Zhou S., Maddipati K.R., Liu J., Joshi S., Tucker S.C., Lee M.J., Honn K.V. Identification of the orphan G protein-coupled receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid. J. Biol. Chem. 2011;286:33832–33840.
    1. Schneider C., Brash A.R. Lipoxygenase-catalyzed formation of R-configuration hydroperoxides. Prostaglandins Other Lipid Mediat. 2002;68-69:291–301. doi: 10.1016/S0090-6980(02)00041-2.
    1. Pace-Asciak C.R. Hepoxilins in cancer and inflammation--use of hepoxilin antagonists. Cancer Metastasis Rev. 2011;30:493–506. doi: 10.1007/s10555-011-9307-y.
    1. Guengerich F.P. Cytochrome P450: what have we learned and what are the future issues? Drug Metab Rev. 2004;36:159–197. doi: 10.1081/DMR-120033996.
    1. Capdevila J.H., Falck J.R., Imig J.D. Roles of the cytochrome P450 arachidonic acid monooxygenases in the control of systemic blood pressure and experimental hypertension. Kidney Int. 2007;72:683–689. doi: 10.1038/sj.ki.5002394.
    1. Bylund J., Kunz T., Valmsen K., Oliw E.H. Cytochromes P450 with bisallylic hydroxylation activity on arachidonic and linoleic acids studied with human recombinant enzymes and with human and rat liver microsomes. J. Pharmacol. Exp. Ther. 1998;284:51–60.
    1. Hsu M.H., Savas U., Griffin K.J., Johnson E.F. Human cytochrome p450 family 4 enzymes: function, genetic variation and regulation. Drug Metab Rev. 2007;39:515–538. doi: 10.1080/03602530701468573.
    1. Prakash C., Zhang J.Y., Falck J.R., Chauhan K., Blair I.A. 20-Hydroxyeicosatetraenoic acid is excreted as a glucuronide conjugate in human urine. Biochem. Biophys. Res. Commun. 1992;185:728–733.
    1. Capdevila J.H., Falck J.R., Estabrook R.W. Cytochrome P450 and the arachidonate cascade. FASEB J. 1992;6:731–736.
    1. Harder D.R., Gebremedhin D., Narayanan J., Jefcoat C., Falck J.R., Campbell W.B., Roman R. Formation and action of a P-450 4A metabolite of arachidonic acid in cat cerebral microvessels. Am. J. Physiol. 1994;266:H2098–H2107.
    1. Schwartzman M.L., da Silva J.L., Lin F., Nishimura M., Abraham N.G. Cytochrome P450 4A expression and arachidonic acid omega-hydroxylation in the kidney of the spontaneously hypertensive rat. Nephron. 1996;73:652–663. doi: 10.1159/000189154.
    1. Fulton D., Falck J.R., McGiff J.C., Carroll M.A., Quilley J. A method for the determination of 5,6-EET using the lactone as an intermediate in the formation of the diol. J. Lipid Res. 1998;39:1713–1721.
    1. Chacos N., Capdevila J., Falck J.R., Manna S., Martin-Wixtrom C., Gill S.S., Hammock B.D., Estabrook R.W. The reaction of arachidonic acid epoxides (epoxyeicosatrienoic acids) with a cytosolic epoxide hydrolase. Arch. Biochem. Biophys. 1983;223:639–648. doi: 10.1016/0003-9861(83)90628-8.
    1. Zeldin D.C., Plitman J.D., Kobayashi J., Miller R.F., Snapper J.R., Falck J.R., Szarek J.L., Philpot R.M., Capdevila J.H. The rabbit pulmonary cytochrome P450 arachidonic acid metabolic pathway: characterization and significance. J. Clin. Invest. 1995;95:2150–2160. doi: 10.1172/JCI117904.
    1. Spearman M.E., Prough R.A., Estabrook R.W., Falck J.R., Manna S., Leibman K.C., Murphy R.C., Capdevila J. Novel glutathione conjugates formed from epoxyeicosatrienoic acids (EETs) Arch. Biochem. Biophys. 1985;242:225–230. doi: 10.1016/0003-9861(85)90496-5.
