Impact of Altered Intestinal Microbiota on Chronic Kidney Disease Progression

Esmeralda Castillo-Rodriguez, Raul Fernandez-Prado, Raquel Esteras, Maria Vanessa Perez-Gomez, Carolina Gracia-Iguacel, Beatriz Fernandez-Fernandez, Mehmet Kanbay, Alberto Tejedor, Alberto Lazaro, Marta Ruiz-Ortega, Emilio Gonzalez-Parra, Ana B Sanz, Alberto Ortiz, Maria Dolores Sanchez-Niño, Esmeralda Castillo-Rodriguez, Raul Fernandez-Prado, Raquel Esteras, Maria Vanessa Perez-Gomez, Carolina Gracia-Iguacel, Beatriz Fernandez-Fernandez, Mehmet Kanbay, Alberto Tejedor, Alberto Lazaro, Marta Ruiz-Ortega, Emilio Gonzalez-Parra, Ana B Sanz, Alberto Ortiz, Maria Dolores Sanchez-Niño

Abstract

In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of CKD progression. Some uremic toxins result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves, such as trimethylamine N-Oxide (TMAO), p-cresyl sulphate, indoxyl sulphate and indole-3 acetic acid. Increased intake of some nutrients may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of CKD progression. This offers the opportunity for therapeutic intervention by either modifying the diet, modifying the microbiota, decreasing uremic toxin production by microbiota, increasing toxin excretion or targeting specific uremic toxins. We now review the link between nutrients, microbiota and uremic toxin with CKD progression. Specific focus will be placed on the generation specific uremic toxins with nephrotoxic potential, the decreased availability of bacteria-derived metabolites with nephroprotective potential, such as vitamin K and butyrate and the cellular and molecular mechanisms linking these toxins and protective factors to kidney diseases. This information provides a conceptual framework that allows the development of novel therapeutic approaches.

Keywords: carnitine; choline; chronic kidney disease; gut-kidney axis; indoxyl sulphate; microbiota; p-cresyl sulphate; trimethylamine N-Oxide; tryptophan; tyrosine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Bidirectional relationship between gut microbiota and chronic kidney disease (CKD) progression that may result in acceleration of CKD progression.
Figure 2
Figure 2
Potential therapeutic approaches on the gut microbiota-CKD progression axis. Only one of these approaches is used routinely in the clinic in some countries (AST-120). The rest are theoretical or have been tested only in preclinical cell culture or animal models.

References

    1. Sanchez-Niño M.D., Sanz A.B., Ramos A.M., Ruiz-Ortega M., Ortiz A. Translational science in chronic kidney disease. Clin. Sci. 2017;131:1617–1629. doi: 10.1042/CS20160395.
    1. Ortiz A., Covic A., Fliser D., Fouque D., Goldsmith D., Kanbay M., Mallamaci F., Massy Z.A., Rossignol P., Vanholder R., et al. Epidemiology, contributors to and clinical trials of mortality risk in chronic kidney failure. Lancet. 2014;383:1831–1843. doi: 10.1016/S0140-6736(14)60384-6.
    1. Vanholder R., Fouque D., Glorieux G., Heine G.H., Kanbay M., Mallamaci F., Massy Z.A., Ortiz A., Rossignol P., Wiecek A., et al. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol. 2016;4:360–373. doi: 10.1016/S2213-8587(16)00033-4.
    1. Fernandez-Fernandez B., Izquierdo M.C., Valiño-Rivas L., Nastou D., Sanz A.B., Ortiz A., Sanchez-Niño M.D. Albumin downregulates Klotho in tubular cells. Nephrol. Dial. Transplant. 2018 doi: 10.1093/ndt/gfx376.
    1. Duranton F., Cohen G., De Smet R., Rodriguez M., Jankowski J., Vanholder R., Argiles A. European uremic toxin work group normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012;23:1258–1270. doi: 10.1681/ASN.2011121175.
    1. Ruiz-Andres O., Sanchez-Niño M.D., Moreno J.A., Ruiz-Ortega M., Ramos A.M., Sanz A.B., Ortiz A. Downregulation of kidney protective factors by inflammation: Role of transcription factors and epigenetic mechanisms. Am. J. Physiol. Renal Physiol. 2016;311:F1329–F1340. doi: 10.1152/ajprenal.00487.2016.
    1. Zoccali C., Vanholder R., Massy Z.A., Ortiz A., Sarafidis P., Dekker F.W., Fliser D., Fouque D., Heine G.H., Jager K.J., et al. The systemic nature of CKD. Nat. Rev. Nephrol. 2017;13:344–358. doi: 10.1038/nrneph.2017.52.
    1. Vanholder R., Glorieux G. The intestine and the kidneys: A bad marriage can be hazardous. Clin. Kidney J. 2015;8:168–179. doi: 10.1093/ckj/sfv004.
    1. Ramezani A., Massy Z.A., Meijers B., Evenepoel P., Vanholder R., Raj D.S. Role of the gut microbiome in uremia: A potential therapeutic target. Am. J. Kidney Dis. 2016;67:483–498. doi: 10.1053/j.ajkd.2015.09.027.
