Lactate kinetics in ICU patients using a bolus of 13C-labeled lactate

Jonathan Grip, Tobias Falkenström, Panuwat Promsin, Jan Wernerman, Åke Norberg, Olav Rooyackers, Jonathan Grip, Tobias Falkenström, Panuwat Promsin, Jan Wernerman, Åke Norberg, Olav Rooyackers

Abstract

Background: Plasma lactate concentrations and their trends over time are used for clinical prognosis, and to guide treatment, in critically ill patients. Although heavily relied upon for clinical decision-making, lactate kinetics of these patients is sparsely studied.

Aim: To establish and validate a feasible method to study lactate kinetics in critically ill patients.

Methods: Healthy volunteers (n = 6) received a bolus dose of 13C-labeled lactate (20 μmol/kg body weight), and 43 blood samples were drawn over 2 h to determine the decay in labeled lactate. Data was analyzed using non-compartmental modeling calculating rates of appearance (Ra) and clearance of lactate. The area under the curve (AUC) was calculated using a linear-up log-down trapezoidal approach with extrapolation beyond 120 min using the terminal slope to obtain the whole AUC. After evaluation, the same protocol was used in an unselected group of critically ill patients (n = 10).

Results: Ra for healthy volunteers and ICU patients were 12.8 ± 3.9 vs 22.7 ± 11.1 μmol/kg/min and metabolic clearance 1.56 ± 0.39 vs 1.12 ± 0.43 L/min, respectively. ICU patients with normal lactate concentrations showed kinetics very similar to healthy volunteers. Simulations showed that reducing the number of samples from 43 to 14 gave the same results. Our protocol yielded results on lactate kinetics very similar to previously published data using other techniques.

Conclusion: This simple and user-friendly protocol using an isotopically labeled bolus dose of lactate was accurate and feasible for studying lactate kinetics in critically ill ICU patients.

Trial registration: ANZCTR, ACTRN12617000626369, registered 8 March 2017. https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372507&isReview=true.

Keywords: ICU; Labeled lactate; Lactate; Lactate kinetics; Method validation; Stable isotope.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Plasma enrichment of labeled lactate over time in all subjects. Decay curves of plasma lactate enrichments after a bolus dose of 13C-labeled lactate in healthy volunteers (filled black lines, n = 6) and ICU patients (red dotted lines n = 10). The left panel includes all values, 43 samples per subject, and the right panel shows a reduced number, 14 samples per subject
Fig. 2
Fig. 2
Relationship between plasma concentration and rate of appearance and clearance of lactate. Relation between plasma lactate concentrations and rate of appearance of lactate (upper panel) and metabolic clearance of lactate (bottom panel) as calculated from a bolus dose of 13C-labeled lactate in healthy volunteers (blue circles, n = 6) and ICU patients (red circles, n = 10). The lines of regression and associated statistics apply to the group of ICU patients only

