Recycling the Purpose of Old Drugs to Treat Ovarian Cancer

Mariana Nunes, Miguel Henriques Abreu, Carla Bartosch, Sara Ricardo, Mariana Nunes, Miguel Henriques Abreu, Carla Bartosch, Sara Ricardo

Abstract

The main challenge in ovarian cancer treatment is the management of recurrences. Facing this scenario, therapy selection is based on multiple factors to define the best treatment sequence. Target therapies, such as bevacizumab and polymerase (PARP) inhibitors, improved patient survival. However, despite their achievements, ovarian cancer survival remains poor; these therapeutic options are highly costly and can be associated with potential side effects. Recently, it has been shown that the combination of repurposed, conventional, chemotherapeutic drugs could be an alternative, presenting good patient outcomes with few side effects and low costs for healthcare institutions. The main aim of this review is to strengthen the importance of repurposed drugs as therapeutic alternatives, and to propose an in vitro model to assess the therapeutic value. Herein, we compiled the current knowledge on the most promising non-oncological drugs for ovarian cancer treatment, focusing on statins, metformin, bisphosphonates, ivermectin, itraconazole, and ritonavir. We discuss the primary drug use, anticancer mechanisms, and applicability in ovarian cancer. Finally, we propose the use of these therapies to perform drug efficacy tests in ovarian cancer ex vivo cultures. This personalized testing approach could be crucial to validate the existing evidences supporting the use of repurposed drugs for ovarian cancer treatment.

Keywords: chemoresistance; drug repurposing; ex vivo cultures; ovarian cancer.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Mechanism of action of non-oncological drugs in ovarian cancer (OC). Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) leading to the blocking of cholesterol biosynthetic pathway though a mevalonate-dependent mechanism. Moreover, statins can block drug efflux pumps by a mevalonate-independent mechanism. Bisphosphonates block farnesyl pyrophosphate synthase, located downstream HMGCR, leading to the impairment of cholesterol biosynthesis. Metformin inhibits insulin signals and glucose synthesis via respiratory-chain complex I blockage. Ritonavir is a protease inhibitor that inhibits the production of phosphorylated protein kinase B (AKT) leading to the impairment of phosphatidylinositol 3-kinases (PI3K)-Akt pathway. Itraconazole can inhibit Hedgehog, mammalian target of rapamycin (mTOR), and Wnt signalling pathway. Moreover, itraconazole can inhibit angiogenesis and lymphangiogenesis, and promote the overexpression of P-glycoprotein. Ivermectin interferes with several cellular mechanisms, including multidrug resistance proteins (MDR) inhibition, Akt/mTOR, and Wnt signalling pathways modulation, p21–activated kinase (PAK-1) and yes-associated protein 1 (YAP1). Moreover, ivermectin promotes the increase of intracellular reactive oxygen species (ROS) levels leading to the downregulation of stemness genes. Adenosine diphosphate (ADP); adenosine monophosphate (AMP); adenosine triphosphate (ATP); 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA).
Figure 2
Figure 2
Establishment of ex vivo models from ascitic fluid-derived cancer cells to perform drug efficacy tests. Combination of drug repurposing (e.g., pitavastatin, metformin, bisphosphonates, ivermectin, itraconazole and ritonavir) with conventional chemotherapy (e.g., carboplatin and paclitaxel) may have the benefits of increased efficacy and has potential to decrease the risk of therapeutic failure. The effectiveness of drug repurposing approaches to target or sensitize chemoresistant cells to conventional chemotherapy can be validate in established ex vivo models. A schematic diagram demonstrating the conventional chemotherapy in combination with compounds of drug repurposing that can directly target the chemoresistant cell and tumour loses its ability to generate new cancer cells, or sensitize chemoresistant cells in order to disrupt the stemness and make them more sensitive to conventional chemotherapy.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Pineros M., Znaor A., Bray F. Estimating the global cancer incidence and mortality in 2018: Globocan sources and methods. Int. J. Cancer. 2019;144:1941–1953. doi: 10.1002/ijc.31937.
    1. Ferlay J.C.M., Soerjomataram I., Dyba T., Randi G., Bettio M., Gavin A., Visser O., Bray F. Cancer incidence and mortality patterns in europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer Clin. Oncol. 2018;103:356–387. doi: 10.1016/j.ejca.2018.07.005.
    1. Kim A., Ueda Y., Naka T., Enomoto T. Therapeutic strategies in epithelial ovarian cancer. J. Exp. Clin. Cancer Res. 2012;31:14. doi: 10.1186/1756-9966-31-14.
    1. Cheng W.F., Huang C.Y., Chang M.C., Hu Y.H., Chiang Y.C., Chen Y.L., Hsieh C.Y., Chen C.A. High mesothelin correlates with chemoresistance and poor survival in epithelial ovarian carcinoma. Br. J. Cancer. 2009;100:1144–1153. doi: 10.1038/sj.bjc.6604964.
    1. Griffiths C.T., Fuller A.F. Intensive surgical and chemotherapeutic management of advanced ovarian cancer. Surg. Clin. N. Am. 1978;58:131–142. doi: 10.1016/S0039-6109(16)41440-4.
    1. Lheureux S., Gourley C., Vergote I., Oza A.M. Epithelial ovarian cancer. Lancet. 2019;393:1240–1253. doi: 10.1016/S0140-6736(18)32552-2.
    1. Bowtell D.D., Bohm S., Ahmed A.A., Aspuria P.J., Bast R.C., Jr., Beral V., Berek J.S., Birrer M.J., Blagden S., Bookman M.A., et al. Rethinking ovarian cancer ii: Reducing mortality from high-grade serous ovarian cancer. Nat. Rev. Cancer. 2015;15:668–679. doi: 10.1038/nrc4019.
    1. Hille S., Rein D.T., Riffelmann M., Neumann R., Sartorius J., Pfutzner A., Kurbacher C.M., Schondorf T., Breidenbach M. Anticancer drugs induce mdr1 gene expression in recurrent ovarian cancer. Anticancer Drugs. 2006;17:1041–1044. doi: 10.1097/01.cad.0000231480.07654.b5.
    1. Howlader N.N.A., Krapcho M., Miller D., Bishop K., Kosary C.L., Yu M., Ruhl J., Tatalovich Z., Mariotto A., Lewis D.R., et al., editors. Seer Cancer Statistics Review, 1975–2014, National Cancer Institute. Bethesda, md. [(accessed on 1 August 2020)]; Available online:
    1. Weidle U.H., Birzele F., Kollmorgen G., Rueger R. Mechanisms and targets involved in dissemination of ovarian cancer. Cancer Genom. Proteom. 2016;13:407–423. doi: 10.21873/cgp.20004.
    1. Aghajanian C., Blank S.V., Goff B.A., Judson P.L., Teneriello M.G., Husain A., Sovak M.A., Yi J., Nycum L.R. Oceans: A randomized, double-blind, placebo-controlled phase iii trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J. Clin. Oncol. 2012;30:2039–2045. doi: 10.1200/JCO.2012.42.0505.
