Nonsteroidal anti-inflammatory drugs for retinal disease

Scott D Schoenberger, Stephen J Kim, Scott D Schoenberger, Stephen J Kim

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are used extensively in ophthalmology for pain and photophobia after photorefractive surgery and to reduce miosis, inflammation, and cystoid macular edema following cataract surgery. In recent years, the US Food and Drug Administration has approved new topical NSAIDs and previously approved NSAIDs have been reformulated. These changes may allow for greater drug penetration into the retina and thereby offer additional therapeutic advantages. For example, therapeutic effects on diabetic retinopathy and age-related macular degeneration may now be achievable. We provide an updated review on the scientific rationale and clinical use of NSAIDs for retinal disease.

References

    1. Kim SJ, Flach AJ, Jampol LM. Nonsteroidal anti-inflammatory drugs inophthalmology. Survey of Ophthalmology. 2010;55(2):108–133.
    1. Shelsta HN, Jampol LM. Pharmacologic therapy of pseudophakic cystoid macular edema: 2010 update. Retina. 2011;31(1):4–12.
    1. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacological Reviews. 2004;56(3):387–437.
    1. Davies NM, Good RL, Roupe KA, Yáñez JA. Cyclooxygenase-3: axiom, dogma, anomaly, enigma or splice error?—not as easy as 1, 2, 3. Journal of Pharmacy and Pharmaceutical Sciences. 2004;7(2):217–226.
    1. Chin MS, Nagineni CN, Hooper LC, Detrick B, Hooks JJ. Cyclooxygenase-2 gene expression and regulation in human retinal pigment epithelial cells. Investigative Ophthalmology and Visual Science. 2001;42(10):2338–2346.
    1. Shinomiya S, Naraba H, Ueno A, et al. Regulation of TNFα and interleukin-10 production by prostaglandins I2 and E2: studies with prostaglandin receptor-deficient mice and prostaglandin E-receptor subtype-selective synthetic agonists. Biochemical Pharmacology. 2001;61(9):1153–1160.
    1. Cheng T, Cao W, Wen R, Steinberg RH, LaVail MM. Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells. Investigative Ophthalmology and Visual Science. 1998;39(3):581–591.
    1. Reddy R, Kim SJ. Critical appraisal of ophthalmic ketorolac in the treatment of pain and inflammation following cataract surgery. Clinical Ophthalmology. 2011;5:751–758.
    1. Ahuja M, Dhake AS, Sharma SK, Majumdar DK. Topical ocular delivery of NSAIDs. The AAPS Journal. 2008;10(2):229–241.
    1. Riendeau D, Charleson S, Cromlish W, Mancini JA, Wong E, Guay J. Comparison of the cyclooxygenase-1 inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, using sensitive microsomal and platelet assays. Canadian Journal of Physiology and Pharmacology. 1997;75(9):1088–1095.
    1. Gamache DA, Graff G, Brady MT, Spellman JM, Yanni JM. Nepafenac, a unique nonsteroidal prodrug with potential utility in the treatment of trauma-induced ocular inflammation: I. Assessment of anti- inflammatory efficacy. Inflammation. 2000;24(4):357–370.
    1. Waterbury LD, Silliman D, Jolas T. Comparison of cyclooxygenase inhibitory activity and ocular anti-inflammatory effects of ketorolac tromethamine and bromfenac sodium. Current Medical Research and Opinion. 2006;22(6):1133–1140.
    1. Walters T, Raizman M, Ernest P, Gayton J, Lehmann R. In vivo pharmacokinetics and in vitro pharmacodynamics of nepafenac, amfenac, ketorolac, and bromfenac. Journal of Cataract and Refractive Surgery. 2007;33(9):1539–1545.
    1. Ellis PP, Pfoff DS, Bloedow DC, Riegel M. Intraocular diclofenac and flurbiprofen concentrations in human aqueous humor following topical application. Journal of Ocular Pharmacology. 1994;10(4):677–682.
    1. Attar M, Schiffman R, Borbridge L, Farnes Q, Welty D. Ocular pharmacokinetics of 0.45% ketorolac tromethamine. Clinical Ophthalmology. 2010;4(1):1403–1408.
    1. Bucci FA, Jr., Waterbury LD, Amico LM. Prostaglandin E2 inhibition and aqueous concentration of ketorolac 0.4% (Acular LS) and nepafenac 0.1% (Nevanac) in patients undergoing phacoemulsification. American Journal of Ophthalmology. 2007;144(1):146–147.
    1. Heier JS, Awh CC, Busbee BG, et al. Vitreous nonsteroidal antiinflammatory drug concentrations and prostaglandin E2 levels in vitrectomy patients treated with ketorolac 0.4%, bromfenac 0.09%, and nepafenac 0.1% Retina. 2009;29(9):1310–1313.