    1. Nallu A., Sharma S., Ramezani A., Muralidharan J., Raj D. Gut microbiome in chronic kidney disease: Challenges and opportunities. Transl. Res. 2017;179:24–37. doi: 10.1016/j.trsl.2016.04.007.
    1. Packham D.K., Rasmussen H.S., Lavin P.T., El-Shahawy M.A., Roger S.D., Block G., Qunibi W., Pergola P., Singh B. Sodium zirconium cyclosilicate in hyperkalemia. N. Engl. J. Med. 2015;372:222–231. doi: 10.1056/NEJMoa1411487.
    1. Weir M.R., Bakris G.L., Bushinsky D.A., Mayo M.R., Garza D., Stasiv Y., Wittes J., Christ-Schmidt H., Berman L., Pitt B., et al. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N. Engl. J. Med. 2015;372:211–221. doi: 10.1056/NEJMoa1410853.
    1. Fernandez-Prado R., Esteras R., Perez-Gomez M.V., Gracia-Iguacel C., Gonzalez-Parra E., Sanz A.B., Ortiz A., Sanchez-Niño M.D. Nutrients turned into toxins: Microbiota modulation of nutrient properties in chronic kidney disease. Nutrients. 2017;9:489. doi: 10.3390/nu9050489.
    1. Meert N., Schepers E., Glorieux G., Van Landschoot M., Goeman J.L., Waterloos M.-A., Dhondt A., Van der Eycken J., Vanholder R. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: Clinical data and pathophysiological implications. Nephrol. Dial. Transplant. 2012;27:2388–2396. doi: 10.1093/ndt/gfr672.
    1. Poesen R., Evenepoel P., de Loor H., Kuypers D., Augustijns P., Meijers B. Metabolism, protein binding and renal clearance of microbiota-derived p-cresol in patients with CKD. Clin. J. Am. Soc. Nephrol. 2016;11:1136–1144. doi: 10.2215/CJN.00160116.
    1. Wu I.-W., Hsu K.-H., Lee C.-C., Sun C.-Y., Hsu H.-J., Tsai C.-J., Tzen C.-Y., Wang Y.-C., Lin C.-Y., Wu M.-S. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol. Dial. Transplant. 2011;26:938–947. doi: 10.1093/ndt/gfq580.
    1. Lin C.-J., Wu V., Wu P.-C., Wu C.-J. Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS ONE. 2015;10:e0132589. doi: 10.1371/journal.pone.0132589.
    1. Vanholder R., Schepers E., Pletinck A., Nagler E.V., Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J. Am. Soc. Nephrol. 2014;25:1897–1907. doi: 10.1681/ASN.2013101062.
    1. Poveda J., Sanchez-Niño M.D., Glorieux G., Sanz A.B., Egido J., Vanholder R., Ortiz A. p-Cresyl sulphate has pro-inflammatory and cytotoxic actions on human proximal tubular epithelial cells. Nephrol. Dial. Transplant. 2014;29:56–64. doi: 10.1093/ndt/gft367.
    1. Sanchez-Niño M.D., Fernandez-Fernandez B., Perez-Gomez M.V., Poveda J., Sanz A.B., Cannata-Ortiz P., Ruiz-Ortega M., Egido J., Selgas R., Ortiz A. Albumin-induced apoptosis of tubular cells is modulated by BASP1. Cell Death Dis. 2015;6:e1644. doi: 10.1038/cddis.2015.1.
    1. Bolati D., Shimizu H., Higashiyama Y., Nishijima F., Niwa T. Indoxyl sulfate induces epithelial-to-mesenchymal transition in rat kidneys and human proximal tubular cells. Am. J. Nephrol. 2011;34:318–323. doi: 10.1159/000330852.
    1. Sun C.-Y., Hsu H.-H., Wu M.-S. p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells. Nephrol. Dial. Transplant. 2013;28:70–78. doi: 10.1093/ndt/gfs133.
    1. Enomoto A., Takeda M., Tojo A., Sekine T., Cha S.H., Khamdang S., Takayama F., Aoyama I., Nakamura S., Endou H., et al. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J. Am. Soc. Nephrol. 2002;13:1711–1720. doi: 10.1097/01.ASN.0000022017.96399.B2.
    1. Niwa T., Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med. 1994;124:96–104.
    1. Niwa T., Ise M., Miyazaki T. Progression of glomerular sclerosis in experimental uremic rats by administration of indole, a precursor of indoxyl sulfate. Am. J. Nephrol. 1994;14:207–212. doi: 10.1159/000168716.
    1. Miyazaki T., Ise M., Seo H., Niwa T. Indoxyl sulfate increases the gene expressions of TGF-β1, TIMP-1 and pro-α1(I) collagen in uremic rat kidneys. Kidney Int. Suppl. 1997;62:S15–S22.
    1. Edamatsu T., Fujieda A., Ezawa A., Itoh Y. Classification of five uremic solutes according to their effects on renal tubular cells. Int. J. Nephrol. 2014;2014:512178. doi: 10.1155/2014/512178.
    1. Satoh M., Hayashi H., Watanabe M., Ueda K., Yamato H., Yoshioka T., Motojima M. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron. Exp. Nephrol. 2003;95:e111–e118. doi: 10.1159/000074327.