    1. Coleman R.L., Brady M.F., Herzog T.J., Sabbatini P., Armstrong D.K., Walker J.L., Kim B.G., Fujiwara K., Tewari K.S., O’Malley D.M., et al. Bevacizumab and paclitaxel-carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (nrg oncology/gynecologic oncology group study gog-0213): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18:779–791. doi: 10.1016/S1470-2045(17)30279-6.
    1. Mirza M.R., Monk B.J., Herrstedt J., Oza A.M., Mahner S., Redondo A., Fabbro M., Ledermann J.A., Lorusso D., Vergote I., et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 2016;375:2154–2164. doi: 10.1056/NEJMoa1611310.
    1. Coleman R.L., Oza A.M., Lorusso D., Aghajanian C., Oaknin A., Dean A., Colombo N., Weberpals J.I., Clamp A., Scambia G., et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ariel3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:1949–1961. doi: 10.1016/S0140-6736(17)32440-6.
    1. Pujade-Lauraine E., Ledermann J.A., Selle F., Gebski V., Penson R.T., Oza A.M., Korach J., Huzarski T., Poveda A., Pignata S., et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a brca1/2 mutation (solo2/engot-ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18:1274–1284. doi: 10.1016/S1470-2045(17)30469-2.
    1. Armando R.G., Mengual Gomez D.L., Gomez D.E. New drugs are not enoughdrug repositioning in oncology: An update. Int. J. Oncol. 2020;56:651–684.
    1. Ashburn T.T., Thor K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004;3:673–683. doi: 10.1038/nrd1468.
    1. Bertolini F., Sukhatme V.P., Bouche G. Drug repurposing in oncology--patient and health systems opportunities. Nat. Rev. Clin. Oncol. 2015;12:732–742. doi: 10.1038/nrclinonc.2015.169.
    1. Nowak-Sliwinska P., Scapozza L., Ruiz I.A.A. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim. Biophys. Acta Rev. Cancer. 2019;1871:434–454. doi: 10.1016/j.bbcan.2019.04.005.
    1. Gunjan S., Sharma T., Yadav K., Chauhan B.S., Singh S.K., Siddiqi M.I., Tripathi R. Artemisinin derivatives and synthetic trioxane trigger apoptotic cell death in asexual stages of plasmodium. Front. Cell Infect. Microbiol. 2018;8:256. doi: 10.3389/fcimb.2018.00256.
    1. Goldstein J.L., Brown M.S. Regulation of the mevalonate pathway. Nature. 1990;343:425–430. doi: 10.1038/343425a0.
    1. Kaitin K.I., DiMasi J.A. Pharmaceutical innovation in the 21st century: New drug approvals in the first decade, 2000–2009. Clin. Pharmacol. Ther. 2011;89:183–188. doi: 10.1038/clpt.2010.286.
    1. Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: An update. Fundam. Clin. Pharmacol. 2005;19:117–125. doi: 10.1111/j.1472-8206.2004.00299.x.
    1. Padhy B.M., Gupta Y.K. Drug repositioning: Re-investigating existing drugs for new therapeutic indications. J. Postgrad. Med. 2011;57:153–160. doi: 10.4103/0022-3859.81870.
    1. Akinwunmi B., Vitonis A.F., Titus L., Terry K.L., Cramer D.W. Statin therapy and association with ovarian cancer risk in the new england case control (nec) study. Int. J. Cancer. 2019;144:991–1000. doi: 10.1002/ijc.31758.
    1. Davies J.T., Delfino S.F., Feinberg C.E., Johnson M.F., Nappi V.L., Olinger J.T., Schwab A.P., Swanson H.I. Current and emerging uses of statins in clinical therapeutics: A review. Lipid Insights. 2016;9:13–29. doi: 10.4137/LPI.S37450.
    1. Knickelbine T., Lui M., Garberich R., Miedema M.D., Strauss C., VanWormer J.J. Familial hypercholesterolemia in a large ambulatory population: Statin use, optimal treatment, and identification for advanced medical therapies. J. Clin. Lipidol. 2016;10:1182–1187. doi: 10.1016/j.jacl.2016.05.007.
    1. Pletcher M.J., Pignone M., Jarmul J.A., Moran A.E., Vittinghoff E., Newman T. Population impact & efficiency of benefit-targeted versus risk-targeted statin prescribing for primary prevention of cardiovascular disease. J. Am. Heart Assoc. 2017;6:e004316.
    1. Fernandez-Sauze S., Grall D., Cseh B., Van Obberghen-Schilling E. Regulation of fibronectin matrix assembly and capillary morphogenesis in endothelial cells by rho family gtpases. Exp. Cell Res. 2009;315:2092–2104. doi: 10.1016/j.yexcr.2009.03.017.
    1. Mizuno Y., Jacob R.F., Mason R.P. Inflammation and the development of atherosclerosis. J. Atheroscler. Thromb. 2011;18:351–358. doi: 10.5551/jat.7591.
    1. Spuul P., Ciufici P., Veillat V., Leclercq A., Daubon T., Kramer I.J., Genot E. Importance of rhogtpases in formation, characteristics, and functions of invadosomes. Small GTPases. 2014;5:e28195. doi: 10.4161/sgtp.28713.
    1. Zeybek B., Costantine M., Kilic G.S., Borahay M.A. Therapeutic roles of statins in gynecology and obstetrics: The current evidence. Reprod. Sci. 2018;25:802–817. doi: 10.1177/1933719117750751.
    1. Clendening J.W., Pandyra A., Boutros P.C., El Ghamrasni S., Khosravi F., Trentin G.A., Martirosyan A., Hakem A., Hakem R., Jurisica I., et al. Dysregulation of the mevalonate pathway promotes transformation. Proc. Natl. Acad. Sci. USA. 2010;107:15051–15056. doi: 10.1073/pnas.0910258107.
    1. Martirosyan A., Clendening J.W., Goard C.A., Penn L.Z. Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: Potential therapeutic relevance. BMC Cancer. 2010;10:103. doi: 10.1186/1471-2407-10-103.
    1. Robinson E., Nandi M., Wilkinson L.L., Arrowsmith D.M., Curtis A.D., Richardson A. Preclinical evaluation of statins as a treatment for ovarian cancer. Gynecol. Oncol. 2013;129:417–424. doi: 10.1016/j.ygyno.2013.02.003.
    1. Wong W.W., Dimitroulakos J., Minden M.D., Penn L.Z. Hmg-coa reductase inhibitors and the malignant cell: The statin family of drugs as triggers of tumor-specific apoptosis. Leukemia. 2002;16:508–519. doi: 10.1038/sj.leu.2402476.
    1. Jones H.M., Fang Z., Sun W., Clark L.H., Stine J.E., Tran A.Q., Sullivan S.A., Gilliam T.P., Zhou C., Bae-Jump V.L. Atorvastatin exhibits anti-tumorigenic and anti-metastatic effects in ovarian cancer in vitro. Am. J. Cancer Res. 2017;7:2478–2490.
    1. Pich C., Teiti I., Rochaix P., Mariame B., Couderc B., Favre G., Tilkin-Mariame A.F. Statins reduce melanoma development and metastasis through mica overexpression. Front. Immunol. 2013;4:62. doi: 10.3389/fimmu.2013.00062.