    1. Irvine SR. A newly defined vitreous syndrome following cataract surgery. American Journal of Ophthalmology. 1953;36(5):499–619.
    1. Kim SJ, Equi R, Bressler NM. Analysis of macular edema after cataract surgery in patients with diabetes using optical coherence tomography. Ophthalmology. 2007;114(5):881–889.
    1. Lobo CL, Faria PM, Soares MA, Bernardes RC, Cunha-Vaz JG. Macular alterations after small-incision cataract surgery. Journal of Cataract and Refractive Surgery. 2004;30(4):752–760.
    1. Ursell PG, Spalton DJ, Whitcup SM, Nussenblatt RB. Cystoid macular edema after phacoemulsification: relationship to blood- aqueous barrier damage and visual acuity. Journal of Cataract and Refractive Surgery. 1999;25(11):1492–1497.
    1. Warren KA, Bahrani H, Fox JE. NSAIDs in combination therapy for the treatment of chronic pseudophakic cystoid macular edema. Retina. 2010;30(2):260–266.
    1. Hariprasad SM, Akduman L, Clever JA, Ober M, Recchia FM, Mieler WF. Treatment of cystoid macular edema with the new-generation NSAID nepafenac 0.1% Clinical Ophthalmology. 2009;3(1):147–154.
    1. Flach AJ, Stegman RC, Graham J, Kruger LP. Prophylaxis of aphakic cystoid macular edema without corticosteroids: a paired-comparison, placebo-controlled double-masked study. Ophthalmology. 1990;97(10):1253–1258.
    1. Miyake K, Masuda K, Shirato S, et al. Comparison of diclofenac and fluorometholone in preventing cystoid macular edema after small incision cataract surgery: a multicentered prospective trial. Japanese Journal of Ophthalmology. 2000;44(1):58–67.
    1. Wittpenn JR, Silverstein S, Heier J, Kenyon KR, Hunkeler JD, Earl M. A randomized, masked comparison of topical ketorolac 0.4% plus steroid vs. steroid alone in low-risk cataract surgery patients. American Journal of Ophthalmology. 2008;146(4):554–560.
    1. Kim SJ, Bressler NM. Optical coherence tomography and cataract surgery. Current Opinion in Ophthalmology. 2009;20(1):46–51.
    1. Flach AJ, Kraff MC, Sanders DR, Tanenbaum L. The quantitative effect of 0.5% ketorolac tromethamine solution and 0.1% dexamethasone sodium phosphate solution on postsurgical blood-aqueous barrier. Archives of Ophthalmology. 1988;106(4):480–483.
    1. Kim SJ, Lo WR, Hubbard GB, et al. Topical ketorolac in vitreoretinal surgery: a prospective, randomized, placebo-controlled, double-masked trial. Archives of Ophthalmology. 2008;126(9):1203–1208.
    1. Schoenberger SD, Miller DM, Petersen MR, Foster RE, Riemann CD, Sisk RA. Nepafenac for epiretinal membrane surgery. Ophthalmology. 2011;118(7):1482.e1–1482.e3.
    1. Naithani P, Puranik S, Vashisht N, Khanduja S, Kumar S, Garg S. Role of topical nepafenac in prevention and treatment of macular edema after vitreoretinal surgery. Retina. 2012;32(2):250–255.
    1. Friedman DS, O’Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. Archives of Ophthalmology. 2004;122(4):564–572.
    1. Brown GC, Brown MM, Sharma S, et al. The burden of age-related macular degeneration: a value-based medicine analysis. Transactions of the American Ophthalmological Society. 2005;103:173–186.
    1. Folk JC, Stone EM. Ranibizumab therapy for neovascular age-related macular degeneration. New England Journal of Medicine. 2010;363(17):1648–1655.
    1. Yourey PA, Gohari S, Su JL, Alderson RF. Vascular endothelial cell growth factors promote the in vitro development of rat photoreceptor cells. Journal of Neuroscience. 2000;20(18):6781–6788.
    1. Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. Archives of Ophthalmology. 2004;122(4):598–614.
    1. Patel M, Chan CC. Immunopathological aspects of age-related macular degeneration. Seminars in Immunopathology. 2008;30(2):97–110.
    1. Maloney SC, Fernandes BF, Castiglione E, et al. Expression of cyclooxygenase-2 in choroidal neovascular membranes from age-related macular degeneration patients. Retina. 2009;29(2):176–180.
    1. Monnier Y, Zaric J, Rüegg C. Inhibition of angiogenesis by non-steroidal anti-inflammatory drugs: from the bench to the bedside and back. Current Drug Targets: Inflammation and Allergy. 2005;4(1):31–38.
