Role of Dietary Antioxidants in the Preservation of Vascular Function and the Modulation of Health and Disease

Saradhadevi Varadharaj, Owen J Kelly, Rami N Khayat, Purnima S Kumar, Naseer Ahmed, Jay L Zweier, Saradhadevi Varadharaj, Owen J Kelly, Rami N Khayat, Purnima S Kumar, Naseer Ahmed, Jay L Zweier

Abstract

In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED) occurs secondary to altered function of endothelial nitric oxide synthase (eNOS). A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs). Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases.

Keywords: antioxidants; blood flow; endothelial nitric oxide synthase coupling; nitric oxide; vascular health.

Figures

Figure 1
Figure 1
A proposed model of how a favorable redox environment prevents vascular endothelial dysfunction and possibly the risk for cardiovascular disease in an uncontrolled and controlled redox environment. (A) Uncontrolled oxidative environment: chronic low intakes of antioxidant nutrients and dietary polyphenols/flavonoids can result in a low glutathione (GSH):GSSH ratio and a diminished capacity to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS). The oxidative burden favors S-glutathionylation (oxidation) of cysteine residues 689 and 908 in endothelial nitric oxide synthase (eNOS) (eNOS-S-SG2), and BH4 is oxidized (black with white font), leading to uncoupled eNOS, and superoxide (O2⋅−) formation. Thus, vasodilation is impaired due to loss of eNOS function with a pivotal switch from production of the vasodilator nitric oxide (NO) to the vasoconstrictor superoxide. Over time, this may contribute to vascular disease, intestinal ischemia, coronary ischemia, hypertension, diabetes, and hyperlipidemia. (B) Controlled oxidative environment: dietary flavonoids/polyphenols and antioxidant nutrients promote a thiol rich (high GSH:GSSH ratio) pool serving to scavenge ROS and RNS, thus, preventing or reversing protein S-glutathionylation (cysteine oxidation). This maintains unoxidized BH4 (silver with black font) levels and eNOS coupling, producing NO which promotes vasodilation and reduces vascular endothelium mediated inflammation/injury. This more favorable environment may over time, delay the progression to vascular disease, and other chronic disease.
Figure 2
Figure 2
Schematic illustration depicting the mechanism of eNOS S-glutathionylation in endothelial cells. S-glutathionylation in endothelial cells (superimposed yellow fluorescence—eNOS-S-SG) due to endothelial nitric oxide synthase (eNOS) (green—down arrow) and glutathionylated eNOS (red—down arrow) when probed with general GSH antibody. A regulatory switch happens with physiological stress (oxidative stress), often during disease conditions, where eNOS makes superoxide in its glutathionylated form (blood vessel constriction), instead of nitric oxide (blood vessel dilation) compared with normal (healthy) conditions.
Figure 3
Figure 3
Proposed representation of progression of endothelial function as the redox state becomes less favorable. In the healthy state coupled endothelial nitric oxide synthase (eNOS) dominates as oxidative species and free radicals are handled by the high reductive capacity from dietary antioxidants. Tetrahydrobiopterin (BH4) is present in sufficient quantities. Uncoupled eNOS is present but is transient (high coupled eNOS:uncoupled eNOS ratio), and mostly occurs in response to localized fluctuations in the redox state. As the pathology shifts to the right, uncoupled eNOS is becoming more common (lower coupled eNOS:uncoupled eNOS ratio); the redox state is less able to cope with oxidative stress; and vascular endothelial dysfunction (VED) begins. BH4 levels are reduced leading to further oxidative damage and possibly inflammation. Once progression of the disease increases (shifts to the right of the figure), uncoupled eNOS is permanent (low coupled eNOS:uncoupled eNOS ratio), BH4 levels are at their lowest, and coupled eNOS is at low levels. Now oxidative reactions dominate and VED is established, leading to CVD and other chronic conditions/diseases. Up to a certain point, before VED is established and the pathology has resulted in permanent changes, the process may be reversible with lifestyle changes and medication.