    1. Kidera Y., Tsubaki M., Yamazoe Y., Shoji K., Nakamura H., Ogaki M., Satou T., Itoh T., Isozaki M., Kaneko J., et al. Reduction of lung metastasis, cell invasion, and adhesion in mouse melanoma by statin-induced blockade of the rho/rho-associated coiled-coil-containing protein kinase pathway. J. Exp. Clin. Cancer Res. 2010;29:127. doi: 10.1186/1756-9966-29-127.
    1. Liu H., Wang Z., Li Y., Li W., Chen Y. Simvastatin prevents proliferation and bone metastases of lung adenocarcinoma in vitro and in vivo. Neoplasma. 2013;60:240–246. doi: 10.4149/neo_2013_032.
    1. Yu X., Luo Y., Zhou Y., Zhang Q., Wang J., Wei N., Mi M., Zhu J., Wang B., Chang H., et al. Brca1 overexpression sensitizes cancer cells to lovastatin via regulation of cyclin d1-cdk4-p21waf1/cip1 pathway: Analyses using a breast cancer cell line and tumoral xenograft model. Int. J. Oncol. 2008;33:555–563. doi: 10.3892/ijo_00000040.
    1. Cao Z., Fan-Minogue H., Bellovin D.I., Yevtodiyenko A., Arzeno J., Yang Q., Gambhir S.S., Felsher D.W. Myc phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by hmg-coa reductase. Cancer Res. 2011;71:2286–2297. doi: 10.1158/0008-5472.CAN-10-3367.
    1. Sassano A., Platanias L.C. Statins in tumor suppression. Cancer Lett. 2008;260:11–19. doi: 10.1016/j.canlet.2007.11.036.
    1. Greenaway J.B., Virtanen C., Osz K., Revay T., Hardy D., Shepherd T., DiMattia G., Petrik J. Ovarian tumour growth is characterized by mevalonate pathway gene signature in an orthotopic, syngeneic model of epithelial ovarian cancer. Oncotarget. 2016;7:47343–47365. doi: 10.18632/oncotarget.10121.
    1. Kobayashi Y., Kashima H., Wu R.C., Jung J.G., Kuan J.C., Gu J., Xuan J., Sokoll L., Visvanathan K., Shih Ie M., et al. Mevalonate pathway antagonist suppresses formation of serous tubal intraepithelial carcinoma and ovarian carcinoma in mouse models. Clin. Cancer Res. 2015;21:4652–4662. doi: 10.1158/1078-0432.CCR-14-3368.
    1. Stine J.E., Guo H., Sheng X., Han X., Schointuch M.N., Gilliam T.P., Gehrig P.A., Zhou C., Bae-Jump V.L. The hmg-coa reductase inhibitor, simvastatin, exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget. 2016;7:946–960. doi: 10.18632/oncotarget.5834.
    1. Cuello F.M., Kato S.C., Díaz S.D., Owen G. Effects of statins in cancer. Rev. Med. Chil. 2013;141:227–236.
    1. Laezza C., Malfitano A.M., Proto M.C., Esposito I., Gazzerro P., Formisano P., Pisanti S., Santoro A., Caruso M.G., Bifulco M. Inhibition of 3-hydroxy-3-methylglutaryl-coenzyme a reductase activity and of ras farnesylation mediate antitumor effects of anandamide in human breast cancer cells. Endocr. Relat. Cancer. 2010;17:495–503. doi: 10.1677/ERC-10-0009.
    1. Horiuchi A., Kikuchi N., Osada R., Wang C., Hayashi A., Nikaido T., Konishi I. Overexpression of rhoa enhances peritoneal dissemination: Rhoa suppression with lovastatin may be useful for ovarian cancer. Cancer Sci. 2008;99:2532–2539. doi: 10.1111/j.1349-7006.2008.00977.x.
    1. Liu H., Liang S.L., Kumar S., Weyman C.M., Liu W., Zhou A. Statins induce apoptosis in ovarian cancer cells through activation of jnk and enhancement of bim expression. Cancer Chemother. Pharmacol. 2009;63:997–1005. doi: 10.1007/s00280-008-0830-7.
    1. Matsuura M., Suzuki T., Suzuki M., Tanaka R., Ito E., Saito T. Statin-mediated reduction of osteopontin expression induces apoptosis and cell growth arrest in ovarian clear cell carcinoma. Oncol. Rep. 2011;25:41–47. doi: 10.3892/or_00001039.
    1. de Wolf E., Abdullah M.I., Jones S.M., Menezes K., Moss D.M., Drijfhout F.P., Hart S.R., Hoskins C., Stronach E.A., Richardson A. Dietary geranylgeraniol can limit the activity of pitavastatin as a potential treatment for drug-resistant ovarian cancer. Sci. Rep. 2017;7:5410. doi: 10.1038/s41598-017-05595-4.
    1. Bischof K., Knappskog S., Hjelle S.M., Stefansson I., Woie K., Salvesen H.B., Gjertsen B.T., Bjorge L. Influence of p53 isoform expression on survival in high-grade serous ovarian cancers. Sci. Rep. 2019;9:5244. doi: 10.1038/s41598-019-41706-z.
    1. Kandoth C., McLellan M.D., Vandin F., Ye K., Niu B., Lu C., Xie M., Zhang Q., McMichael J.F., Wyczalkowski M.A., et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–339. doi: 10.1038/nature12634.
    1. Patch A.M., Christie E.L., Etemadmoghadam D., Garsed D.W., George J., Fereday S., Nones K., Cowin P., Alsop K., Bailey P.J., et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521:489–494. doi: 10.1038/nature14410.
    1. Brennan D.J., Brandstedt J., Rexhepaj E., Foley M., Ponten F., Uhlen M., Gallagher W.M., O’Connor D.P., O’Herlihy C., Jirstrom K. Tumour-specific hmg-coar is an independent predictor of recurrence free survival in epithelial ovarian cancer. BMC Cancer. 2010;10:125. doi: 10.1186/1471-2407-10-125.
    1. Xie W., Ning L., Huang Y., Liu Y., Zhang W., Hu Y., Lang J., Yang J. Statin use and survival outcomes in endocrine-related gynecologic cancers: A systematic review and meta-analysis. Oncotarget. 2017;8:41508–41517. doi: 10.18632/oncotarget.17242.
    1. Li X., Zhou J. Impact of postdiagnostic statin use on ovarian cancer mortality: A systematic review and meta-analysis of observational studies. Br. J. Clin. Pharmacol. 2018;84:1109–1120. doi: 10.1111/bcp.13559.
    1. Urpilainen E., Marttila M., Hautakoski A., Arffman M., Sund R., Ilanne-Parikka P., Arima R., Kangaskokko J., Puistola U., Laara E., et al. The role of metformin and statins in the incidence of epithelial ovarian cancer in type 2 diabetes: A cohort and nested case-control study. BJOG. 2018;125:1001–1008. doi: 10.1111/1471-0528.15151.
