New insights into the pathophysiology of post-stroke spasticity

Sheng Li, Gerard E Francisco, Sheng Li, Gerard E Francisco

Abstract

Spasticity is one of many consequences after stroke. It is characterized by a velocity-dependent increase in resistance during passive stretch, resulting from hyperexcitability of the stretch reflex. The underlying mechanism of the hyperexcitable stretch reflex, however, remains poorly understood. Accumulated experimental evidence has supported supraspinal origins of spasticity, likely from an imbalance between descending inhibitory and facilitatory regulation of spinal stretch reflexes secondary to cortical disinhibition after stroke. The excitability of reticulospinal (RST) and vestibulospinal tracts (VSTs) has been assessed in stroke survivors with spasticity using non-invasive indirect measures. There are strong experimental findings that support the RST hyperexcitability as a prominent underlying mechanism of post-stroke spasticity. This mechanism can at least partly account for clinical features associated with spasticity and provide insightful guidance for clinical assessment and management of spasticity. However, the possible role of VST hyperexcitability cannot be ruled out from indirect measures. In vivo measure of individual brainstem nuclei in stroke survivors with spasticity using advanced fMRI techniques in the future is probably able to provide direct evidence of pathogenesis of post-stroke spasticity.

Keywords: brainstem; pathophysiology; reticulospinal pathways; spasticity; stroke.

Figures

FIGURE 1
FIGURE 1
Brunnstrom stages of motor recovery after stroke (at the end of the manuscript).
FIGURE 2
FIGURE 2
Illustration of supraspinal control of spinal stretch reflex. CST, cortical spinal tract; RST, reticulospinal tract; VST, vestibular spinal tract; (+), facilitation; (-), inhibition. Other descending pathways, such as rubrospinal tract, tectospinal tract, medial CST are not shown here.
FIGURE 3
FIGURE 3
A representative electromyography (EMG) of flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC) before and 10 days after botulinum toxin injection. The subject was asked to grip as soon and as hard as possible after the “grip signal” and relax after the “release signal” (dash lines). The release delay time decreases after injection, along with shortened EDC activities. Modified from Chang et al. (2012, with permission).