    1. Smith H.E., Jones J.P., III, Kalhorn T.F., Farin F.M., Stapleton P.L., Davis C.L., Perkins J.D., Blough D.K., Hebert M.F., Thummel K.E., Totah R.A. Role of cytochrome P450 2C8 and 2J2 genotypes in calcineurin inhibitor-induced chronic kidney disease. Pharmacogenet. Genomics . 2008;18:943–953. doi: 10.1097/FPC.0b013e32830e1e16.
    1. Kaspera R., Totah R.A. Epoxyeicosatrienoic acids: formation, metabolism and potential role in tissue physiology and pathophysiology. Expert. Opin. Drug Metab Toxicol. :2009.
    1. Spector A.A. Arachidonic acid cytochrome P450 epoxygenase pathway. J. Lipid Res. 2009;50 Suppl:S52–S56.
    1. Capdevila J.H., Wei S., Yan J., Karara A., Jacobson H.R., Falck J.R., Guengerich F.P., DuBois R.N. Cytochrome P-450 arachidonic acid epoxygenase. Regulatory control of the renal epoxygenase by dietary salt loading. J. Biol. Chem. 1992;267:21720–21726.
    1. Karara A., Dishman E., Blair I., Falck J.R., Capdevila J.H. Endogenous epoxyeicosatrienoic acids. Cytochrome P-450 controlled stereoselectivity of the hepatic arachidonic acid epoxygenase. J. Biol. Chem. 1989;264:19822–19827.
    1. Karara A., Dishman E., Jacobson H., Falck J.R., Capdevila J.H. Arachidonic acid epoxygenase. Stereochemical analysis of the endogenous epoxyeicosatrienoic acids of human kidney cortex. FEBS Lett. 1990;268:227–230. doi: 10.1016/0014-5793(90)81014-F.
    1. Wu S., Moomaw C.R., Tomer K.B., Falck J.R., Zeldin D.C. Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J. Biol. Chem. 1996;271:3460–3468.
    1. Capdevila J.H., Dishman E., Karara A., Falck J.R. Cytochrome P450 arachidonic acid epoxygenase: stereochemical characterization of epoxyeicosatrienoic acids. Methods Enzymol. 1991;206:441–453.
    1. Roman R.J. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131–185.
    1. Harder D.R., Campbell W.B., Roman R.J. Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J. Vasc. Res. 1995;32:79–92. doi: 10.1159/000159080.
    1. Campbell W.B. New role for epoxyeicosatrienoic acids as anti-inflammatory mediators. Trends Pharmacol. Sci. 2000;21:125–127. doi: 10.1016/S0165-6147(00)01472-3.
    1. Fleming I. DiscrEET regulators of homeostasis: epoxyeicosatrienoic acids, cytochrome P450 epoxygenases and vascular inflammation. Trends Pharmacol. Sci. 2007;28:448–452. doi: 10.1016/j.tips.2007.08.002.
    1. Node K., Huo Y., Ruan X., Yang B., Spiecker M., Ley K., Zeldin D.C., Liao J.K. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 1999;285:1276–1279.
    1. Spector A.A., Norris A.W. Action of epoxyeicosatrienoic acids on cellular function. Am. J. Physiol Cell Physiol. 2007;292:C996–1012. doi: 10.1152/ajpcell.00402.2006.
    1. Fitzpatrick F.A., Ennis M.D., Baze M.E., Wynalda M.A., McGee J.E., Liggett W.F. Inhibition of cyclooxygenase activity and platelet aggregation by epoxyeicosatrienoic acids. Influence of stereochemistry. J. Biol. Chem. 1986;261:15334–15338.
    1. Panigrahy D., Edin M.L., Lee C.R., Huang S., Bielenberg D.R., Butterfield C.E., Barnes C.M., Mammoto A., Mammoto T., Luria A., Benny O., Chaponis D.M., Dudley A.C., Greene E.R., Vergilio J.A., Pietramaggiori G., Scherer-Pietramaggiori S.S., Short S.M., Seth M., Lih F.B., Tomer K.B., Yang J., Schwendener R.A., Hammock B.D., Falck J.R., Manthati V.L., Ingber D.E., Kaipainen A., D'Amore P.A., Kieran M.W., Zeldin D.C. Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. J. Clin. Invest. 2012;122:178–191.
    1. Wang D., DuBois R.N. Epoxyeicosatrienoic acids: a double-edged sword in cardiovascular diseases and cancer. J. Clin. Invest. 2012;122:19–22. doi: 10.1172/JCI61453.