    1. Nielsen S.F., Nordestgaard B.G., Bojesen S.E. Statin use and reduced cancer-related mortality. N. Engl. J. Med. 2012;367:1792–1802. doi: 10.1056/NEJMoa1201735.
    1. Couttenier A., Lacroix O., Vaes E., Cardwell C.R., De Schutter H., Robert A. Statin use is associated with improved survival in ovarian cancer: A retrospective population-based study. PLoS ONE. 2017;12:e0189233. doi: 10.1371/journal.pone.0189233.
    1. Graaf M.R., Beiderbeck A.B., Egberts A.C., Richel D.J., Guchelaar H.J. The risk of cancer in users of statins. J. Clin. Oncol. 2004;22:2388–2394. doi: 10.1200/JCO.2004.02.027.
    1. Smith A., Murphy L., Zgaga L., Barron T.I., Bennett K. Pre-diagnostic statin use, lymph node status and mortality in women with stages i-iii breast cancer. Br. J. Cancer. 2017;117:588–596. doi: 10.1038/bjc.2017.227.
    1. Cardwell C.R., Hicks B.M., Hughes C., Murray L.J. Statin use after colorectal cancer diagnosis and survival: A population-based cohort study. J. Clin. Oncol. 2014;32:3177–3183. doi: 10.1200/JCO.2013.54.4569.
    1. Yu O., Eberg M., Benayoun S., Aprikian A., Batist G., Suissa S., Azoulay L. Use of statins and the risk of death in patients with prostate cancer. J. Clin. Oncol. 2014;32:5–11. doi: 10.1200/JCO.2013.49.4757.
    1. Vogel T.J., Goodman M.T., Li A.J., Jeon C.Y. Statin treatment is associated with survival in a nationally representative population of elderly women with epithelial ovarian cancer. Gynecol. Oncol. 2017;146:340–345. doi: 10.1016/j.ygyno.2017.05.009.
    1. Knox J.J., Siu L.L., Chen E., Dimitroulakos J., Kamel-Reid S., Moore M.J., Chin S., Irish J., LaFramboise S., Oza A.M. A phase i trial of prolonged administration of lovastatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck or of the cervix. Eur. J. Cancer. 2005;41:523–530. doi: 10.1016/j.ejca.2004.12.013.
    1. Kornblau S.M., Banker D.E., Stirewalt D., Shen D., Lemker E., Verstovsek S., Estrov Z., Faderl S., Cortes J., Beran M., et al. Blockade of adaptive defensive changes in cholesterol uptake and synthesis in aml by the addition of pravastatin to idarubicin + high-dose ara-c: A phase 1 study. Blood. 2007;109:2999–3006. doi: 10.1182/blood-2006-08-044446.
    1. Minden M.D., Dimitroulakos J., Nohynek D., Penn L.Z. Lovastatin induced control of blast cell growth in an elderly patient with acute myeloblastic leukemia. Leuk. Lymphoma. 2001;40:659–662. doi: 10.3109/10428190109097663.
    1. Schmidmaier R., Baumann P., Bumeder I., Meinhardt G., Straka C., Emmerich B. First clinical experience with simvastatin to overcome drug resistance in refractory multiple myeloma. Eur. J. Haematol. 2007;79:240–243. doi: 10.1111/j.1600-0609.2007.00902.x.
    1. Van der Spek E., Bloem A.C., van de Donk N.W., Bogers L.H., van der Griend R., Kramer M.H., de Weerdt O., Wittebol S., Lokhorst H.M. Dose-finding study of high-dose simvastatin combined with standard chemotherapy in patients with relapsed or refractory myeloma or lymphoma. Haematologica. 2006;91:542–545.
    1. Cusi K., Consoli A., DeFronzo R.A. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1996;81:4059–4067.
    1. Mues C., Zhou J., Manolopoulos K.N., Korsten P., Schmoll D., Klotz L.O., Bornstein S.R., Klein H.H., Barthel A. Regulation of glucose-6-phosphatase gene expression by insulin and metformin. Horm. Metab. Res. 2009;41:730–735. doi: 10.1055/s-0029-1225360.
    1. Stephenne X., Foretz M., Taleux N., van der Zon G.C., Sokal E., Hue L., Viollet B., Guigas B. Metformin activates amp-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia. 2011;54:3101–3110. doi: 10.1007/s00125-011-2311-5.
    1. Viollet B., Guigas B., Sanz Garcia N., Leclerc J., Foretz M., Andreelli F. Cellular and molecular mechanisms of metformin: An overview. Clin. Sci. 2012;122:253–270. doi: 10.1042/CS20110386.
    1. Lee J.O., Lee S.K., Kim J.H., Kim N., You G.Y., Moon J.W., Kim S.J., Park S.H., Kim H.S. Metformin regulates glucose transporter 4 (glut4) translocation through amp-activated protein kinase (ampk)-mediated cbl/cap signaling in 3t3-l1 preadipocyte cells. J. Biol. Chem. 2012;287:44121–44129. doi: 10.1074/jbc.M112.361386.
    1. Wheaton W.W., Weinberg S.E., Hamanaka R.B., Soberanes S., Sullivan L.B., Anso E., Glasauer A., Dufour E., Mutlu G.M., Budigner G.S., et al. Metformin inhibits mitochondrial complex i of cancer cells to reduce tumorigenesis. Elife. 2014;3:e02242. doi: 10.7554/eLife.02242.
    1. Pernicova I., Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 2014;10:143–156. doi: 10.1038/nrendo.2013.256.
    1. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: An update. Nat. Rev. Cancer. 2012;12:159–169. doi: 10.1038/nrc3215.
    1. Pollak M.N. Investigating metformin for cancer prevention and treatment: The end of the beginning. Cancer Discov. 2012;2:778–790. doi: 10.1158/-12-0263.
    1. Moiseeva O., Deschenes-Simard X., Pollak M., Ferbeyre G. Metformin, aging and cancer. Aging Albany NY. 2013;5:330–331. doi: 10.18632/aging.100556.
    1. Pearce E.L., Walsh M.C., Cejas P.J., Harms G.M., Shen H., Wang L.S., Jones R.G., Choi Y. Enhancing cd8 t-cell memory by modulating fatty acid metabolism. Nature. 2009;460:103–107. doi: 10.1038/nature08097.
    1. Shaw R.J., Bardeesy N., Manning B.D., Lopez L., Kosmatka M., DePinho R.A., Cantley L.C. The lkb1 tumor suppressor negatively regulates mtor signaling. Cancer Cell. 2004;6:91–99. doi: 10.1016/j.ccr.2004.06.007.
    1. Zakikhani M., Dowling R.J., Sonenberg N., Pollak M.N. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of amp-activated protein kinase. Cancer Prev. Res. 2008;1:369–375. doi: 10.1158/1940-6207.CAPR-08-0081.
    1. Lengyel E., Litchfield L.M., Mitra A.K., Nieman K.M., Mukherjee A., Zhang Y., Johnson A., Bradaric M., Lee W., Romero I.L. Metformin inhibits ovarian cancer growth and increases sensitivity to paclitaxel in mouse models. Am. J. Obstet. Gynecol. 2015;212:479.e1–479.e10. doi: 10.1016/j.ajog.2014.10.026.