    1. Tang W.H.W., Wang Z., Kennedy D.J., Wu Y., Buffa J.A., Agatisa-Boyle B., Li X.S., Levison B.S., Hazen S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015;116:448–455. doi: 10.1161/CIRCRESAHA.116.305360.
    1. Kim R.B., Morse B.L., Djurdjev O., Tang M., Muirhead N., Barrett B., Holmes D.T., Madore F., Clase C.M., Rigatto C., et al. Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events. Kidney Int. 2016;89:1144–1152. doi: 10.1016/j.kint.2016.01.014.
    1. Muir J.G., Lu Z.X., Young G.P., Cameron-Smith D., Collier G.R., O’Dea K. Resistant starch in the diet increases breath hydrogen and serum acetate in human subjects. Am. J. Clin. Nutr. 1995;61:792–799. doi: 10.1093/ajcn/61.4.792.
    1. Wolever T.M., Josse R.G., Leiter L.A., Chiasson J.L. Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism. 1997;46:805–811. doi: 10.1016/S0026-0495(97)90127-X.
    1. Pryde S.E., Duncan S.H., Hold G.L., Stewart C.S., Flint H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002;217:133–139. doi: 10.1111/j.1574-6968.2002.tb11467.x.
    1. Huang W., Guo H.-L., Deng X., Zhu T.-T., Xiong J.-F., Xu Y.-H., Xu Y. Short-chain fatty acids inhibit oxidative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Exp. Clin. Endocrinol. Diabetes. 2017;125:98–105. doi: 10.1055/s-0042-121493.
    1. Kobayashi M., Mikami D., Kimura H., Kamiyama K., Morikawa Y., Yokoi S., Kasuno K., Takahashi N., Taniguchi T., Iwano M. Short-chain fatty acids, GPR41 and GPR43 ligands, inhibit TNF-α-induced MCP-1 expression by modulating p38 and JNK signaling pathways in human renal cortical epithelial cells. Biochem. Biophys. Res. Commun. 2017;486:499–505. doi: 10.1016/j.bbrc.2017.03.071.
    1. Sun X., Zhang B., Hong X., Zhang X., Kong X. Histone deacetylase inhibitor, sodium butyrate, attenuates gentamicin-induced nephrotoxicity by increasing prohibitin protein expression in rats. Eur. J. Pharmacol. 2013;707:147–154. doi: 10.1016/j.ejphar.2013.03.018.
    1. Machado R.A., de Constantino L.S., Tomasi C.D., Rojas H.A., Vuolo F.S., Vitto M.F., Cesconetto P.A., de Souza C.T., Ritter C., Dal-Pizzol F. Sodium butyrate decreases the activation of NF-κB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy. Nephrol. Dial. Transplant. 2012;27:3136–3140. doi: 10.1093/ndt/gfr807.
    1. Perez-Gomez M.V., Sanchez-Niño M.D., Sanz A.B., Zheng B., Martín-Cleary C., Ruiz-Ortega M., Ortiz A., Fernandez-Fernandez B. Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opin. Inv. Drugs. 2016;25:1045–1058. doi: 10.1080/13543784.2016.1196184.
    1. Kooman J.P., Dekker M.J., Usvyat L.A., Kotanko P., van der Sande F.M., Schalkwijk C.G., Shiels P.G., Stenvinkel P. Inflammation and premature aging in advanced chronic kidney disease. Am. J. Physiol. Renal Physiol. 2017;313:F938–F950. doi: 10.1152/ajprenal.00256.2017.
    1. Castillo-Rodríguez E., Pizarro-Sánchez S., Sanz A.B., Ramos A.M., Sanchez-Niño M.D., Martin-Cleary C., Fernandez-Fernandez B., Ortiz A. Inflammatory cytokines as uremic toxins: “Ni son todos los que estan, ni estan todos los que son”. Toxins. 2017;9:114. doi: 10.3390/toxins9040114.
    1. Mafra D., Fouque D. Gut microbiota and inflammation in chronic kidney disease patients. Clin. Kidney J. 2015;8:332–334. doi: 10.1093/ckj/sfv026.
    1. Lau W.L., Kalantar-Zadeh K., Vaziri N.D. The gut as a source of inflammation in chronic kidney disease. Nephron. 2015;130:92–98. doi: 10.1159/000381990.
    1. Sabatino A., Regolisti G., Brusasco I., Cabassi A., Morabito S., Fiaccadori E. Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol. Dial. Transplant. 2015;30:924–933. doi: 10.1093/ndt/gfu287.
    1. Anders H.-J., Andersen K., Stecher B. The intestinal microbiota, a leaky gut and abnormal immunity in kidney disease. Kidney Int. 2013;83:1010–1016. doi: 10.1038/ki.2012.440.
    1. Wang F., Jiang H., Shi K., Ren Y., Zhang P., Cheng S. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrol. 2012;17:733–738. doi: 10.1111/j.1440-1797.2012.01647.x.
    1. Shi K., Wang F., Jiang H., Liu H., Wei M., Wang Z., Xie L. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig. Dis. Sci. 2014;59:2109–2117. doi: 10.1007/s10620-014-3202-7.
    1. Stenvinkel P. Inflammation in end-stage renal disease—A fire that burns within. Contrib. Nephrol. 2005;149:185–199. doi: 10.1159/000085525.