    1. Mesaros C., Lee S.H., Blair I.A. Targeted quantitative analysis of eicosanoid lipids in biological samples using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009;877:2736–2745. doi: 10.1016/j.jchromb.2009.03.011.
    1. Feldstein A.E., Lopez R., Tamimi T.A., Yerian L., Chung Y.M., Berk M., Zhang R., McIntyre T.M., Hazen S.L. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Lipid Res. 2010;51:3046–3054. doi: 10.1194/jlr.M007096.
    1. Yang R., Chiang N., Oh S.F., Serhan C.N. Metabolomics-lipidomics of eicosanoids and docosanoids generated by phagocytes. Curr. Protoc. Immunol. 2011;Chapter 14
    1. Oh S.F., Vickery T.W., Serhan C.N. Chiral lipidomics of E-series resolvins: aspirin and the biosynthesis of novel mediators. Biochim. Biophys. Acta. 2011;1811:737–747. doi: 10.1016/j.bbalip.2011.06.007.
    1. Blaho V.A., Buczynski M.W., Brown C.R., Dennis E.A. Lipidomic analysis of dynamic eicosanoid responses during the induction and resolution of Lyme arthritis. J. Biol. Chem. 2009;284:21599–21612. doi: 10.1074/jbc.M109.003822.
    1. Sanak M., Gielicz A., Nagraba K., Kaszuba M., Kumik J., Szczeklik A. Targeted eicosanoids lipidomics of exhaled breath condensate in healthy subjects. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010;878:1796–1800. doi: 10.1016/j.jchromb.2010.05.012.
    1. Altmaier E., Kastenmuller G., Romisch-Margl W., Thorand B., Weinberger K.M., Illig T., Adamski J., Doring A., Suhre K. Questionnaire-based self-reported nutrition habits associate with serum metabolism as revealed by quantitative targeted metabolomics. Eur. J. Epidemiol. 2011;26:145–156. doi: 10.1007/s10654-010-9524-7.
    1. Mal M., Koh P.K., Cheah P.Y., Chan E.C. Ultra-pressure liquid chromatography/tandem mass spectrometry targeted profiling of arachidonic acid and eicosanoids in human colorectal cancer. Rapid Commun. Mass Spectrom. 2011;25:755–764. doi: 10.1002/rcm.4926.
    1. Manna J.D., Reyzer M.L., Latham J.C., Weaver C.D., Marnett L.J., Caprioli R.M. High-throughput quantification of bioactive lipids by MALDI mass spectrometry: application to prostaglandins. Anal. Chem. 2011;83:6683–6688.
    1. Clugston R.D., Jiang H., Lee M.X., Piantedosi R., Yuen J.J., Ramakrishnan R., Lewis M.J., Gottesman M.E., Huang L.S., Goldberg I.J., Berk P.D., Blaner W.S. Altered hepatic lipid metabolism in C57BL/6 mice fed alcohol: a targeted lipidomic and gene expression study. J. Lipid Res. 2011;52:2021–2031. doi: 10.1194/jlr.M017368.
    1. Boger M.S., Bian A., Shintani A., Milne G.L., Morrow J.D., Erdem H., Mitchell V., Haas D.W., Hulgan T. Sex differences in urinary biomarkers of vascular and endothelial function in HIV-infected persons receiving antiretroviral therapy. Antivir. Ther. :2011.
    1. Murphy R.C., Barkley R.M., Zemski B.K., Hankin J., Harrison K., Johnson C., Krank J., McAnoy A., Uhlson C., Zarini S. Electrospray ionization and tandem mass spectrometry of eicosanoids. Anal. Biochem. 2005;346:1–42. doi: 10.1016/j.ab.2005.04.042.
    1. Singh G., Gutierrez A., Xu K., Blair I.A. Liquid chromatography/electron capture atmospheric pressure chemical ionization/mass spectrometry: analysis of pentafluorobenzyl derivatives of biomolecules and drugs in the attomole range. Anal. Chem. 2000;72:3007–3013.
    1. Lee S.H., Williams M.V., DuBois R.N., Blair I.A. Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2003;17:2168–2176. doi: 10.1002/rcm.1170.
    1. Lee S.H., Williams M.V., Blair I.A. Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat. 2005;77:141–157. doi: 10.1016/j.prostaglandins.2004.01.009.