    1. Liu X., Romero I.L., Litchfield L.M., Lengyel E., Locasale J.W. Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers. Cell Metab. 2016;24:728–739. doi: 10.1016/j.cmet.2016.09.005.
    1. Gui D.Y., Sullivan L.B., Luengo A., Hosios A.M., Bush L.N., Gitego N., Davidson S.M., Freinkman E., Thomas C.J., Vander Heiden M.G. Environment dictates dependence on mitochondrial complex i for nad+ and aspartate production and determines cancer cell sensitivity to metformin. Cell Metab. 2016;24:716–727. doi: 10.1016/j.cmet.2016.09.006.
    1. Kurelac I., Umesh Ganesh N., Iorio M., Porcelli A.M., Gasparre G. The multifaceted effects of metformin on tumor microenvironment. Semin. Cell Dev. Biol. 2020;98:90–97. doi: 10.1016/j.semcdb.2019.05.010.
    1. Li X., Li B., Ni Z., Zhou P., Wang B., He J., Xiong H., Yang F., Wu Y., Lyu X., et al. Metformin synergizes with bcl-xl/bcl-2 inhibitor abt-263 to induce apoptosis specifically in p53-defective cancer cells. Mol. Cancer Ther. 2017;16:1806–1818. doi: 10.1158/1535-7163.MCT-16-0763.
    1. Galdieri L., Gatla H., Vancurova I., Vancura A. Activation of amp-activated protein kinase by metformin induces protein acetylation in prostate and ovarian cancer cells. J. Biol. Chem. 2016;291:25154–25166. doi: 10.1074/jbc.M116.742247.
    1. Rattan R., Giri S., Hartmann L.C., Shridhar V. Metformin attenuates ovarian cancer cell growth in an amp-kinase dispensable manner. J. Cell. Mol. Med. 2011;15:166–178. doi: 10.1111/j.1582-4934.2009.00954.x.
    1. Xie Y., Peng Z., Shi M., Ji M., Guo H., Shi H. Metformin combined with p38 mapk inhibitor improves cisplatin sensitivity in cisplatinresistant ovarian cancer. Mol. Med. Rep. 2014;10:2346–2350. doi: 10.3892/mmr.2014.2490.
    1. Zhang R., Zhang P., Wang H., Hou D., Li W., Xiao G., Li C. Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of cd44(+)cd117(+) ovarian cancer stem cells. Stem Cell. Res. Ther. 2015;6:262. doi: 10.1186/s13287-015-0249-0.
    1. Yang C., Zhao N., Li D., Zou G., Chen Y. Metformin improves the sensitivity of ovarian cancer cells to chemotherapeutic agents. Oncol. Lett. 2019;18:2404–2411. doi: 10.3892/ol.2019.10564.
    1. Du J., Shi H.R., Ren F., Wang J.L., Wu Q.H., Li X., Zhang R.T. Inhibition of the igf signaling pathway reverses cisplatin resistance in ovarian cancer cells. BMC Cancer. 2017;17:851. doi: 10.1186/s12885-017-3840-1.
    1. Gotlieb W.H., Saumet J., Beauchamp M.C., Gu J., Lau S., Pollak M.N., Bruchim I. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol. Oncol. 2008;110:246–250. doi: 10.1016/j.ygyno.2008.04.008.
    1. Liu Y., Feng Y., Liu H., Wu J., Tang Y., Wang Q. Real-time assessment of platinum sensitivity of primary culture from a patient with ovarian cancer with extensive metastasis and the platinum sensitivity enhancing effect by metformin. Oncol. Lett. 2018;16:4253–4262. doi: 10.3892/ol.2018.9223.
    1. Rattan R., Graham R.P., Maguire J.L., Giri S., Shridhar V. Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia. 2011;13:483–491. doi: 10.1593/neo.11148.
    1. Wu B., Li S., Sheng L., Zhu J., Gu L., Shen H., La D., Hambly B.D., Bao S., Di W. Metformin inhibits the development and metastasis of ovarian cancer. Oncol. Rep. 2012;28:903–908. doi: 10.3892/or.2012.1890.
    1. Yasmeen A., Beauchamp M.C., Piura E., Segal E., Pollak M., Gotlieb W.H. Induction of apoptosis by metformin in epithelial ovarian cancer: Involvement of the bcl-2 family proteins. Gynecol. Oncol. 2011;121:492–498. doi: 10.1016/j.ygyno.2011.02.021.
    1. Patel S., Kumar L., Singh N. Metformin and epithelial ovarian cancer therapeutics. Cell. Oncol. 2015;38:365–375. doi: 10.1007/s13402-015-0235-7.
    1. Shank J.J., Yang K., Ghannam J., Cabrera L., Johnston C.J., Reynolds R.K., Buckanovich R.J. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol. Oncol. 2012;127:390–397. doi: 10.1016/j.ygyno.2012.07.115.
    1. Dang J.H., Jin Z.J., Liu X.J., Hu D., Wang J., Luo Y., Li L.L. Metformin in combination with cisplatin inhibits cell viability and induces apoptosis of human ovarian cancer cells by inactivating erk 1/2. Oncol. Lett. 2017;14:7557–7564. doi: 10.3892/ol.2017.7176.
    1. Hijaz M., Chhina J., Mert I., Taylor M., Dar S., Al-Wahab Z., Ali-Fehmi R., Buekers T., Munkarah A.R., Rattan R. Preclinical evaluation of olaparib and metformin combination in brca1 wildtype ovarian cancer. Gynecol. Oncol. 2016;142:323–331. doi: 10.1016/j.ygyno.2016.06.005.
    1. Franciosi M., Lucisano G., Lapice E., Strippoli G.F., Pellegrini F., Nicolucci A. Metformin therapy and risk of cancer in patients with type 2 diabetes: Systematic review. PLoS ONE. 2013;8:e71583. doi: 10.1371/journal.pone.0071583.
    1. Noto H., Goto A., Tsujimoto T., Noda M. Cancer risk in diabetic patients treated with metformin: A systematic review and meta-analysis. PLoS ONE. 2012;7:e33411. doi: 10.1371/journal.pone.0033411.
    1. Chu D., Wu J., Wang K., Zhao M., Wang C., Li L., Guo R. Effect of metformin use on the risk and prognosis of endometrial cancer: A systematic review and meta-analysis. BMC Cancer. 2018;18:438. doi: 10.1186/s12885-018-4334-5.
    1. Hanna R.K., Zhou C., Malloy K.M., Sun L., Zhong Y., Gehrig P.A., Bae-Jump V.L. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mtor pathway. Gynecol. Oncol. 2012;125:458–469. doi: 10.1016/j.ygyno.2012.01.009.
    1. Bodmer M., Becker C., Meier C., Jick S.S., Meier C.R. Use of metformin and the risk of ovarian cancer: A case-control analysis. Gynecol. Oncol. 2011;123:200–204. doi: 10.1016/j.ygyno.2011.06.038.