References

    1. Zhou X, Liu D, Su L. Lactate and stepwise lactate kinetics can be used to guide resuscitation. Crit Care. 2017;21(1):267. doi: 10.1186/s13054-017-1859-y.
    1. Varis E, Pettila V, Poukkanen M, Jakob SM, Karlsson S, Perner A, Takala J, Wilkman E. Evolution of blood lactate and 90-day mortality in septic shock. A post hoc analysis of the FINNAKI study. Shock. 2017;47(5):574–581. doi: 10.1097/SHK.0000000000000772.
    1. Howell MD, Davis AM. Management of sepsis and septic shock. JAMA. 2017;317(8):847–848. doi: 10.1001/jama.2017.0131.
    1. Gu WJ, Zhang Z, Bakker J. Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Med. 2015;41(10):1862–1863. doi: 10.1007/s00134-015-3955-2.
    1. Suistomaa M, Ruokonen E, Kari A, Takala J. Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions. Shock. 2000;14(1):8–12. doi: 10.1097/00024382-200014010-00002.
    1. Park YJ, Kim DH, Kim SC, Kim TY, Kang C, Lee SH, Jeong JH, Lee SB, Lim D. Serum lactate upon emergency department arrival as a predictor of 30-day in-hospital mortality in an unselected population. PLoS One. 2018;13(1):e0190519. doi: 10.1371/journal.pone.0190519.
    1. Junhasavasdikul D, Theerawit P, Ingsathit A, Kiatboonsri S. Lactate and combined parameters for triaging sepsis patients into intensive care facilities. J Crit Care. 2016;33:71–77. doi: 10.1016/j.jcrc.2016.01.019.
    1. Ward MJ, Self WH, Singer A, Lazar D, Pines JM. Cost-effectiveness analysis of early point-of-care lactate testing in the emergency department. J Crit Care. 2016;36:69–75. doi: 10.1016/j.jcrc.2016.06.031.
    1. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Crit Care Med. 2018;46(6):997–1000. doi: 10.1097/CCM.0000000000003119.
    1. Hajjar LA, Almeida JP, Fukushima JT, Rhodes A, Vincent JL, Osawa EA, Galas FR. High lactate levels are predictors of major complications after cardiac surgery. J Thorac Cardiovasc Surg. 2013;146(2):455–460. doi: 10.1016/j.jtcvs.2013.02.003.
    1. Bundgaard H, Kjeldsen K, Suarez Krabbe K, van Hall G, Simonsen L, Qvist J, Hansen CM, Moller K, Fonsmark L, Lav Madsen P, et al. Endotoxemia stimulates skeletal muscle Na+-K+-ATPase and raises blood lactate under aerobic conditions in humans. Am J Physiol Heart Circ Physiol. 2003;284(3):H1028–H1034. doi: 10.1152/ajpheart.00639.2002.
    1. Levy B, Desebbe O, Montemont C, Gibot S. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states. Shock. 2008;30(4):417–421. doi: 10.1097/SHK.0b013e318167378f.
    1. Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006;12(4):315–321. doi: 10.1097/01.ccx.0000235208.77450.15.
    1. Green JP, Berger T, Garg N, Suarez A, Hagar Y, Radeos MS, Panacek EA. Impact of metformin use on the prognostic value of lactate in sepsis. Am J Emerg Med. 2012;30(9):1667–1673. doi: 10.1016/j.ajem.2012.01.014.
    1. Park J, Hwang SY, Jo IJ, Jeon K, Suh GY, Lee TR, Yoon H, Cha WC, Sim MS, Carriere KC, et al. Impact of metformin use on lactate kinetics in patients with severe sepsis and septic shock. Shock. 2017;47(5):582–587. doi: 10.1097/SHK.0000000000000782.
    1. van Hall G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol. 2010;199:499–508. doi: 10.1111/j.1748-1716.2010.02122.x.
    1. van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29(6):1121–1129. doi: 10.1038/jcbfm.2009.35.
    1. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Z, Yanxiang Guo J, et al. Glucose feeds the TCA cycle via circulating lactate. Nature. 2017;551(7678):115–118. doi: 10.1038/nature24057.
    1. Leverve XM, Mustafa I. Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care. 2002;6(4):284–285. doi: 10.1186/cc1509.
    1. Levy B, Mansart A, Montemont C, Gibot S, Mallie JP, Regnault V, Lecompte T, Lacolley P. Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock. Intensive Care Med. 2007;33(3):495–502. doi: 10.1007/s00134-006-0523-9.
    1. Tappy L, Chiolero R. Substrate utilization in sepsis and multiple organ failure. Crit Care Med. 2007;35(9 Suppl):S531–S534. doi: 10.1097/01.CCM.0000278062.28122.A4.
    1. Correa TD, Pereira AJ, Brandt S, Vuda M, Djafarzadeh S, Takala J, Jakob SM. Time course of blood lactate levels, inflammation, and mitochondrial function in experimental sepsis. Crit Care. 2017;21(1):105. doi: 10.1186/s13054-017-1691-4.
    1. Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, Grimaud D. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1021–1026. doi: 10.1164/ajrccm.157.4.9705037.
    1. Levraut J, Ichai C, Petit I, Ciebiera JP, Perus O, Grimaud D. Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients. Crit Care Med. 2003;31(3):705–710. doi: 10.1097/01.CCM.0000045561.85810.45.
    1. Grip J, Jakobsson T, Hebert C, Klaude M, Sandstrom G, Wernerman J, Rooyackers O. Lactate kinetics and mitochondrial respiration in skeletal muscle of healthy humans under influence of adrenaline. Clin Sci. 2015;129(4):375–384. doi: 10.1042/CS20140448.
    1. Mori M, Smedberg M, Klaude M, Tjader I, Norberg A, Rooyackers O, Wernerman J. A tracer bolus method for investigating glutamine kinetics in humans. PLoS One. 2014;9(5):e96601. doi: 10.1371/journal.pone.0096601.
    1. Gabrielsson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications, fourth edition. Oxford: Taylor & Francis; 2007.
    1. Kreisberg RA, Pennington LF, Boshell BR. Lactate turnover and gluconeogenesis in normal and obese humans. Effect of starvation. Diabetes. 1970;19(1):53–63. doi: 10.2337/diab.19.1.53.
    1. Revelly JP, Tappy L, Martinez A, Bollmann M, Cayeux MC, Berger MM, Chiolero RL. Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med. 2005;33(10):2235–2240. doi: 10.1097/01.CCM.0000181525.99295.8F.
    1. van Hall G, Jensen-Urstad M, Rosdahl H, Holmberg HC, Saltin B, Calbet JAL. Leg and arm lactate and substrate kinetics during exercise. Am J Physiol Endocrinol Metab. 2003;284(1):E193–E205. doi: 10.1152/ajpendo.00273.2002.
    1. Norberg A, Gabrielsson J, Jones AW, Hahn RG. Within- and between-subject variations in pharmacokinetic parameters of ethanol by analysis of breath, venous blood and urine. Br J Clin Pharmacol. 2000;49(5):399–408. doi: 10.1046/j.1365-2125.2000.00194.x.
    1. Avram MJ, Krejcie TC, Henthorn TK, Niemann CU. Beta-adrenergic blockade affects initial drug distribution due to decreased cardiac output and altered blood flow distribution. J Pharmacol Exp Ther. 2004;311(2):617–624. doi: 10.1124/jpet.104.070094.

Source: PubMed

3
Suscribir