    1. Lee S.H., Blair I.A. Targeted chiral lipidomics analysis by liquid chromatography electron capture atmospheric pressure chemical ionization mass spectrometry (LC-ECAPCI/MS) Methods Enzymol. 2007;433:159–174.
    1. Blair I.A., Barrow S.E., Waddell K.A., Lewis P.J., Dollery C.T. Prostacyclin is not a circulating hormone in man. Prostaglandins. 1982;23:579–589. doi: 10.1016/0090-6980(82)90118-6.
    1. Blair I.A. Electron-capture negative-ion chemical ionization mass-spectrometry of lipid mediators. Methods Enzymol. 1990;187:13–23. doi: 10.1016/0076-6879(90)87004-M.
    1. Jian W., Lee S.H., Williams M.V., Blair I.A. 5-Lipoxygenase-mediated endogenous DNA damage. J. Biol. Chem. 2009;284:16799–16807.
    1. Wei S., Brittin J.J., Falck J.R., Anjaiah S., Nithipatikom K., Cui L., Campbell W.B., Capdevila J.H. Chiral resolution of the epoxyeicosatrienoic acids, arachidonic acid epoxygenase metabolites. Anal. Biochem. 2006;352:129–134.
    1. Liu X., Zhang S., Arora J.S., Snyder N.W., Shah S.J., Blair I.A. 11-Oxoeicosatetraenoic acid is a cyclooxygenase-2/15-hydroxyprostaglandin dehydrogenase-derived antiproliferative eicosanoid. Chem. Res. Toxicol. 2011;24:2227–2236. doi: 10.1021/tx200336f.
    1. Matsumura F. The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin-activated Ah receptor to cause toxic effects. Biochem. Pharmacol. 2009;77:608–626. doi: 10.1016/j.bcp.2008.10.013.
    1. Ouyang W., Ma Q., Li J., Zhang D., Ding J., Huang Y., Xing M.M., Huang C. Benzo[a]pyrene diol-epoxide (B[a]PDE) upregulates COX-2 expression through MAPKs/AP-1 and IKKbeta/NF-kappaB in mouse epidermal Cl41 cells. Mol. Carcinog. 2007;46:32–41.
    1. Huang R.Y., Chen G.G. Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochim. Biophys. Acta. 2011;1815:158–169.
    1. Backlund M.G., Mann J.R., Holla V.R., Buchanan F.G., Tai H.H., Musiek E.S., Milne G.L., Katkuri S., DuBois R.N. 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J. Biol. Chem. 2005;280:3217–3223.
    1. Chou W.L., Chuang L.M., Chou C.C., Wang A.H., Lawson J.A., FitzGerald G.A., Chang Z.F. Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. J. Biol. Chem. 2007;282:18162–18172.
    1. Hughes D., Otani T., Yang P., Newman R.A., Yantiss R.K., Altorki N.K., Port J.L., Yan M., Markowitz S.D., Mazumdar M., Tai H.H., Subbaramaiah K., Dannenberg A.J. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase regulates levels of bioactive lipids in non-small cell lung cancer. Cancer Prev. Res. (Phila) . 2008;1:241–249. doi: 10.1158/1940-6207.CAPR-08-0055.
    1. Tai H.H., Tong M., Ding Y. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and lung cancer. Prostaglandins Other Lipid Mediat. 2007;83:203–208. doi: 10.1016/j.prostaglandins.2007.01.007.
    1. Lee S.H., Williams M.V., DuBois R.N., Blair I.A. Cyclooxygenase-2-mediated DNA damage. J. Biol. Chem. 2005;280:28337–28346. doi: 10.1074/jbc.M504178200.
    1. Wei C., Zhu P., Shah S.J., Blair I.A. 15-oxo-Eicosatetraenoic acid, a metabolite of macrophage 15-hydroxyprostaglandin dehydrogenase that inhibits endothelial cell proliferation. Mol. Pharmacol. 2009;76:516–525. doi: 10.1124/mol.109.057489.
    1. Shao J., Sheng H., Inoue H., Morrow J.D., DuBois R.N. Regulation of constitutive cyclooxygenase-2 expression in colon carcinoma cells. J. Biol. Chem. 2000;275:33951–33956.