    1. Gately S, Kerbel R. Therapeutic potential of selective cyclooxygenase-2 inhibitors in the management of tumor angiogenesis. Progress in Experimental Tumor Research. 2003;37:179–192.
    1. Wu WKK, Sung JJ, Lee CW, Yu J, Cho CH. Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Letters. 2010;295(1):7–16.
    1. Yanni SE, Barnett JM, Clark ML, Penn JS. The role of PGE2 receptor EP4 in pathologic ocular angiogenesis. Investigative Ophthalmology and Visual Science. 2009;50(11):5479–5486.
    1. Amrite AC, Ayalasomayajula SP, Cheruvu NPS, Kompella UB. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Investigative Ophthalmology and Visual Science. 2006;47(3):1149–1160.
    1. Takahashi K, Saishin Y, Saishin Y, et al. Topical nepafenac inhibits ocular neovascularization. Investigative Ophthalmology and Visual Science. 2003;44(1):409–415.
    1. Kim SJ, Toma HS, Barnett JM, Penn JS. Ketorolac inhibits choroidal neovascularization by suppression of retinal VEGF. Experimental Eye Research. 2010;91(4):537–543.
    1. Kim SJ, Toma HS. Inhibition of choroidal neovascularization by intravitreal ketorolac. Archives of Ophthalmology. 2010;128(5):596–600.
    1. Rezaei KA, Toma HS, Cai J, Penn JS, Sternberg P, Kim SJ. Reduced choroidal neovascular membrane formation in cyclooxygenase-2 null mice. Investigative Ophthalmology and Visual Science. 2011;52(2):701–707.
    1. Hu W, Criswell MH, Ottlecz A, et al. Oral administration of lumiracoxib reduces choroidal neovascular membrane development in the rat laser-trauma model. Retina. 2005;25(8):1054–1064.
    1. Takahashi H, Yanagi Y, Tamaki Y, Uchida S, Muranaka K. COX-2-selective inhibitor, etodolac, suppresses choroidal neovascularization in a mice model. Biochemical and Biophysical Research Communications. 2004;325(2):461–466.
    1. McGeer PL, Sibley J. Sparing of age-related macular degeneration in rheumatoid arthritis. Neurobiology of Aging. 2005;26(8):1199–1203.
    1. Wilson HL, Schwartz DM, Bhatt HRF, McCulloch CE, Duncan JL. Statin and aspirin therapy are associated with decreased rates of choroidal neovascularization among patients with age-related macular degeneration. American Journal of Ophthalmology. 2004;137(4):615–624.
    1. Wang JJ, Mitchell P, Smith W, Gillies M, Billson F, Blue Mountains Eye Study Systemic use of anti-inflammatory medications and age-related maculopathy: the Blue Mountains Eye Study. Ophthalmic Epidemiology. 2003;10(1):37–48.
    1. Zweifel SA, Engelbert M, Khan S, Freund KB. Retrospective review of the efficacy of topical bromfenac (0.09%) as an adjunctive therapy for patients with neovascular age-related macular degeneration. Retina. 2009;29(10):1527–1531.
    1. Chen E, Benz MS, Fish RH, et al. Use of nepafenac (Nevanac)in combination with intravitreal anti-VEGF agents in the treatment of recalcitrant exudative macular degeneration requiring monthly injections. Clinical Ophthalmology. 2010;4(1):1249–1252.
    1. Adjunctive Diclofenac with Verteporfin (ADD-V) Study Group, Boyer DS, Beer PM, et al. Effect of adjunctive diclofenac with verteporfin therapy to treat choroidal neovascularization due to age-related macular degeneration: phase II study. Retina. 2007;27(6):693–700.
    1. Grant CA. Combination therapy: lucentis (ranibizumab injection) and xibrom (bromfenac ophthalmic solution) 0. 09% in the treatment of chroidal neovascular membrane secondary to age-related macular degeneration. Investigative Ophthalmology & Visual Science. 2008;49 E-abstract 563.
    1. Flaxel C, Schain MB, Hamon SC, Francis PJ. Prospective randomized controlled trial of combination ranibizumab (Lucentis) and bromfenac (Xibrom) for neovascular age-related macular degeneration. Retina. 2012;32(3):417–423.
    1. Gomi F, Sawa M, Tsujikawa M, Nishida K. Topical bromfenac as an adjunctive treatment with intravitreal ranibizumab for exudative age-related macular degeneration. Retina. 2012;32(9):1804–1810.
    1. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. New England Journal of Medicine. 2012;366(13):1227–1239.