References

    1. Centers for Disease Control and Prevention. Heart Disease Fact Sheet. Atlanta, GA: National Center for Chronic Disease Prevention and Health Promotion, Division for Heart Disease and Stroke Prevention; (2016). Available from:
    1. Dahlof B. Cardiovascular disease risk factors: epidemiology and risk assessment. Am J Cardiol (2010) 105(1 Suppl):3A–9A.10.1016/j.amjcard.2009.10.007
    1. De Caterina R, Zampolli A, Del Turco S, Madonna R, Massaro M. Nutritional mechanisms that influence cardiovascular disease. Am J Clin Nutr (2006) 83(2):421S–6S.
    1. Luiking YC, Engelen MP, Deutz NE. Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care (2010) 13(1):97–104.10.1097/MCO.0b013e328332f99d
    1. Vita JA. Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr (2005) 81(1 Suppl):292S–7S.
    1. Chong MF, Macdonald R, Lovegrove JA. Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr (2010) 104(Suppl 3):S28–39.10.1017/S0007114510003922
    1. Sansone R, Rodriguez-Mateos A, Heuel J, Falk D, Schuler D, Wagstaff R, et al. Cocoa flavanol intake improves endothelial function and Framingham Risk Score in healthy men and women: a randomised, controlled, double-masked trial: the Flaviola Health Study. Br J Nutr (2015) 114(8):1246–55.10.1017/S0007114515002822
    1. Heiss C, Sansone R, Karimi H, Krabbe M, Schuler D, Rodriguez-Mateos A, et al. Impact of cocoa flavanol intake on age-dependent vascular stiffness in healthy men: a randomized, controlled, double-masked trial. Age (Dordr) (2015) 37(3):9794.10.1007/s11357-015-9794-9
    1. Menezes R, Rodriguez-Mateos A, Kaltsatou A, Gonzalez-Sarrias A, Greyling A, Giannaki C, et al. Impact of flavonols on cardiometabolic biomarkers: a meta-analysis of randomized controlled human trials to explore the role of inter-individual variability. Nutrients (2017) 9(2):E117.10.3390/nu9020117
    1. Landberg R, Naidoo N, van Dam RM. Diet and endothelial function: from individual components to dietary patterns. Curr Opin Lipidol (2012) 23(2):147–55.10.1097/MOL.0b013e328351123a
    1. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med (2009) 169(7):659–69.10.1001/archinternmed.2009.38
    1. Anand SS, Hawkes C, de Souza RJ, Mente A, Dehghan M, Nugent R, et al. Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: a report from the workshop convened by the World Heart Federation. J Am Coll Cardiol (2015) 66(14):1590–614.10.1016/j.jacc.2015.07.050S0735-1097(15)04621-5
    1. Ilkun O, Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des (2013) 19(27):4806–17.10.2174/1381612811319270003
    1. Myung SK, Ju W, Cho B, Oh SW, Park SM, Koo BK, et al. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ (2013) 346:f10.10.1136/bmj.f10
    1. Ye Y, Li J, Yuan Z. Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS One (2013) 8(2):e56803.10.1371/journal.pone.0056803PONE-D-12-30557
    1. Bruckdorfer KR. Antioxidants and CVD. Proc Nutr Soc (2008) 67(2):214–22.10.1017/S0029665108007052
    1. Jorge MN-C, Miguel AM-G. Antioxidant vitamins and cardiovascular disease. Curr Top Med Chem (2011) 11(14):1861–9.10.2174/156802611796235143
    1. Lu JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med (2010) 14(4):840–60.10.1111/j.1582-4934.2009.00897.x
    1. Mangge H, Becker K, Fuchs D, Gostner JM. Antioxidants, inflammation and cardiovascular disease. World J Cardiol (2014) 6(6):462–77.10.4330/wjc.v6.i6.462
    1. Tribble DL. AHA Science Advisory. Antioxidant consumption and risk of coronary heart disease: emphasison vitamin C, vitamin E, and beta-carotene: a statement for healthcare professionals from the American Heart Association. Circulation (1999) 99(4):591–5.10.1161/01.CIR.99.4.591
    1. Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol (2016) 90(1):1–37.10.1007/s00204-015-1579-5
    1. Goff DC, Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation (2014) 129(25 Suppl 2):S49–73.10.1161/01.cir.0000437741.48606.9801.cir.0000437741.48606.98
    1. Bryan NS, Petrosino JF. Nitrate-reducing oral bacteria: linking oral and systemic health. In: Bryan N, Loscalzo J, editors. Nitrite and Nitrate in Human Health and Disease. Nutrition and Health. 2nd ed Cham: Humana Press; (2017).