    1. Feroze U., Kalantar-Zadeh K., Sterling K.A., Molnar M.Z., Noori N., Benner D., Shah V., Dwivedi R., Becker K., Kovesdy C.P., et al. Examining associations of circulating endotoxin with nutritional status, inflammation and mortality in hemodialysis patients. J. Renal Nutr. 2012;22:317–326. doi: 10.1053/j.jrn.2011.05.004.
    1. Szeto C.-C., Kwan B.C.-H., Chow K.-M., Lai K.-B., Chung K.-Y., Leung C.-B., Li P.K.-T. Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin. J. Am. Soc. Nephrol. 2008;3:431–436. doi: 10.2215/CJN.03600807.
    1. McIntyre C.W., Harrison L.E.A., Eldehni M.T., Jefferies H.J., Szeto C.-C., John S.G., Sigrist M.K., Burton J.O., Hothi D., Korsheed S., et al. Circulating endotoxemia: A novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011;6:133–141. doi: 10.2215/CJN.04610510.
    1. Vaziri N.D., Goshtasbi N., Yuan J., Jellbauer S., Moradi H., Raffatellu M., Kalantar-Zadeh K. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am. J. Nephrol. 2012;36:438–443. doi: 10.1159/000343886.
    1. Vaziri N.D., Yuan J., Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am. J. Nephrol. 2013;37:1–6. doi: 10.1159/000345969.
    1. Zambetti L.P., Mortellaro A. NLRPs, microbiota and gut homeostasis: Unravelling the connection. J. Pathol. 2014;233:321–330. doi: 10.1002/path.4357.
    1. Gryp T., Vanholder R., Vaneechoutte M., Glorieux G. p-Cresyl sulfate. Toxins. 2017;9:52. doi: 10.3390/toxins9020052.
    1. Watanabe H., Miyamoto Y., Honda D., Tanaka H., Wu Q., Endo M., Noguchi T., Kadowaki D., Ishima Y., Kotani S., et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013;83:582–592. doi: 10.1038/ki.2012.448.
    1. Mutsaers H.A.M., Caetano-Pinto P., Seegers A.E.M., Dankers A.C.A., van den Broek P.H.H., Wetzels J.F.M., van den Brand J.A.J.G., van den Heuvel L.P., Hoenderop J.G., Wilmer M.J.G., et al. Proximal tubular efflux transporters involved in renal excretion of p-cresyl sulfate and p-cresyl glucuronide: Implications for chronic kidney disease pathophysiology. Toxicol. Vitr. 2015;29:1868–1877. doi: 10.1016/j.tiv.2015.07.020.
    1. Sun C.-Y., Chang S.-C., Wu M.-S. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS ONE. 2012;7:e34026. doi: 10.1371/journal.pone.0034026.
    1. Gulyassy P.F., Jarrard E., Stanfel L.A. Contributions of hippurate, indoxyl sulfate and o-hydroxyhippurate to impaired ligand binding by plasma in azotemic humans. Biochem. Pharmacol. 1987;36:4215–4220. doi: 10.1016/0006-2952(87)90661-7.
    1. Ortiz A., Justo P., Sanz A., Melero R., Caramelo C., Guerrero M.F., Strutz F., Müller G., Barat A., Egido J. Tubular cell apoptosis and cidofovir-induced acute renal failure. Antivir. Ther. 2005;10:185–190.
    1. Humanes B., Lazaro A., Camano S., Moreno-Gordaliza E., Lazaro J.A., Blanco-Codesido M., Lara J.M., Ortiz A., Gomez-Gomez M.M., Martín-Vasallo P., et al. Cilastatin protects against cisplatin-induced nephrotoxicity without compromising its anticancer efficiency in rats. Kidney Int. 2012;82:652–663. doi: 10.1038/ki.2012.199.
    1. Ichii O., Otsuka-Kanazawa S., Nakamura T., Ueno M., Kon Y., Chen W., Rosenberg A.Z., Kopp J.B. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand. PLoS ONE. 2014;9:e108448. doi: 10.1371/journal.pone.0108448.
    1. Motojima M., Hosokawa A., Yamato H., Muraki T., Yoshioka T. Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake. Br. J. Pharmacol. 2002;135:555–563. doi: 10.1038/sj.bjp.0704482.
    1. Dou L., Sallée M., Cerini C., Poitevin S., Gondouin B., Jourde-Chiche N., Fallague K., Brunet P., Calaf R., Dussol B., et al. The cardiovascular effect of the uremic solute indole-3 acetic acid. J. Am. Soc. Nephrol. 2015;26:876–887. doi: 10.1681/ASN.2013121283.
    1. Gondouin B., Cerini C., Dou L., Sallée M., Duval-Sabatier A., Pletinck A., Calaf R., Lacroix R., Jourde-Chiche N., Poitevin S., et al. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int. 2013;84:733–744. doi: 10.1038/ki.2013.133.
    1. Chitalia V.C., Shivanna S., Martorell J., Balcells M., Bosch I., Kolandaivelu K., Edelman E.R. Uremic serum and solutes increase post-vascular interventional thrombotic risk through altered stability of smooth muscle cell tissue factor. Circulation. 2013;127:365–376. doi: 10.1161/CIRCULATIONAHA.112.118174.