    1. Bhagat N, Grigorian RA, Tutela A, Zarbin MA. Diabetic macular edema: pathogenesis and treatment. Survey of Ophthalmology. 2009;54(1):1–32.
    1. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group. Ophthalmology. 1995;102(4):647–661.
    1. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. United Kingdom Prospective Diabetes Study Group. British Medical Journal. 1998;317(7160):703–713.
    1. Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy. Seminars in Immunopathology. 2008;30(2):65–84.
    1. Lange CA, Stavrakas P, Luhmann UF, et al. Intraocular oxygen distribution in advanced proliferative diabetic retinopathy. American Journal of Ophthalmology. 2011;152(3):406–412.
    1. Suzuki Y, Nakazawa M, Suzuki K, Yamazaki H, Miyagawa Y. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Japanese Journal of Ophthalmology. 2011;55(3):256–263.
    1. Zhou J, Wang S, Xia X. Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Current Eye Research. 2012;37(5):416–420.
    1. Schoenberger SD, Kim SJ, Sheng J, Rezaei KA, Lalezary M, Cherney E. Increased prostaglandin E2 (PGE2) levels in proliferative diabetic retinopathy and correlation with VEGF and inflammatory cytokines. Investigative Ophthalmology & Visual Science. 2012;53(9):5906–5911.
    1. Cheng T, Cao W, Wen R, Steinberg RH, LaVail MM. Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells. Investigative Ophthalmology and Visual Science. 1998;39(3):581–591.
    1. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. New England Journal of Medicine. 1994;331(22):1480–1487.
    1. Johnson EIM, Dunlop ME, Larkins RG. Increased vasodilatory prostaglandin production in the diabetic rat retinal vasculature. Current Eye Research. 1999;18(2):79–82.
    1. Kern TS, Miller CM, Du Y, et al. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes. 2007;56(2):373–379.
    1. Ayalasomayajula SP, Kompella UB. Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. European Journal of Pharmacology. 2003;458(3):283–289.
    1. Joussen AM, Poulaki V, Mitsiades N, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. The FASEB Journal. 2002;16(3):438–440.
    1. Powell ED, Field R. Diabetic retinopathy and rheumatoid arthritis. The Lancet. 1964;284(7349):17–18.
    1. Effects of aspirin treatment on diabetic retinopathy. ETDRS report number 8. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5, supplement):757–765.
    1. Effect of aspirin alone and aspirin plus dipyridamole in early diabetic retinopathy. A multicenter randomized controlled clinical trial. The DAMAD Study Group. Diabetes. 1989;38(4):491–498.
    1. Hattori Y, Hashizume K, Nakajima K, Nishimura Y, Naka M, Miyanaga K. The effect of long-term treatment with sulindac on the progression of diabetic retinopathy. Current Medical Research and Opinion. 2007;23(8):1913–1917.
    1. Chew EY, Kim J, Coleman HR, et al. Preliminary assessment of celecoxib and microdiode pulse laser treatment of diabetic macular edema. Retina. 2010;30(3):459–467.
    1. Bressler NM, Edwards AR, Beck RW, et al. Exploratory analysis of diabetic retinopathy progression through 3 years in a randomized clinical trial that compares intravitreal triamcinolone acetonide with focal/grid photocoagulation. Archives of Ophthalmology. 2009;127(12):1566–1571.
    1. Hariprasad SM, Callanan D, Gainey S, He YG, Warren K. Cystoid and diabetic macular edema treated with nepafenac 0.1% Journal of Ocular Pharmacology and Therapeutics. 2007;23(6):585–589.
    1. Callanan D, Williams P. Topical nepafenac in the treatment of diabetic macular edema. Clinical Ophthalmology. 2008;2(4):689–692.
    1. July 2012, .
    1. Soheilian M, Karimi S, Ramezani A, Peyman GA. Pilot study of intravitreal injection of diclofenac for treatment of macular edema of various etiologies. Retina. 2010;30(3):509–515.
    1. Elbendary AM, Shahin MM. Intravitreal diclofenac versus intravitreal triamcinolone acetonide in the treatment of diabetic macular edema. Retina. 2011;31(10):2058–2064.
    1. Reis Ado C, Vianna RN, Reis RS, Cardoso GP. Intravitreal injection of ketorolac tromethamine in patients with diabetic macular edema refractory to retinal photocoagulation. Arquivos Brasileiros de Oftalmologia. 2010;73(4):338–342.
    1. Maldonado RM, Vianna RNG, Cardoso GP, de Magalhães AV, Burnier MN., Jr. Intravitreal injection of commercially available ketorolac tromethamine in eyes with diabetic macular edema refractory to laser photocoagulation. Current Eye Research. 2011;36(8):768–773.

Source: PubMed

3
Suscribir