    1. Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, et al. Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol (2009) 5(12):865–9.10.1038/nchembio.260nchembio.260
    1. Chun OK, Floegel A, Chung SJ, Chung CE, Song WO, Koo SI. Estimation of antioxidant intakes from diet and supplements in U.S. adults. J Nutr (2010) 140(2):317–24.10.3945/jn.109.114413jn.109.114413
    1. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature (2010) 468(7327):1115–8.10.1038/nature09599nature09599
    1. Varadharaj S, Porter K, Pleister A, Wannemacher J, Sow A, Jarjoura D, et al. Endothelial nitric oxide synthase uncoupling: a novel pathway in OSA induced vascular endothelial dysfunction. Respir Physiol Neurobiol (2015) 207:40–7.10.1016/j.resp.2014.12.012
    1. Liu X, El-Mahdy MA, Boslett J, Varadharaj S, Hemann C, Abdelghany TM, et al. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall. Nat Commun (2017) 8:14807.10.1038/ncomms14807ncomms14807
    1. Talukder MA, Johnson WM, Varadharaj S, Lian J, Kearns PN, El-Mahdy MA, et al. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol (2011) 300(1):H388–96.10.1152/ajpheart.00868.2010
    1. Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J (2007) 401(1):1–11.10.1042/BJ20061131
    1. Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem (1998) 273(40):25804–8.10.1074/jbc.273.40.25804
    1. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int (2014) 2014:761264.10.1155/2014/761264
    1. Xia N, Horke S, Habermeier A, Closs EI, Reifenberg G, Gericke A, et al. Uncoupling of endothelial nitric oxide synthase in perivascular adipose tissue of diet-induced obese mice. Arterioscler Thromb Vasc Biol (2016) 36(1):78–85.10.1161/ATVBAHA.115.306263
    1. Grek CL, Zhang J, Manevich Y, Townsend DM, Tew KD. Causes and consequences of cysteine S-glutathionylation. J Biol Chem (2013) 288(37):26497–504.10.1074/jbc.R113.461368R113.461368
    1. Pimentel D, Haeussler DJ, Matsui R, Burgoyne JR, Cohen RA, Bachschmid MM. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal (2012) 16(6):524–42.10.1089/ars.2011.4336
    1. Chae HZ, Oubrahim H, Park JW, Rhee SG, Chock PB. Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid Redox Signal (2012) 16(6):506–23.10.1089/ars.2011.4260
    1. Pastore A, Piemonte F. Protein glutathionylation in cardiovascular diseases. Int J Mol Sci (2013) 14(10):20845–76.10.3390/ijms141020845ijms141020845
    1. Chen CA, Lin CH, Druhan LJ, Wang TY, Chen YR, Zweier JL. Superoxide induces endothelial nitric-oxide synthase protein thiyl radical formation, a novel mechanism regulating eNOS function and coupling. J Biol Chem (2011) 286(33):29098–107.10.1074/jbc.M111.240127
    1. Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med (2012) 2012:918267.10.1155/2012/918267
    1. Varadharaj S, DePascali F, Crestanello J, Kilic A, Boslett J, Hemann C, et al. Abstract 15954: Both tetrahydrobiopterin depletion and eNOS S-glutathionytion contribute to eNOS uncoupling in coronary disease patients. Circulation (2014) 130(Suppl 2):A15954–A.
    1. Varadharaj S, Wannemacher J, Patt B, Reyes L, Zweier JL, Khayat R. Abstract 19768: eNOS uncoupling leads to endothelial dysfunction in clinical obstructive sleep apnea (OSA): role of BH4 depletion. Circulation (2012) 126(Suppl 21):A19768–A.
    1. Engineer A, Lim Y, Saiyin T, Lu X, Feng Q. Tetrahydrobiopterin prevents congenital heart defects induced by pregestational diabetes. FASEB J (2016) 30(1 Suppl):737.6.
    1. Gokce N, Keaney JF, Jr, Frei B, Holbrook M, Olesiak M, Zachariah BJ, et al. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation (1999) 99(25):3234–40.
    1. Loscalzo J. Folate and nitrate-induced endothelial dysfunction: a simple treatment for a complex pathobiology. Circulation (2001) 104(10):1086–8.