    1. Dilokthornsakul P., Chaiyakunapruk N., Termrungruanglert W., Pratoomsoot C., Saokaew S., Sruamsiri R. The effects of metformin on ovarian cancer: A systematic review. Int. J. Gynecol. Cancer. 2013;23:1544–1551. doi: 10.1097/IGC.0b013e3182a80a21.
    1. Romero I.L., McCormick A., McEwen K.A., Park S., Karrison T., Yamada S.D., Pannain S., Lengyel E. Relationship of type ii diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstet. Gynecol. 2012;119:61–67. doi: 10.1097/AOG.0b013e3182393ab3.
    1. Shi J., Liu B., Wang H., Zhang T., Yang L. Association of metformin use with ovarian cancer incidence and prognosis: A systematic review and meta-analysis. Int. J. Gynecol. Cancer. 2019;29:140–146. doi: 10.1136/ijgc-2018-000060.
    1. Wang S.B., Lei K.J., Liu J.P., Jia Y.M. Continuous use of metformin can improve survival in type 2 diabetic patients with ovarian cancer: A retrospective study. Medicine. 2017;96:e7605. doi: 10.1097/MD.0000000000007605.
    1. Kumar S., Meuter A., Thapa P., Langstraat C., Giri S., Chien J., Rattan R., Cliby W., Shridhar V. Metformin intake is associated with better survival in ovarian cancer: A case-control study. Cancer. 2013;119:555–562. doi: 10.1002/cncr.27706.
    1. Zhang Z.J., Li S. The prognostic value of metformin for cancer patients with concurrent diabetes: A systematic review and meta-analysis. Diabetes Obes. Metab. 2014;16:707–710. doi: 10.1111/dom.12267.
    1. Gong T.T., Wu Q.J., Lin B., Ruan S.K., Kushima M., Takimoto M. Observational studies on the association between post-diagnostic metformin use and survival in ovarian cancer: A systematic review and meta-analysis. Front. Oncol. 2019;9:458. doi: 10.3389/fonc.2019.00458.
    1. Evans J.M., Donnelly L.A., Emslie-Smith A.M., Alessi D.R., Morris A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330:1304–1305. doi: 10.1136/bmj.38415.708634.F7.
    1. Gandini S., Puntoni M., Heckman-Stoddard B.M., Dunn B.K., Ford L., DeCensi A., Szabo E. Metformin and cancer risk and mortality: A systematic review and meta-analysis taking into account biases and confounders. Cancer Prev. Res. 2014;7:867–885. doi: 10.1158/1940-6207.CAPR-13-0424.
    1. Saraei P., Asadi I., Kakar M.A., Moradi-Kor N. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances. Cancer Manag. Res. 2019;11:3295–3313. doi: 10.2147/CMAR.S200059.
    1. Yu H., Zhong X., Gao P., Shi J., Wu Z., Guo Z., Wang Z., Song Y. The potential effect of metformin on cancer: An umbrella review. Front. Endocrinol. 2019;10:617. doi: 10.3389/fendo.2019.00617.
    1. Zi F., Zi H., Li Y., He J., Shi Q., Cai Z. Metformin and cancer: An existing drug for cancer prevention and therapy. Oncol. Lett. 2018;15:683–690. doi: 10.3892/ol.2017.7412.
    1. Bao B., Azmi A.S., Ali S., Zaiem F., Sarkar F.H. Metformin may function as anti-cancer agent via targeting cancer stem cells: The potential biological significance of tumor-associated mirnas in breast and pancreatic cancers. Ann. Transl. Med. 2014;2:59.
    1. Chae J.W., Baek I.H., Lee B.Y., Cho S.K., Kwon K.I. Population pk/pd analysis of metformin using the signal transduction model. Br. J. Clin. Pharmacol. 2012;74:815–823. doi: 10.1111/j.1365-2125.2012.04260.x.
    1. Shackelford D.B., Abt E., Gerken L., Vasquez D.S., Seki A., Leblanc M., Wei L., Fishbein M.C., Czernin J., Mischel P.S., et al. Lkb1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell. 2013;23:143–158. doi: 10.1016/j.ccr.2012.12.008.
    1. Pierotti M.A., Berrino F., Gariboldi M., Melani C., Mogavero A., Negri T., Pasanisi P., Pilotti S. Targeting metabolism for cancer treatment and prevention: Metformin, an old drug with multi-faceted effects. Oncogene. 2013;32:1475–1487. doi: 10.1038/onc.2012.181.
    1. Eikawa S., Nishida M., Mizukami S., Yamazaki C., Nakayama E., Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl. Acad. Sci. USA. 2015;112:1809–1814. doi: 10.1073/pnas.1417636112.
    1. Del Barco S., Vazquez-Martin A., Cufi S., Oliveras-Ferraros C., Bosch-Barrera J., Joven J., Martin-Castillo B., Menendez J.A. Metformin: Multi-faceted protection against cancer. Oncotarget. 2011;2:896–917. doi: 10.18632/oncotarget.387.
    1. Brown J.R., Chan D.K., Shank J.J., Griffith K.A., Fan H., Szulawski R., Yang K., Reynolds R.K., Johnston C., McLean K., et al. Phase ii clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer. JCI Insight. 2020;5:e133247.
    1. Broekman K.E., Hof M.A.J., Touw D.J., Gietema J.A., Nijman H.W., Lefrandt J.D., Reyners A.K.L., Jalving M. Phase i study of metformin in combination with carboplatin/paclitaxel chemotherapy in patients with advanced epithelial ovarian cancer. Invest. New Drugs. 2020;38:1454–1462. doi: 10.1007/s10637-020-00920-7.
    1. Mystakidou K., Katsouda E., Stathopoulou E., Vlahos L. Approaches to managing bone metastases from breast cancer: The role of bisphosphonates. Cancer Treat. Rev. 2005;31:303–311. doi: 10.1016/j.ctrv.2005.03.005.
    1. Russell R.G., Rogers M.J. Bisphosphonates: From the laboratory to the clinic and back again. Bone. 1999;25:97–106. doi: 10.1016/S8756-3282(99)00116-7.
    1. Gronich N., Rennert G. Beyond aspirin-cancer prevention with statins, metformin and bisphosphonates. Nat. Rev. Clin. Oncol. 2013;10:625–642. doi: 10.1038/nrclinonc.2013.169.
    1. Muinelo-Romay L., Garcia D., Alonso-Alconada L., Vieito M., Carmona M., Martinez N., Aguin S., Abal M., Lopez-Lopez R. Zoledronic acid as an antimetastatic agent for different human tumor cell lines. Anticancer Res. 2013;33:5295–5300.
    1. Yuasa T., Kimura S., Ashihara E., Habuchi T., Maekawa T. Zoledronic acid-a multiplicity of anti-cancer action. Curr. Med. Chem. 2007;14:2126–2135. doi: 10.2174/092986707781389600.
    1. Gnant M., Mlineritsch B., Schippinger W., Luschin-Ebengreuth G., Postlberger S., Menzel C., Jakesz R., Seifert M., Hubalek M., Bjelic-Radisic V., et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N. Engl. J. Med. 2009;360:679–691. doi: 10.1056/NEJMoa0806285.