    1. Shivanna S., Kolandaivelu K., Shashar M., Belghasim M., Al-Rabadi L., Balcells M., Zhang A., Weinberg J., Francis J., Pollastri M.P., et al. The aryl hydrocarbon receptor is a critical regulator of tissue factor stability and an antithrombotic target in uremia. J. Am. Soc. Nephrol. 2016;27:189–201. doi: 10.1681/ASN.2014121241.
    1. Ng H.-Y., Yisireyili M., Saito S., Lee C.-T., Adelibieke Y., Nishijima F., Niwa T. Indoxyl sulfate downregulates expression of Mas receptor via OAT3/AhR/Stat3 pathway in proximal tubular cells. PLoS ONE. 2014;9:e91517. doi: 10.1371/journal.pone.0091517.
    1. Moraes C., Fouque D., Amaral A.C.F., Mafra D. Trimethylamine N-oxide from gut microbiota in chronic kidney disease patients: Focus on diet. J. Renal Nutr. 2015;25:459–465. doi: 10.1053/j.jrn.2015.06.004.
    1. Schugar R.C., Willard B., Wang Z., Brown J.M. Postprandial gut microbiota-driven choline metabolism links dietary cues to adipose tissue dysfunction. Adipocyte. 2018;7:49–56. doi: 10.1080/21623945.2017.1398295.
    1. Bennett B.J., de Aguiar Vallim T.Q., Wang Z., Shih D.M., Meng Y., Gregory J., Allayee H., Lee R., Graham M., Crooke R., et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17:49–60. doi: 10.1016/j.cmet.2012.12.011.
    1. Miyake T., Mizuno T., Mochizuki T., Kimura M., Matsuki S., Irie S., Ieiri I., Maeda K., Kusuhara H. Involvement of organic cation transporters in the kinetics of trimethylamine N-oxide. J. Pharm. Sci. 2017;106:2542–2550. doi: 10.1016/j.xphs.2017.04.067.
    1. Teft W.A., Morse B.L., Leake B.F., Wilson A., Mansell S.E., Hegele R.A., Ho R.H., Kim R.B. Identification and characterization of trimethylamine-N-oxide uptake and efflux transporters. Mol. Pharm. 2017;14:310–318. doi: 10.1021/acs.molpharmaceut.6b00937.
    1. Gessner A., König J., Fromm M.F. Contribution of multidrug and toxin extrusion protein 1 (MATE1) to renal secretion of trimethylamine-N-oxide (TMAO) Sci. Rep. 2018;8:6659. doi: 10.1038/s41598-018-25139-8.
    1. Hoyles L., Jiménez-Pranteda M.L., Chilloux J., Brial F., Myridakis A., Aranias T., Magnan C., Gibson G.R., Sanderson J.D., Nicholson J.K., et al. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome. 2018;6:73. doi: 10.1186/s40168-018-0461-0.
    1. Bain M.A., Faull R., Fornasini G., Milne R.W., Evans A.M. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol. Dial. Transplant. 2006;21:1300–1304. doi: 10.1093/ndt/gfk056.
    1. Tomlinson J.A.P., Wheeler D.C. The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney Int. 2017;92:809–815. doi: 10.1016/j.kint.2017.03.053.
    1. Yancey P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 2005;208:2819–2830. doi: 10.1242/jeb.01730.
    1. Missailidis C., Hällqvist J., Qureshi A.R., Barany P., Heimbürger O., Lindholm B., Stenvinkel P., Bergman P. Serum Trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLoS ONE. 2016;11:e0141738. doi: 10.1371/journal.pone.0141738.
    1. Gruppen E.G., Garcia E., Connelly M.A., Jeyarajah E.J., Otvos J.D., Bakker S.J.L., Dullaart R.P.F. TMAO is associated with mortality: Impact of modestly impaired renal function. Sci. Rep. 2017;7:13781. doi: 10.1038/s41598-017-13739-9.
    1. Rhee E.P., Clish C.B., Ghorbani A., Larson M.G., Elmariah S., McCabe E., Yang Q., Cheng S., Pierce K., Deik A., et al. A combined epidemiologic and metabolomic approach improves CKD prediction. J. Am. Soc. Nephrol. 2013;24:1330–1338. doi: 10.1681/ASN.2012101006.
    1. Sun G., Yin Z., Liu N., Bian X., Yu R., Su X., Zhang B., Wang Y. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem. Biophys. Res. Commun. 2017;493:964–970. doi: 10.1016/j.bbrc.2017.09.108.
    1. Tie J.-K., Stafford D.W. Functional study of the vitamin K cycle enzymes in live cells. Methods Enzymol. 2017;584:349–394. doi: 10.1016/bs.mie.2016.10.015.
    1. Harshman S.G., Shea M.K. The role of vitamin K in chronic aging diseases: Inflammation, cardiovascular disease and osteoarthritis. Curr. Nutr. Rep. 2016;5:90–98. doi: 10.1007/s13668-016-0162-x.
    1. Beulens J.W.J., Booth S.L., van den Heuvel E.G.H.M., Stoecklin E., Baka A., Vermeer C. The role of menaquinones (vitamin K2) in human health. Br. J. Nutr. 2013;110:1357–1368. doi: 10.1017/S0007114513001013.