    1. Alkaitis MS, Ackerman HC. Tetrahydrobiopterin supplementation improves phenylalanine metabolism in a murine model of severe malaria. ACS Infect Dis (2016) 2(11):827–38.10.1021/acsinfecdis.6b00124
    1. Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal (2014) 20(18):3040–77.10.1089/ars.2013.5566
    1. Cunnington C, Van Assche T, Shirodaria C, Kylintireas I, Lindsay AC, Lee JM, et al. Systemic and vascular oxidation limits the efficacy of oral tetrahydrobiopterin treatment in patients with coronary artery disease. Circulation (2012) 125(11):1356–66.10.1161/CIRCULATIONAHA.111.038919
    1. Belik J, Shifrin Y, Arning E, Bottiglieri T, Pan J, Daigneault MC, et al. Intestinal microbiota as a tetrahydrobiopterin exogenous source in hph-1 mice. Sci Rep (2017) 7:39854.10.1038/srep39854
    1. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med (2003) 9(12):1498–505.10.1038/nm954nm954
    1. Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr (2009) 90(1):1–10.10.3945/ajcn.2008.27131ajcn.2008.27131
    1. Hord NG. Dietary nitrates, nitrites, and cardiovascular disease. Curr Atheroscler Rep (2011) 13(6):484–92.10.1007/s11883-011-0209-9
    1. Crabtree MJ, Brixey R, Batchelor H, Hale AB, Channon KM. Integrated redox sensor and effector functions for tetrahydrobiopterin- and glutathionylation-dependent endothelial nitric-oxide synthase uncoupling. J Biol Chem (2013) 288(1):561–9.10.1074/jbc.M112.415992
    1. De Pascali F, Hemann C, Samons K, Chen CA, Zweier JL. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry (2014) 53(22):3679–88.10.1021/bi500076r
    1. Eilat-Adar S, Mete M, Fretts A, Fabsitz RR, Handeland V, Lee ET, et al. Dietary patterns and their association with cardiovascular risk factors in a population undergoing lifestyle changes: the Strong Heart Study. Nutr Metab Cardiovasc Dis (2013) 23(6):528–35.10.1016/j.numecd.2011.12.005
    1. Shahidi F, Zhong Y. Novel antioxidants in food quality preservation and health promotion. Eur J Lipid Sci Technol (2010) 112(9):930–40.10.1002/ejlt.201000044
    1. St-Onge MP, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation (2017) 135(9):e96–121.10.1161/CIR.0000000000000476
    1. Kelly OJ, Gilman JC, Kim Y, Ilich JZ. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis. Nutr Res (2013) 33(7):521–33.10.1016/j.nutres.2013.04.012
    1. Mailloux RJ, Treberg JR. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria. Redox Biol (2016) 8:110–8.10.1016/j.redox.2015.12.010S2213-2317(15)30025-2
    1. Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods (2015) 18(Pt B):820–97.10.1016/j.jff.2015.06.018
    1. Babu PV, Liu D. Green tea catechins and cardiovascular health: an update. Curr Med Chem (2008) 15(18):1840–50.10.2174/092986708785132979
    1. Khan N, Khymenets O, Urpi-Sarda M, Tulipani S, Garcia-Aloy M, Monagas M, et al. Cocoa polyphenols and inflammatory markers of cardiovascular disease. Nutrients (2014) 6(2):844–80.10.3390/nu6020844nu6020844
    1. Tome-Carneiro J, Gonzalvez M, Larrosa M, Yanez-Gascon MJ, Garcia-Almagro FJ, Ruiz-Ros JA, et al. Resveratrol in primary and secondary prevention of cardiovascular disease: a dietary and clinical perspective. Ann N Y Acad Sci (2013) 1290:37–51.10.1111/nyas.12150
    1. Wu JM, Wang ZR, Hsieh TC, Bruder JL, Zou JG, Huang YZ. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine (Review). Int J Mol Med (2001) 8(1):3–17.10.3892/ijmm.8.1.3
    1. Agarwal B, Campen MJ, Channell MM, Wherry SJ, Varamini B, Davis JG, et al. Resveratrol for primary prevention of atherosclerosis: clinical trial evidence for improved gene expression in vascular endothelium. Int J Cardiol (2013) 166(1):246–8.10.1016/j.ijcard.2012.09.027S0167-5273(12)01133-3