References

    1. Angeles Fernandez-Gil M., Palacios-Bote R., Leo-Barahona M., Mora-Encinas J. P. (2010). Anatomy of the brainstem: a gaze into the stem of life. Semin. Ultrasound CT MR 31 196–219 10.1053/j.sult.2010.03.006
    1. Baker S. N. (2011). The primate reticulospinal tract, hand function and functional recovery. J. Physiol. 589 5603–5612 10.1113/jphysiol.2011.215160
    1. Balakrishnan S., Ward A. B. (2013). The diagnosis and management of adults with spasticity. Handb. Clin. Neurol. 110 145–160 10.1016/B978-0-444-52901-5.00013-7
    1. Bensmail D., Robertson J. V., Fermanian C., Roby-Brami A. (2010). Botulinum toxin to treat upper-limb spasticity in hemiparetic patients: analysis of function and kinematics of reaching movements. Neurorehabil. Neural Repair 24 273–281 10.1177/1545968309347682
    1. Brashear A., Gordon M. F., Elovic E., Kassicieh V. D., Marciniak C., Do M., et al. (2002). Intramuscular injection of botulinum toxin for the treatment of wrist and finger spasticity after a stroke. N. Engl. J. Med. 347 395–400 10.1056/NEJMoa011892
    1. Brown P. (1994). Pathophysiology of spasticity. J. Neurol. Neurosurg. Psychiatry 57 773–777 10.1136/jnnp.57.7.773
    1. Brown P., Rothwell J. C., Thompson P. D., Britton T. C., Day B. L., Marsden C. D. (1991). New observations on the normal auditory startle reflex in man. Brain 114(Pt 4) 1891–1902 10.1093/brain/114.4.1891
    1. Brunnstrom S. (1966). Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys. Ther. 46 357–375.
    1. Brunnstrom S. (1970). Movement Therapy in Hemiplagia. A Neurophysiological Approach. New York: Harper & Row.
    1. Burke D., Wissel J., Donnan G. A. (2013). Pathophysiology of spasticity in stroke. Neurology 80 S20–S26 10.1212/WNL.0b013e31827624a7
    1. Burne J. A., Carleton V. L., O’Dwyer N. J. (2005). The spasticity paradox: movement disorder or disorder of resting limbs? J. Neurol. Neurosurg. Psychiatry 76 47–54 10.1136/jnnp.2003.034785
    1. Chang S. H., Francisco G. E., Li S. (2012). Botulinum Toxin (BT) injection improves voluntary motor control in selected patients with post-stroke spasticity. Neural Regen. Res. 7 1436–1439 10.3969/j.issn.1673-5374.2012.18.011
    1. Chang S. H., Francisco G. E., Zhou P., Rymer W. Z., Li S. (2013). Spasticity, weakness, force variability, and sustained spontaneous motor unit discharges of resting spastic-paretic biceps brachii muscles in chronic stroke. Muscle Nerve 48 85–92 10.1002/mus.23699
    1. Coombes S. A., Janelle C. M., Cauraugh J. H. (2009). Chronic stroke and aging: the impact of acoustic stimulus intensity on fractionated reaction time. Neurosci. Lett. 452 151–155 10.1016/j.neulet.2009.01.041
    1. D’Ardenne K., McClure S. M., Nystrom L. E., Cohen J. D. (2008). BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319 1264–1267 10.1126/science.1150605
    1. Davidson A. G., Buford J. A. (2006). Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging. Exp. Brain Res. 173 25–39 10.1007/s00221-006-0374-1
    1. Davis M., Gendelman D. S., Tischler M. D., Gendelman P. M. (1982). A primary acoustic startle circuit: lesion and stimulation studies. J. Neurosci. 2 791–805.
    1. Dietz V., Quintern J., Berger W. (1981). Electrophysiological studies of gait in spasticity and rigidity. Evidence that altered mechanical properties of muscle contribute to hypertonia. Brain 104 431–449 10.1093/brain/104.3.431
    1. Drew T., Prentice S., Schepens B. (2004). Cortical and brainstem control of locomotion. Prog. Brain Res. 143 251–261 10.1016/S0079-6123(03)43025-2
    1. Farmer S. F., Harrison L. M., Ingram D. A., Stephens J. A. (1991). Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology 41 1505–1510 10.1212/WNL.41.9.1505
    1. Filippi G. M., Errico P., Santarelli R., Bagolini B., Manni E. (1993). Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol. 113 400–404 10.3109/00016489309135834
    1. Friden J., Lieber R. L. (2003). Spastic muscle cells are shorter and stiffer than normal cells. Muscle Nerve 27 157–164 10.1002/mus.10247
    1. Gracies J. M. (2005a). Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle Nerve 31 535–551 10.1002/mus.20284
    1. Gracies J. M. (2005b). Pathophysiology of spastic paresis. II: emergence of muscle overactivity. Muscle Nerve 31 552–571 10.1002/mus.20285