    1. Holden R.M., Morton A.R., Garland J.S., Pavlov A., Day A.G., Booth S.L. Vitamins K and D status in stages 3–5 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010;5:590–597. doi: 10.2215/CJN.06420909.
    1. Booth S.L., Broe K.E., Peterson J.W., Cheng D.M., Dawson-Hughes B., Gundberg C.M., Cupples L.A., Wilson P.W.F., Kiel D.P. Associations between vitamin K biochemical measures and bone mineral density in men and women. J. Clin. Endocrinol. Metab. 2004;89:4904–4909. doi: 10.1210/jc.2003-031673.
    1. Fusaro M., Plebani M., Iervasi G., Gallieni M. Vitamin K deficiency in chronic kidney disease: Evidence is building up. Am. J. Nephrol. 2017;45:1–3. doi: 10.1159/000451070.
    1. Wei F.-F., Drummen N.E.A., Thijs L., Jacobs L., Herfs M., Van’t Hoofd C., Vermeer C., Staessen J.A. Vitamin-K-dependent protection of the renal microvasculature: Histopathological studies in normal and diseased kidneys. Pulse. 2016;4:85–91. doi: 10.1159/000448008.
    1. Van Ballegooijen A.J., Beulens J.W. The role of vitamin K status in cardiovascular health: Evidence from observational and clinical studies. Curr. Nutr. Rep. 2017;6:197–205. doi: 10.1007/s13668-017-0208-8.
    1. Thamratnopkoon S., Susantitaphong P., Tumkosit M., Katavetin P., Tiranathanagul K., Praditpornsilpa K., Eiam-Ong S. Correlations of plasma desphosphorylated uncarboxylated matrix GLA protein with vascular calcification and vascular stiffness in chronic kidney disease. Nephron. 2017;135:167–172. doi: 10.1159/000453368.
    1. Kaesler N., Magdeleyns E., Herfs M., Schettgen T., Brandenburg V., Fliser D., Vermeer C., Floege J., Schlieper G., Krüger T. Impaired vitamin K recycling in uremia is rescued by vitamin K supplementation. Kidney Int. 2014;86:286–293. doi: 10.1038/ki.2013.530.
    1. O’Seaghdha C.M., Hwang S.-J., Holden R., Booth S.L., Fox C.S. Phylloquinone and vitamin D status: associations with incident chronic kidney disease in the Framingham Offspring cohort. Am. J. Nephrol. 2012;36:68–77. doi: 10.1159/000339005.
    1. Nigwekar S.U., Thadhani R., Brandenburg V.M. Calciphylaxis. N. Engl. J. Med. 2018;378:1704–1714. doi: 10.1056/NEJMra1505292.
    1. Caluwé R., Pyfferoen L., De Boeck K., De Vriese A.S. The effects of vitamin K supplementation and vitamin K antagonists on progression of vascular calcification: ongoing randomized controlled trials. Clin. Kidney J. 2016;9:273–279. doi: 10.1093/ckj/sfv146.
    1. Brodsky S.V., Satoskar A., Chen J., Nadasdy G., Eagen J.W., Hamirani M., Hebert L., Calomeni E., Nadasdy T. Acute kidney injury during warfarin therapy associated with obstructive tubular red blood cell casts: A report of 9 cases. Am. J. kidney Dis. 2009;54:1121–1126. doi: 10.1053/j.ajkd.2009.04.024.
    1. Moreno J.A., Martín-Cleary C., Gutiérrez E., Toldos O., Blanco-Colio L.M., Praga M., Ortiz A., Egido J. AKI associated with macroscopic glomerular hematuria: Clinical and pathophysiologic consequences. Clin. J. Am. Soc. Nephrol. 2012;7:175–184. doi: 10.2215/CJN.01970211.
    1. Ware K., Brodsky P., Satoskar A.A., Nadasdy T., Nadasdy G., Wu H., Rovin B.H., Bhatt U., Von Visger J., Hebert L.A., et al. Warfarin-related nephropathy modeled by nephron reduction and excessive anticoagulation. J. Am. Soc. Nephrol. 2011;22:1856–1862. doi: 10.1681/ASN.2010101110.
    1. Yao X., Tangri N., Gersh B.J., Sangaralingham L.R., Shah N.D., Nath K.A., Noseworthy P.A. Renal outcomes in anticoagulated patients with atrial fibrillation. J. Am. Coll. Cardiol. 2017;70:2621–2632. doi: 10.1016/j.jacc.2017.09.1087.
    1. Golbin L., Vigneau C., Touchard G., Thervet E., Halimi J.-M., Sawadogo T., Lagoutte N., Siohan P., Zagdoun E., Hertig A., et al. Warfarin-related nephropathy induced by three different vitamin K antagonists: Analysis of 13 biopsy-proven cases. Clin. Kidney J. 2017;10:381–388. doi: 10.1093/ckj/sfw133.
    1. Moeckel G.W., Luciano R.L., Brewster U.C. Warfarin-related nephropathy in a patient with mild IgA nephropathy on dabigatran and aspirin. Clin. Kidney J. 2013;6:507–509. doi: 10.1093/ckj/sft076.
    1. Wächtershäuser A., Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur. J. Nutr. 2000;39:164–171. doi: 10.1007/s003940070020.