    1. Fujitaka K, Otani H, Jo F, Jo H, Nomura E, Iwasaki M, et al. Modified resveratrol Longevinex improves endothelial function in adults with metabolic syndrome receiving standard treatment. Nutr Res (2011) 31(11):842–7.10.1016/j.nutres.2011.09.028S0271-5317(11)00199-0
    1. Liu Y, Ma W, Zhang P, He S, Huang D. Effect of resveratrol on blood pressure: a meta-analysis of randomized controlled trials. Clin Nutr (2015) 34(1):27–34.10.1016/j.clnu.2014.03.009S0261-5614(14)00084-3
    1. Hartley L, Flowers N, Holmes J, Clarke A, Stranges S, Hooper L, et al. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev (2013) (6):CD009934.10.1002/14651858.CD009934.pub2
    1. Ried K, Fakler P, Stocks NP. Effect of cocoa on blood pressure. Cochrane Database Syst Rev (2017) (4):CD008893.10.1002/14651858.CD008893.pub3
    1. Ried K, Sullivan T, Fakler P, Frank OR, Stocks NP. Does chocolate reduce blood pressure? A meta-analysis. BMC Med (2010) 8:39.10.1186/1741-7015-8-391741-7015-8-39
    1. Tokede OA, Gaziano JM, Djousse L. Effects of cocoa products/dark chocolate on serum lipids: a meta-analysis. Eur J Clin Nutr (2011) 65(8):879–86.10.1038/ejcn.2011.64ejcn201164
    1. Hartley L, Igbinedion E, Holmes J, Flowers N, Thorogood M, Clarke A, et al. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst Rev (2013) (6):CD009874.10.1002/14651858.CD009874.pub2
    1. Alexopoulos N, Vlachopoulos C, Aznaouridis K, Baou K, Vasiliadou C, Pietri P, et al. The acute effect of green tea consumption on endothelial function in healthy individuals. Eur J Cardiovasc Prev Rehabil (2008) 15(3):300–5.10.1097/HJR.0b013e3282f4832f00149831-200806000-00009
    1. Kim W, Jeong MH, Cho SH, Yun JH, Chae HJ, Ahn YK, et al. Effect of green tea consumption on endothelial function and circulating endothelial progenitor cells in chronic smokers. Circ J (2006) 70(8):1052–7.10.1253/circj.70.1052
    1. Park CS, Kim W, Woo JS, Ha SJ, Kang WY, Hwang SH, et al. Green tea consumption improves endothelial function but not circulating endothelial progenitor cells in patients with chronic renal failure. Int J Cardiol (2010) 145(2):261–2.10.1016/j.ijcard.2009.09.471S0167-5273(09)01394-1
    1. Grassi D, Draijer R, Schalkwijk C, Desideri G, D’Angeli A, Francavilla S, et al. Black tea increases circulating endothelial progenitor cells and improves flow mediated dilatation counteracting deleterious effects from a fat load in hypertensive patients: a randomized controlled study. Nutrients (2016) 8(11):727.10.3390/nu8110727
    1. Fraga CG, Litterio MC, Prince PD, Calabro V, Piotrkowski B, Galleano M. Cocoa flavanols: effects on vascular nitric oxide and blood pressure. J Clin Biochem Nutr (2011) 48(1):63–7.10.3164/jcbn.11-010FR
    1. Heptinstall S, May J, Fox S, Kwik-Uribe C, Zhao L. Cocoa flavanols and platelet and leukocyte function: recent in vitro and ex vivo studies in healthy adults. J Cardiovasc Pharmacol (2006) 47(Suppl 2):S197–205.10.1097/00005344-200606001-00015
    1. Fisher ND, Hollenberg NK. Aging and vascular responses to flavanol-rich cocoa. J Hypertens (2006) 24(8):1575–80.10.1097/01.hjh.0000239293.40507.2a00004872-200608000-00017
    1. Wang-Polagruto JF, Villablanca AC, Polagruto JA, Lee L, Holt RR, Schrader HR, et al. Chronic consumption of flavanol-rich cocoa improves endothelial function and decreases vascular cell adhesion molecule in hypercholesterolemic postmenopausal women. J Cardiovasc Pharmacol (2006) 47(Suppl 2):S177–86.10.1097/00005344-200606001-00013