    1. Waddington E., Sienuarine K., Puddey I., Croft K. Identification and quantitation of unique fatty acid oxidation products in human atherosclerotic plaque using high-performance liquid chromatography. Anal. Biochem. 2001;292:234–244.
    1. Yan M., Mehta J.L., Zhang W., Hu C. LOX-1, Oxidative Stress and Inflammation: A Novel Mechanism for Diabetic Cardiovascular Complications. Cardiovasc. Drugs Ther. 2011;25:451–459.
    1. Greene E.R., Huang S., Serhan C.N., Panigrahy D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat. 2011;96:27–36. doi: 10.1016/j.prostaglandins.2011.08.004.
    1. Williams M.V., Lee S.H., Blair I.A. Liquid chromatography/mass spectrometry analysis of bifunctional electrophiles and DNA adducts from vitamin C mediated decomposition of 15-hydroperoxyeicosatetraenoic acid. Rapid Commun. Mass Spectrom. 2005;19:849–858. doi: 10.1002/rcm.1854.
    1. Lee S.H., Oe T., Blair I.A. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science. 2001;292:2083–2086. doi: 10.1126/science.1059501.
    1. Lee S.H., Arora J.A., Oe T., Blair I.A. 4-Hydroperoxy-2-nonenal-induced formation of 1,N2-etheno-2'-deoxyguanosine adducts. Chem. Res. Toxicol. 2005;18:780–786. doi: 10.1021/tx0497088.
    1. Lee S.H., Silva Elipe M.V., Arora J.S., Blair I.A. Dioxododecenoic acid: a lipid hydroperoxide-derived bifunctional electrophile responsible for etheno DNA adduct formation. Chem. Res. Toxicol. 2005;18:566–578. doi: 10.1021/tx049716o.
    1. Williams M.V., Lee S.H., Pollack M., Blair I.A. Endogenous lipid hydroperoxide-mediated DNA-adduct formation in min mice. J. Biol. Chem. 2006;281:10127–10133. doi: 10.1074/jbc.M600178200.
    1. Berry C.N., Hoult J.R., Peers S.H., Agback H. Inhibition of prostaglandin 15-hydroxydehydrogenase by sulphasalazine and a novel series of potent analogues. Biochem. Pharmacol. 1983;32:2863–2871. doi: 10.1016/0006-2952(83)90390-8.
    1. Quidville V., Segond N., Lausson S., Frenkian M., Cohen R., Jullienne A. 15-Hydroxyprostaglandin-dehydrogenase is involved in anti-proliferative effect of non-steroidal anti-inflammatory drugs COX-1 inhibitors on a human medullary thyroid carcinoma cell line. Prostaglandins Other Lipid Mediat. 2006;81:14–30. doi: 10.1016/j.prostaglandins.2006.06.004.
    1. Gulliksson M., Brunnstrom A., Johannesson M., Backman L., Nilsson G., Harvima I., Dahlen B., Kumlin M., Claesson H.E. Expression of 15-lipoxygenase type-1 in human mast cells. Biochim. Biophys. Acta. 2007;1771:1156–1165.
    1. Murphy R.C., Zarini S. Glutathione adducts of oxyeicosanoids. Glutathione adducts of oxyeicosanoids. 2002;68-69:471–482.
    1. Blair I.A. Endogenous glutathione adducts. Cur. Drug Metab. 2006;7:853–872. doi: 10.2174/138920006779010601.
    1. Blair I.A. Analysis of endogenous glutathione-adducts and their metabolites. Biomed. Chromatogr. 2010;24:29–38. doi: 10.1002/bmc.1374.
    1. Fierro I.M., Kutok J.L., Serhan C.N. Novel lipid mediator regulators of endothelial cell proliferation and migration: aspirin-triggered-15R-lipoxin A(4) and lipoxin A(4) J. Pharmacol. Exp. Ther. 2002;300:385–392. doi: 10.1124/jpet.300.2.385.
    1. Merched A.J., Ko K., Gotlinger K.H., Serhan C.N., Chan L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 2008;22:3595–3606. doi: 10.1096/fj.08-112201.
    1. Serhan C.N., Chiang N., Van Dyke T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008;8:349–361.
    1. Mesaros C., Lee S.H., Blair I.A. Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards. Rapid Commun. Mass Spectrom. 2010;24:3237–3247. doi: 10.1002/rcm.4760.