    1. Heckmann C. J., Gorassini M. A., Bennett D. J. (2005). Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve 31 135–156 10.1002/mus.20261
    1. Henderson L. A., Macefield V. G. (2013). Functional imaging of the human brainstem during somatosensory input and autonomic output. Front. Hum. Neurosci. 7:569 10.3389/fnhum.2013.00569
    1. Herbert W. J., Davidson A. G., Buford J. A. (2010). Measuring the motor output of the pontomedullary reticular formation in the monkey: do stimulus-triggered averaging and stimulus trains produce comparable results in the upper limbs? Exp. Brain Res. 203 271–283 10.1007/s00221-010-2231-5
    1. Honeycutt C. F., Perreault E. J. (2012). Planning of ballistic movement following stroke: insights from the startle reflex. PLoS ONE 7:e43097 10.1371/journal.pone.0043097
    1. Hurley R. A., Flashman L. A., Chow T. W., Taber K. H. (2010). The brainstem: anatomy, assessment, and clinical syndromes. J. Neuropsychiatry Clin. Neurosci. 22:iv, 1–7 10.1176/jnp.2010.22.1.iv
    1. Ivanhoe C. B., Reistetter T. A. (2004). Spasticity: the misunderstood part of the upper motor neuron syndrome. Am. J. Phys. Med. Rehabil. 83 S3–S9 10.1097/01.PHM.0000141125.28611.3E
    1. Jankelowitz S. K., Colebatch J. G. (2004). The acoustic startle reflex in ischemic stroke. Neurology 62 114–116 10.1212/01.WNL.0000101711.48946.35
    1. Kallenberg L. A., Hermens H. J. (2009). Motor unit properties of biceps brachii in chronic stroke patients assessed with high-density surface EMG. Muscle Nerve 39 177–185 10.1002/mus.21090
    1. Kallenberg L. A., Hermens H. J. (2011). Motor unit properties of biceps brachii during dynamic contractions in chronic stroke patients. Muscle Nerve 43 112–119 10.1002/mus.21803
    1. Kamper D. G., Rymer W. Z. (2001). Impairment of voluntary control of finger motion following stroke: role of inappropriate muscle coactivation. Muscle Nerve 24 673–681 10.1002/mus.1054
    1. Katyal S., Ress D. (2014). Endogenous attention signals evoked by threshold contrast detection in human superior colliculus. J. Neurosci. 34 892–900 10.1523/JNEUROSCI.3026-13.2014
    1. Katyal S., Zughni S., Greene C., Ress D. (2010). Topography of covert visual attention in human superior colliculus. J. Neurophysiol. 104 3074–3083 10.1152/jn.00283.2010
    1. Katz R. T., Rymer W. Z. (1989). Spastic hypertonia: mechanisms and measurement. Arch. Phys. Med. Rehabil. 70 144–155.
    1. Lance J. W. (1980). “Symposium synopsis,” in Spasticity: Disordered Motor Control, eds Feldman R. G., Young R. R., Koella W. P. (Chicago, IL: Year Book Medical Publishers; ), 485–494.
    1. Li S., Chang S. H., Francisco G. E., Verduzco-Gutierrez M. (2014). Acoustic startle reflex in patients with chronic stroke at different stages of motor recvoery: a pilot study. Top. Stroke Rehabil. 21 358–370 10.1310/tsr2104-358
    1. Li S., Kamper D. G., Rymer W. Z. (2006). Effects of changing wrist positions on finger flexor hypertonia in stroke survivors. Muscle Nerve 33 183–190 10.1002/mus.20453
    1. Malhotra S., Pandyan A. D., Day C. R., Jones P. W., Hermens H. (2009). Spasticity, an impairment that is poorly defined and poorly measured. Clin. Rehabil. 23 651–658 10.1177/0269215508101747
    1. Malhotra S., Pandyan A. D., Rosewilliam S., Roffe C., Hermens H. (2011). Spasticity and contractures at the wrist after stroke: time course of development and their association with functional recovery of the upper limb. Clin. Rehabil. 25 184–191 10.1177/0269215510381620
    1. Mayer N. H., Esquenazi A. (2003). Muscle overactivity and movement dysfunction in the upper motoneuron syndrome. Phys. Med. Rehabil. Clin. N. Am. 14 855–883 10.1016/S1047-9651(03)00093-7
    1. Miller D. M., Klein C. S., Suresh N. L., Rymer W. Z. (2014). Asymmetries in vestibular evoked myogenic potentials in chronic stroke survivors with spastic hypertonia: evidence for a vestibulospinal role. Clin. Neurophysiol. 125 2070–2078 10.1016/j.clinph.2014.01.035
    1. Mirbagheri M. M., Tsao C. C., Rymer W. Z. (2008). Changes of elbow kinematics and kinetics during 1 year after stroke. Muscle Nerve 37 387–395 10.1002/mus.20965
    1. Mottram C. J., Suresh N. L., Heckman C. J., Gorassini M. A., Rymer W. Z. (2009). Origins of abnormal excitability in biceps brachii motoneurons of spastic-paretic stroke survivors. J. Neurophysiol. 102 2026–2038 10.1152/jn.00151.2009