    1. Pang J, Zhang Z, Zheng TZ, Bassig BA, Mao C, Liu X, et al. Green tea consumption and risk of cardiovascular and ischemic related diseases: a meta-analysis. Int J Cardiol (2016) 202:967–74.10.1016/j.ijcard.2014.12.176S0167-5273(15)00025-X
    1. Yang YM, Huang A, Kaley G, Sun D. eNOS uncoupling and endothelial dysfunction in aged vessels. Am J Physiol Heart Circ Physiol (2009) 297(5):H1829–36.10.1152/ajpheart.00230.200900230.2009
    1. Hu Y, Wang T, Liao X, Du G, Chen J, Xu J. Anti-oxidative stress and beyond: multiple functions of the protein glutathionylation. Protein Pept Lett (2010) 17(10):1234–44.10.2174/092986610792231573
    1. Patel RP, Levonen A, Crawford JH, Darley-Usmar VM. Mechanisms of the pro- and anti-oxidant actions of nitric oxide in atherosclerosis. Cardiovasc Res (2000) 47(3):465–74.10.1016/S0008-6363(00)00086-9
    1. McCully KS. Homocysteine, vitamins, and vascular disease prevention. Am J Clin Nutr (2007) 86(5):1563S–8S.
    1. Abraham JM, Cho L. The homocysteine hypothesis: still relevant to the prevention and treatment of cardiovascular disease? Cleve Clin J Med (2010) 77(12):911–8.10.3949/ccjm.77a.10036
    1. Woo KS, Chook P, Lolin YI, Sanderson JE, Metreweli C, Celermajer DS. Folic acid improves arterial endothelial function in adults with hyperhomocystinemia. J Am Coll Cardiol (1999) 34(7):2002–6.10.1016/S0735-1097(99)00469-6
    1. Verhaar MC, Wever RMF, Kastelein JJP, van Dam T, Koomans HA, Rabelink TJ. 5-Methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation (1998) 97(3):237–41.10.1161/01.cir.97.3.237
    1. National Center for Chronic Disease Prevention and Health Promotion. Heart Disease Behavior (2015). Available from:
    1. Embuscado ME. Spices and herbs: natural sources of antioxidants—a mini review. J Funct Foods (2015) 18(Pt B):811–9.10.1016/j.jff.2015.03.005
    1. Farah C, Kleindienst A, Bolea G, Meyer G, Gayrard S, Geny B, et al. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Res Cardiol (2013) 108(6):389.10.1007/s00395-013-0389-2
    1. Yang A-L, Tsai S-J, Jiang MJ, Jen CJ, Chen H-I. Chronic exercise increases both inducible and endothelial nitric oxide synthase gene expression in endothelial cells of rat aorta. J Biomed Sci (2002) 9(2):149–55.10.1007/bf02256026
    1. Abdali D, Samson SE, Grover AK. How effective are antioxidant supplements in obesity and diabetes? Med Princ Pract (2015) 24(3):201–15.10.1159/000375305000375305
    1. Puddey IB, Croft KD, Abdu-Amsha Caccetta R, Beilin LJ. Alcohol, free radicals and antioxidants. Novartis Found Symp (1998) 216:51–62.
    1. Widlansky ME, Hamburg NM, Anter E, Holbrook M, Kahn DF, Elliott JG, et al. Acute EGCg supplementation reverses endothelial dysfunction in patients with coronary artery disease. J Am Coll Nutr (2007) 26(2):95–102.10.1080/07315724.2007.10719590
    1. Bondonno CP, Croft KD, Hodgson JM. Dietary nitrate, nitric oxide, and cardiovascular health. Crit Rev Food Sci Nutr (2016) 56(12):2036–52.10.1080/10408398.2013.811212
    1. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov (2008) 7(2):156–67.10.1038/nrd2466nrd2466
    1. d’El-Rei J, Cunha AR, Trindade M, Neves MF. Beneficial effects of dietary nitrate on endothelial function and blood pressure levels. Int J Hypertens (2016) 2016:6791519.10.1155/2016/6791519
    1. Siekmeier R, Steffen C, Marz W. Role of oxidants and antioxidants in atherosclerosis: results of in vitro and in vivo investigations. J Cardiovasc Pharmacol Ther (2007) 12(4):265–82.10.1177/1074248407299519
    1. Szymanska R, Pospisil P, Kruk J. Plant-derived antioxidants in disease prevention. Oxid Med Cell Longev (2016) 2016:2.10.1155/2016/1920208
    1. Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr (2003) 78(3 Suppl):517S–20S.