    1. Capdevila J.H., Kishore V., Dishman E., Blair I.A., Falck J.R. A novel pool of rat liver inositol and ethanolamine phospholipids contains epoxyeicosatrienoic acids (EETs) Biochem. Biophys. Res. Commun. 1987;146:638–644.
    1. Hammonds T.D., Blair I.A., Falck J.R., Capdevila J.H. Resolution of epoxyeicosatrienoate enantiomers by chiral phase chromatography. Anal. Biochem. 1989;182:300–303. doi: 10.1016/0003-2697(89)90598-8.
    1. VanderNoot V.A., VanRollins M. Capillary electrophoresis of cytochrome P-450 epoxygenase metabolites of arachidonic acid. 1. Resolution of regioisomers. Anal. Chem. 2002;74:5859–5865. doi: 10.1021/ac025909+.
    1. Zhang J.Y., Blair I.A. Direct resolution of epoxyeicosatrienoic acid enantiomers by chiral-phase high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl. 1994;657:23–29. doi: 10.1016/0378-4347(94)80065-0.
    1. Hammonds T.D., Blair I.A., Falck J.R., Capdevila J.H. Resolution of epoxyeicosatrienoate enantiomers by chiral phase chromatography. Anal. Biochem. 1989;182:300–303. doi: 10.1016/0003-2697(89)90598-8.
    1. Bylund J., Ericsson J., Oliw E.H. Analysis of cytochrome P450 metabolites of arachidonic and linoleic acids by liquid chromatography-mass spectrometry with ion trap MS. Anal. Biochem. 1998;265:55–68.
    1. Wei S., Brittin J.J., Falck J.R., Anjaiah S., Nithipatikom K., Cui L., Campbell W.B., Capdevila J.H. Chiral resolution of the epoxyeicosatrienoic acids, arachidonic acid epoxygenase metabolites. Anal. Biochem. 2006;352:129–134.
    1. Kiss L., Roder Y., Bier J., Weissmann N., Seeger W., Grimminger F. Direct eicosanoid profiling of the hypoxic lung by comprehensive analysis via capillary liquid chromatography with dual online photodiode-array and tandem mass-spectrometric detection. Anal. Bioanal. Chem. 2008;390:697–714.
    1. Zhang J.Y., Prakash C., Yamashita K., Blair I.A. Regiospecific and enantioselective metabolism of 8,9-epoxyeicosatrienoic acid by cyclooxygenase. Biochem. Biophys. Res. Commun. 1992;183:138–143. doi: 10.1016/0006-291X(92)91619-2.
    1. Homma T., Zhang J.Y., Shimizu T., Prakash C., Blair I.A., Harris R.C. Cyclooxygenase-derived metabolites of 8,9-epoxyeicosatrienoic acid are potent mitogens for cultured rat glomerular mesangial cells. Biochem. Biophys. Res. Commun. 1993;191:282–288. doi: 10.1006/bbrc.1993.1214.
    1. Ciccimaro E., Blair I.A. Stable-isotope dilution LC-MS for quantitative biomarker analysis. Bioanalysis. 2010;2:311–341. doi: 10.4155/bio.09.185.
    1. Tan B., O'Dell D.K., Yu Y.W., Monn M.F., Hughes H.V., Burstein S., Walker J.M. Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J. Lipid Res. 2010;51:112–119. doi: 10.1194/jlr.M900198-JLR200.
    1. Huang S.M., Bisogno T., Petros T.J., Chang S.Y., Zavitsanos P.A., Zipkin R.E., Sivakumar R., Coop A., Maeda D.Y., De P.L., Burstein S., Di M., V, Walker J.M. Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J. Biol. Chem. 2001;276:42639–42644.
    1. Huang S.M., Walker J.M. Enhancement of spontaneous and heat-evoked activity in spinal nociceptive neurons by the endovanilloid/endocannabinoid N-arachidonoyldopamine (NADA) J. Neurophysiol. 2006;95:1207–1212.
    1. Wehr A.Y., Hwang W.T., Blair I.A., Yu K.H. Relative Quantification of Serum Proteins from Pancreatic Ductal Adenocarcinoma Patients by Stable Isotope Dilution Liquid Chromatography-Mass Spectrometry. J. Proteome Res. 2012;11:1749–1758. doi: 10.1021/pr201011f.

Source: PubMed

3
Suscribir