    1. Coleman R.E., Winter M.C., Cameron D., Bell R., Dodwell D., Keane M.M., Gil M., Ritchie D., Passos-Coelho J.L., Wheatley D., et al. The effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour response: Exploratory evidence for direct anti-tumour activity in breast cancer. Br. J. Cancer. 2010;102:1099–1105. doi: 10.1038/sj.bjc.6605604.
    1. Bosch-Barrera J., Merajver S.D., Menendez J.A., Van Poznak C. Direct antitumour activity of zoledronic acid: Preclinical and clinical data. Clin. Transl. Oncol. 2011;13:148–155. doi: 10.1007/s12094-011-0634-9.
    1. Senaratne S.G., Colston K.W. Direct effects of bisphosphonates on breast cancer cells. Breast Cancer Res. 2002;4:18–23. doi: 10.1186/bcr412.
    1. Dumon J.C., Journe F., Kheddoumi N., Lagneaux L., Body J.J. Cytostatic and apoptotic effects of bisphosphonates on prostate cancer cells. Eur. Urol. 2004;45:521–528. doi: 10.1016/j.eururo.2003.12.012. discussion 528–529.
    1. Sawada K., Morishige K., Tahara M., Kawagishi R., Ikebuchi Y., Tasaka K., Murata Y. Alendronate inhibits lysophosphatidic acid-induced migration of human ovarian cancer cells by attenuating the activation of rho. Cancer Res. 2002;62:6015–6020.
    1. Hirata J., Kikuchi Y., Kudoh K., Kita T., Seto H. Inhibitory effects of bisphosphonates on the proliferation of human ovarian cancer cell lines and the mechanism. Med. Chem. 2006;2:223–226.
    1. Nagasawa Y., Chen J., Hashimoto K. Antiarrhythmic properties of a prior oral loading of amiodarone in in vivo canine coronary ligation/reperfusion-induced arrhythmia model: Comparison with other class iii antiarrhythmic drugs. J. Pharmacol. Sci. 2005;97:393–399. doi: 10.1254/jphs.FP0040512.
    1. Knight L.A., Kurbacher C.M., Glaysher S., Fernando A., Reichelt R., Dexel S., Reinhold U., Cree I.A. Activity of mevalonate pathway inhibitors against breast and ovarian cancers in the atp-based tumour chemosensitivity assay. BMC Cancer. 2009;9:38. doi: 10.1186/1471-2407-9-38.
    1. Karabulut B., Karaca B., Varol U., Muslu U., Cakar B., Atmaca H., Kisim A., Uzunoglu S., Uslu R. Enhancing cytotoxic and apoptotic effect in ovcar-3 and mdah-2774 cells with all-trans retinoic acid and zoledronic acid: A paradigm of synergistic molecular targeting treatment for ovarian cancer. J. Exp. Clin. Cancer Res. 2010;29:102. doi: 10.1186/1756-9966-29-102.
    1. Atmaca H., Gorumlu G., Karaca B., Degirmenci M., Tunali D., Cirak Y., Purcu D.U., Uzunoglu S., Karabulut B., Sanli U.A., et al. Combined gossypol and zoledronic acid treatment results in synergistic induction of cell death and regulates angiogenic molecules in ovarian cancer cells. Eur. Cytokine Netw. 2009;20:121–130. doi: 10.1684/ecn.2009.0159.
    1. Kobayashi Y., Kashima H., Rahmanto Y.S., Banno K., Yu Y., Matoba Y., Watanabe K., Iijima M., Takeda T., Kunitomi H., et al. Drug repositioning of mevalonate pathway inhibitors as antitumor agents for ovarian cancer. Oncotarget. 2017;8:72147–72156. doi: 10.18632/oncotarget.20046.
    1. Hashimoto K., Morishige K., Sawada K., Tahara M., Kawagishi R., Ikebuchi Y., Sakata M., Tasaka K., Murata Y. Alendronate inhibits intraperitoneal dissemination in in vivo ovarian cancer model. Cancer Res. 2005;65:540–545.
    1. Ou Y.J., Chiu H.F., Wong Y.H., Yang C.C., Yang Y.H. Bisphosphonate use and the risk of breast cancer: A meta-analysis of observational studies. Pharmacoepidemiol. Drug Saf. 2017;26:1286–1295. doi: 10.1002/pds.4302.
    1. Ou Y.J., Chiu H.F., Wong Y.H., Yang Y.H. Bisphosphonate use and the risk of endometrial cancer: A meta-analysis of observational studies. Pharmacoepidemiol. Drug Saf. 2016;25:1107–1115. doi: 10.1002/pds.4075.
    1. Rennert G., Rennert H.S., Pinchev M., Lavie O. The effect of bisphosphonates on the risk of endometrial and ovarian malignancies. Gynecol. Oncol. 2014;133:309–313. doi: 10.1016/j.ygyno.2014.02.014.
    1. Gonzalez Canga A., Sahagun Prieto A.M., Jose Diez Liebana M., Martinez N.F., Vega M.S., Vieitez J.J. The pharmacokinetics and metabolism of ivermectin in domestic animal species. Vet. J. 2009;179:25–37. doi: 10.1016/j.tvjl.2007.07.011.
    1. McCavera S., Rogers A.T., Yates D.M., Woods D.J., Wolstenholme A.J. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode haemonchus contortus. Mol. Pharmacol. 2009;75:1347–1355. doi: 10.1124/mol.108.053363.
    1. Moreno Y., Nabhan J.F., Solomon J., Mackenzie C.D., Geary T.G. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of brugia malayi. Proc. Natl. Acad. Sci. USA. 2010;107:20120–20125. doi: 10.1073/pnas.1011983107.
    1. Campbell W.C. History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Curr. Pharm. Biotechnol. 2012;13:853–865. doi: 10.2174/138920112800399095.
    1. Markowska A., Kaysiewicz J., Markowska J., Huczynski A. Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg. Med. Chem. Lett. 2019;29:1549–1554. doi: 10.1016/j.bmcl.2019.04.045.
    1. Drinyaev V.A., Mosin V.A., Kruglyak E.B., Novik T.S., Sterlina T.S., Ermakova N.V., Kublik L.N., Levitman M., Shaposhnikova V.V., Korystov Y.N. Antitumor effect of avermectins. Eur. J. Pharmacol. 2004;501:19–23. doi: 10.1016/j.ejphar.2004.08.009.
    1. Hashimoto H., Messerli S.M., Sudo T., Maruta H. Ivermectin inactivates the kinase pak1 and blocks the pak1-dependent growth of human ovarian cancer and nf2 tumor cell lines. Drug Discov. Ther. 2009;3:243–246.
    1. Melotti A., Mas C., Kuciak M., Lorente-Trigos A., Borges I., Ruiz i Altaba A. The river blindness drug ivermectin and related macrocyclic lactones inhibit wnt-tcf pathway responses in human cancer. EMBO Mol. Med. 2014;6:1263–1278. doi: 10.15252/emmm.201404084.
    1. Sharmeen S., Skrtic M., Sukhai M.A., Hurren R., Gronda M., Wang X., Fonseca S.B., Sun H., Wood T.E., Ward R., et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood. 2010;116:3593–3603. doi: 10.1182/blood-2010-01-262675.