    1. Jiang S., Xie S., Lv D., Wang P., He H., Zhang T., Zhou Y., Lin Q., Zhou H., Jiang J., et al. Alteration of the gut microbiota in Chinese population with chronic kidney disease. Sci. Rep. 2017;7:2870. doi: 10.1038/s41598-017-02989-2.
    1. Jiang S., Xie S., Lv D., Zhang Y., Deng J., Zeng L., Chen Y. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie Van Leeuwenhoek. 2016;109:1389–1396. doi: 10.1007/s10482-016-0737-y.
    1. Wong J., Piceno Y.M., DeSantis T.Z., Pahl M., Andersen G.L., Vaziri N.D. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 2014;39:230–237. doi: 10.1159/000360010.
    1. Gao Z., Yin J., Zhang J., Ward R.E., Martin R.J., Lefevre M., Cefalu W.T., Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58:1509–1517. doi: 10.2337/db08-1637.
    1. Maslowski K.M., Vieira A.T., Ng A., Kranich J., Sierro F., Yu D., Schilter H.C., Rolph M.S., Mackay F., Artis D., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–1286. doi: 10.1038/nature08530.
    1. Krishnan V., Chow M.Z.Y., Wang Z., Zhang L., Liu B., Liu X., Zhou Z. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc. Natl. Acad. Sci. USA. 2011;108:12325–12330. doi: 10.1073/pnas.1102789108.
    1. Walsh M.E., Bhattacharya A., Sataranatarajan K., Qaisar R., Sloane L., Rahman M.M., Kinter M., Van Remmen H. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell. 2015;14:957–970. doi: 10.1111/acel.12387.
    1. Fontecha-Barriuso M., Martin-Sanchez D., Ruiz-Andres O., Poveda J., Sanchez-Niño M.D., Valiño-Rivas L., Ruiz-Ortega M., Ortiz A., Sanz A.B. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol. Dial. Transplant. 2018:1–14. doi: 10.1093/ndt/gfy009.
    1. Moreno J.A., Izquierdo M.C., Sanchez-Niño M.D., Suárez-Alvarez B., Lopez-Larrea C., Jakubowski A., Blanco J., Ramirez R., Selgas R., Ruiz-Ortega M., et al. The inflammatory cytokines TWEAK and TNFα reduce renal klotho expression through NFκB. J. Am. Soc. Nephrol. 2011;22:1315–1325. doi: 10.1681/ASN.2010101073.
    1. Ruiz-Andres O., Sanchez-Niño M.D., Cannata-Ortiz P., Ruiz-Ortega M., Egido J., Ortiz A., Sanz A.B. Histone lysine crotonylation during acute kidney injury in mice. Dis. Model. Mech. 2016;9:633–645. doi: 10.1242/dmm.024455.
    1. Brown A.J., Goldsworthy S.M., Barnes A.A., Eilert M.M., Tcheang L., Daniels D., Muir A.I., Wigglesworth M.J., Kinghorn I., Fraser N.J., et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003;278:11312–13319. doi: 10.1074/jbc.M211609200.
    1. Sanchez-Niño M.D., Ortiz A. Differential effects of oral and intravenous l-carnitine on serum lipids: Is the microbiota the answer? Clin. Kidney J. 2014;7:437–441. doi: 10.1093/ckj/sfu099.
    1. Devlin A.S., Marcobal A., Dodd D., Nayfach S., Plummer N., Meyer T., Pollard K.S., Sonnenburg J.L., Fischbach M.A. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe. 2016;20:709–715. doi: 10.1016/j.chom.2016.10.021.
    1. Kusumoto M., Kamobayashi H., Sato D., Komori M., Yoshimura M., Hamada A., Kohda Y., Tomita K., Saito H. Alleviation of cisplatin-induced acute kidney injury using phytochemical polyphenols is accompanied by reduced accumulation of indoxyl sulfate in rats. Clin. Exp. Nephrol. 2011;15:820–830. doi: 10.1007/s10157-011-0524-z.
    1. Saito H., Yoshimura M., Saigo C., Komori M., Nomura Y., Yamamoto Y., Sagata M., Wakida A., Chuman E., Nishi K., et al. Hepatic sulfotransferase as a nephropreventing target by suppression of the uremic toxin indoxyl sulfate accumulation in ischemic acute kidney injury. Toxicol. Sci. 2014;141:206–217. doi: 10.1093/toxsci/kfu119.
    1. Saigo C., Nomura Y., Yamamoto Y., Sagata M., Matsunaga R., Jono H., Nishi K., Saito H. Meclofenamate elicits a nephropreventing effect in a rat model of ischemic acute kidney injury by suppressing indoxyl sulfate production and restoring renal organic anion transporters. Drug Des. Dev. Ther. 2014;8:1073–1082. doi: 10.2147/DDDT.S67456.
    1. Suzuki T., Toyohara T., Akiyama Y., Takeuchi Y., Mishima E., Suzuki C., Ito S., Soga T., Abe T. Transcriptional regulation of organic anion transporting polypeptide SLCO4C1 as a new therapeutic modality to prevent chronic kidney disease. J. Pharm. Sci. 2011;100:3696–3707. doi: 10.1002/jps.22641.