    1. Mayne ST. Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. J Nutr (2003) 133(Suppl 3):933S–40S.
    1. Griffin JL, Wang X, Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet (2015) 8(1):187–91.10.1161/CIRCGENETICS.114.000219
    1. Mardinoglu A, Shoaie S, Bergentall M, Ghaffari P, Zhang C, Larsson E, et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol (2015) 11(10):834.10.15252/msb.20156487
    1. Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. Specialized metabolites from the microbiome in health and disease. Cell Metab (2014) 20(5):719–30.10.1016/j.cmet.2014.10.016
    1. Najafipour H, Malek Mohammadi T, Rahim F, Haghdoost AA, Shadkam M, Afshari M. Association of oral health and cardiovascular disease risk factors “results from a community based study on 5900 adult subjects”. ISRN Cardiol (2013) 2013:782126.10.1155/2013/782126
    1. Radcliffe CE, Akram NC, Hurrell F, Drucker DB. Effects of nitrite and nitrate on the growth and acidogenicity of Streptococcus mutans. J Dent (2002) 30(7–8):325–31.10.1016/S0300-5712(02)00046-5
    1. Hohensinn B, Haselgrubler R, Muller U, Stadlbauer V, Lanzerstorfer P, Lirk G, et al. Sustaining elevated levels of nitrite in the oral cavity through consumption of nitrate-rich beetroot juice in young healthy adults reduces salivary pH. Nitric Oxide (2016) 60:10–5.10.1016/j.niox.2016.08.006
    1. Doel JJ, Benjamin N, Hector MP, Rogers M, Allaker RP. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur J Oral Sci (2005) 113(1):14–9.10.1111/j.1600-0722.2004.00184.x
    1. Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, Jiang H, Parthasarathy DK, et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS One (2014) 9(3):e88645.10.1371/journal.pone.0088645
    1. Govoni M, Jansson EA, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide (2008) 19(4):333–7.10.1016/j.niox.2008.08.003
    1. Kapil V, Haydar SM, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med (2013) 55:93–100.10.1016/j.freeradbiomed.2012.11.013
    1. Narasimhulu C, Jiang X, Yang Z, Selvarajan K, Parthasarathy S. In: Roy S, Bagchi D, Raychaudhuri SP, editors. Is There a Connection between Inflammation and Oxidative Stress? CRC Press; (2012). p. 139–52.
    1. Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr (2015) 114(7):999–1012.10.1017/S0007114515002093
    1. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation (2004) 109(21 Suppl 1):II2–10.10.1161/01.CIR.0000129535.04194.38
    1. Dimsdale JE. Psychological stress and cardiovascular disease. J Am Coll Cardiol (2008) 51(13):1237–46.10.1016/j.jacc.2007.12.024
    1. Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A (2012) 109(16):5995–9.10.1073/pnas.1118355109
    1. Giugliano D, Ceriello A, Esposito K. The effects of diet on inflammation: emphasis on the metabolic syndrome. J Am Coll Cardiol (2006) 48(4):677–85.10.1016/j.jacc.2006.03.052
    1. Dandona P, Ghanim H, Chaudhuri A, Dhindsa S, Kim SS. Macronutrient intake induces oxidative and inflammatory stress: potential relevance to atherosclerosis and insulin resistance. Exp Mol Med (2010) 42(4):245–53.10.3858/emm.2010.42.4.033
    1. Abdallah HM, Esmat A. Antioxidant and anti-inflammatory activities of the major phenolics from Zygophyllum simplex L. J Ethnopharmacol (2017) 205:51–6.10.1016/j.jep.2017.04.022
    1. Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med (2003) 9(1):161–8.10.1089/107555303321223035
    1. Jungbauer A, Medjakovic S. Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas (2012) 71(3):227–39.10.1016/j.maturitas.2011.12.009S0378-5122(11)00438-5

Source: PubMed

3
Suscribir