    1. Mottram C. J., Wallace C. L., Chikando C. N., Rymer W. Z. (2010). Origins of spontaneous firing of motor units in the spastic-paretic biceps brachii muscle of stroke survivors. J. Neurophysiol. 104 3168–3179 10.1152/jn.00463.2010
    1. Mukherjee A., Chakravarty A. (2010). Spasticity mechanisms – for the clinician. Front. Neurol. 1:149 10.3389/fneur.2010.00149
    1. Nathan P. W., Smith M. C. (1955). Long descending tracts in man. I. Review of present knowledge. Brain 78 248–303 10.1093/brain/78.2.248
    1. Nielsen J. B., Crone C., Hultborn H. (2007). The spinal pathophysiology of spasticity – from a basic science point of view. Acta Physiologica 189 171–180 10.1111/j.1748-1716.2006.01652.x
    1. Nyberg-Hansen R. (1964). Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus. An experimental study with silver impregnation methods in the cat. J. Comp. Neurol. 122 355–367 10.1002/cne.901220306
    1. O’Dwyer N., Ada L., Neilson P. (1996). Spasticity and muscle contracture following stroke. Brain 119 1737–1749 10.1093/brain/119.5.1737
    1. Pandyan A. D., Gregoric M., Barnes M., Wood. D., Van Wijck F., Burridge J. P., et al. (2005). Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 27 2–6 10.1080/09638280400014576
    1. Park W. H., Li S. (2013). Responses of finger flexor and extensor muscles to TMS during isometric force production tasks. Muscle Nerve 48 739–744 10.1002/mus.23804
    1. Riddle C. N., Edgley S. A., Baker S. N. (2009). Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. J. Neurosci. 29 4993–4999 10.1523/JNEUROSCI.3720-08.2009
    1. Shaw L. C., Price C. I., van Wijck F. M., Shackley P., Steen N., Barnes M. P., et al. (2011). Botulinum toxin for the upper limb after stroke (BoTULS) trial: effect on impairment, activity limitation, and pain. Stroke 42 1371–1379 10.1161/STROKEAHA.110.582197
    1. Sheean G. (2002). The pathophysiology of spasticity. Eur. J. Neurol. 9(Suppl. 1), 3–9 10.1046/j.1468-1331.2002.0090s1003.x
    1. Sheean G. (2008). “Neurophysiology of spasticity,” in Upper Motor Neurone Syndrome and Spasticity: Clinical Management and Neurophysiology, 2nd Edn, eds Barnes M. P., Johnson G. R. (Cambridge: Cambridge University Press; ), 9–63 10.1017/CBO9780511544866.003
    1. Sherman S. J., Koshland G. F., Laguna J. F. (2000). Hyper-reflexia without spasticity after unilateral infarct of the medullary pyramid. J. Neurol. Sci. 175 145–155 10.1016/S0022-510X(00)00299-9
    1. Sist B., Fouad K., Winship I. R. (2014). Plasticity beyond peri-infarct cortex: spinal up regulation of structural plasticity, neurotrophins, and inflammatory cytokines during recovery from cortical stroke. Exp. Neurol. 252 47–56 10.1016/j.expneurol.2013.11.019
    1. Sommerfeld D. K., Eek E. U., Svensson A. K., Holmqvist L. W., von Arbin M. H. (2004). Spasticity after stroke: its occurrence and association with motor impairments and activity limitations. Stroke 35 134–139 10.1161/01.STR.0000105386.05173.5E
    1. Sulzer J., Sitaram R., Blefari M. L., Kollias S., Birbaumer N., Stephan K. E., et al. (2013). Neurofeedback-mediated self-regulation of the dopaminergic midbrain. Neuroimage 83 817–825 10.1016/j.neuroimage.2013.05.115
    1. Thilmann A. F., Fellows S. J., Garms E. (1991). The mechanism of spastic muscle hypertonus. Variation in reflex gain over the time course of spasticity. Brain 114 233–244.
    1. Twitchell T. E. (1951). The restoration of motor function following hemiplegia in man. Brain 74 443–448 10.1093/brain/74.4.443
    1. Vattanasilp W., Ada L., Crosbie J. (2000). Contribution of thixotropy, spasticity, and contracture to ankle stiffness after stroke. J. Neurol. Neurosurg. Psychiatry 69 34–39 10.1136/jnnp.69.1.34
    1. Voordecker P., Mavroudakis N., Blecic S., Hildebrand J., Zegers de Beyl D. (1997). Audiogenic startle reflex in acute hemiplegia. Neurology 49 470–473 10.1212/WNL.49.2.470
    1. Ward A. B. (2012). A literature review of the pathophysiology and onset of post-stroke spasticity. Eur. J. Neurol. 19 21–27 10.1111/j.1468-1331.2011.03448.x
    1. Wissel J., Manack A., Brainin M. (2013). Toward an epidemiology of poststroke spasticity. Neurology 80 S13–S19 10.1212/WNL.0b013e3182762448
    1. Young R. R. (1994). Spasticity: a review. Neurology 44 S12–S20.

Source: PubMed

3
Suscribir