    1. Toyohara T., Suzuki T., Morimoto R., Akiyama Y., Souma T., Shiwaku H.O., Takeuchi Y., Mishima E., Abe M., Tanemoto M., et al. SLCO4C1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation. J. Am. Soc. Nephrol. 2009;20:2546–2555. doi: 10.1681/ASN.2009070696.
    1. Akiyama Y., Kikuchi K., Saigusa D., Suzuki T., Takeuchi Y., Mishima E., Yamamoto Y., Ishida A., Sugawara D., Jinno D., et al. Indoxyl sulfate down-regulates SLCO4C1 transporter through up-regulation of GATA3. PLoS ONE. 2013;8:e66518. doi: 10.1371/journal.pone.0066518.
    1. Yamaguchi J., Tanaka T., Inagi R. Effect of AST-120 in chronic kidney disease treatment: Still a controversy? Nephron. 2017;135:201–206. doi: 10.1159/000453673.
    1. Sato E., Saigusa D., Mishima E., Uchida T., Miura D., Morikawa-Ichinose T., Kisu K., Sekimoto A., Saito R., Oe Y., et al. Impact of the oral adsorbent AST-120 on organ-specific accumulation of uremic toxins: LC-MS/MS and MS imaging techniques. Toxins. 2017;10:19. doi: 10.3390/toxins10010019.
    1. Schulman G., Berl T., Beck G.J., Remuzzi G., Ritz E., Arita K., Kato A., Shimizu M. Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J. Am. Soc. Nephrol. 2015;26:1732–1746. doi: 10.1681/ASN.2014010042.
    1. Schulman G., Berl T., Beck G.J., Remuzzi G., Ritz E., Shimizu M., Kikuchi M., Shobu Y. Risk factors for progression of chronic kidney disease in the EPPIC trials and the effect of AST-120. Clin. Exp. Nephrol. 2018;22:299–308. doi: 10.1007/s10157-017-1447-0.
    1. Tang W.H.W., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X., Wu Y., Hazen S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400.
    1. Cupisti A., Bolasco P. Keto-analogues and essential aminoacids and other supplements in the conservative management of chronic kidney disease. Panminerva Med. 2017;59:149–156. doi: 10.23736/S0031-0808.16.03288-2.
    1. Koh G.Y., Rowling M.J. Resistant starch as a novel dietary strategy to maintain kidney health in diabetes mellitus. Nutr. Rev. 2017;75:350–360. doi: 10.1093/nutrit/nux006.
    1. Normand G., Lemoine S., Villien M., Le Bars D., Merida I., Irace Z., Troalen T., Costes N., Juillard L. AGE content of a protein load is responsible for renal performances: A pilot study. Diabetes Care. 2018;41:1292–1294. doi: 10.2337/dc18-0131.
    1. Yacoub R., Nugent M., Cai W., Nadkarni G.N., Chaves L.D., Abyad S., Honan A.M., Thomas S.A., Zheng W., Valiyaparambil S.A., et al. Advanced glycation end products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. PLoS ONE. 2017;12:e0184789. doi: 10.1371/journal.pone.0184789.
    1. Goldberg T., Cai W., Peppa M., Dardaine V., Baliga B.S., Uribarri J., Vlassara H. Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc. 2004;104:1287–1291. doi: 10.1016/j.jada.2004.05.214.
    1. Poesen R., Evenepoel P., de Loor H., Delcour J.A., Courtin C.M., Kuypers D., Augustijns P., Verbeke K., Meijers B. The influence of prebiotic arabinoxylan oligosaccharides on microbiota derived uremic retention solutes in patients with chronic kidney disease: A randomized controlled trial. PLoS ONE. 2016;11:e0153893. doi: 10.1371/journal.pone.0153893.
    1. Tang W.H.W., Hazen S.L. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 2014;124:4204–4211. doi: 10.1172/JCI72331.
    1. Effectiveness of Probiotics to Treat End Stage Renal Disease. [(accessed on 18 July 2018)]; Available online: .
    1. Van der Wal W.M., Noordzij M., Dekker F.W., Boeschoten E.W., Krediet R.T., Korevaar J.C., Geskus R.B. Full loss of residual renal function causes higher mortality in dialysis patients; findings from a marginal structural model. Nephrol. Dial. Transplant. 2011;26:2978–2983. doi: 10.1093/ndt/gfq856.
    1. Marrón B., Remón C., Pérez-Fontán M., Quirós P., Ortíz A. Benefits of preserving residual renal function in peritoneal dialysis. Kidney Int. Suppl. 2008;73:S42–S51. doi: 10.1038/sj.ki.5002600.
    1. Glorieux G., Tattersall J. Uraemic toxins and new methods to control their accumulation: game changers for the concept of dialysis adequacy. Clin. Kidney J. 2015;8:353–362. doi: 10.1093/ckj/sfv034.
    1. Vanholder R.C., Eloot S., Glorieux G.L.R.L. Future avenues to decrease uremic toxin concentration. Am. J. Kidney Dis. 2016;67:664–676. doi: 10.1053/j.ajkd.2015.08.029.
    1. Koppe L., Fouque D., Soulage C.O. The role of gut microbiota and diet on uremic retention solutes production in the context of chronic kidney disease. Toxins. 2018;10:155. doi: 10.3390/toxins10040155.

Source: PubMed

3
Suscribir