    1. Dominguez-Gomez G., Chavez-Blanco A., Medina-Franco J.L., Saldivar-Gonzalez F., Flores-Torrontegui Y., Juarez M., Diaz-Chavez J., Gonzalez-Fierro A., Duenas-Gonzalez A. Ivermectin as an inhibitor of cancer stemlike cells. Mol. Med. Rep. 2018;17:3397–3403.
    1. Didier A., Loor F. The abamectin derivative ivermectin is a potent p-glycoprotein inhibitor. Anticancer Drugs. 1996;7:745–751. doi: 10.1097/00001813-199609000-00005.
    1. Dou Q., Chen H.N., Wang K., Yuan K., Lei Y., Li K., Lan J., Chen Y., Huang Z., Xie N., et al. Ivermectin induces cytostatic autophagy by blocking the pak1/akt axis in breast cancer. Cancer Res. 2016;76:4457–4469. doi: 10.1158/0008-5472.CAN-15-2887.
    1. Juarez M., Schcolnik-Cabrera A., Duenas-Gonzalez A. The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. Am. J. Cancer Res. 2018;8:317–331.
    1. Liu J., Liang H., Chen C., Wang X., Qu F., Wang H., Yang K., Wang Q., Zhao N., Meng J., et al. Ivermectin induces autophagy-mediated cell death through the akt/mtor signaling pathway in glioma cells. Biosci. Rep. 2019;39 doi: 10.1042/BSR20192489.
    1. Liu Y., Fang S., Sun Q., Liu B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun. 2016;480:415–421. doi: 10.1016/j.bbrc.2016.10.064.
    1. Seth C., Mas C., Conod A., Mueller J., Siems K., Kuciak M., Borges I., Ruiz I.A.A. Long-lasting wnt-tcf response blocking and epigenetic modifying activities of withanolide f in human cancer cells. PLoS ONE. 2016;11:e0168170. doi: 10.1371/journal.pone.0168170.
    1. Wang K., Gao W., Dou Q., Chen H., Li Q., Nice E.C., Huang C. Ivermectin induces pak1-mediated cytostatic autophagy in breast cancer. Autophagy. 2016;12:2498–2499. doi: 10.1080/15548627.2016.1231494.
    1. Kwon Y.J., Leibovitch B.A., Zeng L., Mezei M., Christova R., Yang S., Sharma R., Aritzia E., Bansal N., Zhou M.M., et al. Selamectin and ivermectin are small molecule inhibitors that interfere with sin3a-pah2 function and exert anti-tumor activity in triple-negative breast cancer; Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; Atlanta, GA USA. 5–9 April 2014;
    1. Zhu M., Li Y., Zhou Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage. Biochem. Biophys. Res. Commun. 2017;492:373–378. doi: 10.1016/j.bbrc.2017.08.097.
    1. Nishio M., Sugimachi K., Goto H., Wang J., Morikawa T., Miyachi Y., Takano Y., Hikasa H., Itoh T., Suzuki S.O., et al. Dysregulated yap1/taz and tgf-beta signaling mediate hepatocarcinogenesis in mob1a/1b-deficient mice. Proc. Natl. Acad. Sci. USA. 2016;113:E71–E80. doi: 10.1073/pnas.1517188113.
    1. Kang W., Tong J.H., Chan A.W., Lee T.L., Lung R.W., Leung P.P., So K.K., Wu K., Fan D., Yu J., et al. Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin. Cancer Res. 2011;17:2130–2139. doi: 10.1158/1078-0432.CCR-10-2467.
    1. Kim M.H., Kim Y.K., Shin D.H., Lee H.J., Shin N., Kim A., Lee J.H., Choi K.U., Kim J.Y., Lee C.H., et al. Yes associated protein is a poor prognostic factor in well-differentiated lung adenocarcinoma. Int. J. Clin. Exp. Pathol. 2015;8:15933–15939.
    1. Lee K.W., Lee S.S., Kim S.B., Sohn B.H., Lee H.S., Jang H.J., Park Y.Y., Kopetz S., Kim S.S., Oh S.C., et al. Significant association of oncogene yap1 with poor prognosis and cetuximab resistance in colorectal cancer patients. Clin. Cancer Res. 2015;21:357–364. doi: 10.1158/1078-0432.CCR-14-1374.
    1. Sun D., Li X., He Y., Li W., Wang Y., Wang H., Jiang S., Xin Y. Yap1 enhances cell proliferation, migration, and invasion of gastric cancer in vitro and in vivo. Oncotarget. 2016;7:81062–81076. doi: 10.18632/oncotarget.13188.
    1. Xia Y., Chang T., Wang Y., Liu Y., Li W., Li M., Fan H.Y. Yap promotes ovarian cancer cell tumorigenesis and is indicative of a poor prognosis for ovarian cancer patients. PLoS ONE. 2014;9:e91770. doi: 10.1371/journal.pone.0091770.
    1. Nambara S., Masuda T., Nishio M., Kuramitsu S., Tobo T., Ogawa Y., Hu Q., Iguchi T., Kuroda Y., Ito S., et al. Antitumor effects of the antiparasitic agent ivermectin via inhibition of yes-associated protein 1 expression in gastric cancer. Oncotarget. 2017;8:107666–107677. doi: 10.18632/oncotarget.22587.
    1. Wang J., Xu Y., Wan H., Hu J. Antibiotic ivermectin selectively induces apoptosis in chronic myeloid leukemia through inducing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun. 2018;497:241–247. doi: 10.1016/j.bbrc.2018.02.063.
    1. Kodama M., Kodama T., Newberg J.Y., Katayama H., Kobayashi M., Hanash S.M., Yoshihara K., Wei Z., Tien J.C., Rangel R., et al. In vivo loss-of-function screens identify kpnb1 as a new druggable oncogene in epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA. 2017;114:E7301–E7310. doi: 10.1073/pnas.1705441114.
    1. Zhang X., Qin T., Zhu Z., Hong F., Xu Y., Zhang X., Xu X., Ma A. Ivermectin augments the in vitro and in vivo efficacy of cisplatin in epithelial ovarian cancer by suppressing akt/mtor signaling. Am. J. Med. Sci. 2020;359:123–129. doi: 10.1016/j.amjms.2019.11.001.
    1. Jiang L., Wang P., Sun Y.J., Wu Y.J. Ivermectin reverses the drug resistance in cancer cells through egfr/erk/akt/nf-kappab pathway. J. Exp. Clin. Cancer Res. 2019;38:265. doi: 10.1186/s13046-019-1251-7.
    1. Lestner J., Hope W.W. Itraconazole: An update on pharmacology and clinical use for treatment of invasive and allergic fungal infections. Expert Opin. Drug Metab. Toxicol. 2013;9:911–926. doi: 10.1517/17425255.2013.794785.
    1. Pandya N.A., Atra A.A., Riley U., Pinkerton C.R. Role of itraconazole in haematology/oncology. Arch. Dis. Child. 2003;88:258–260. doi: 10.1136/adc.88.3.258.
    1. Pounds R., Leonard S., Dawson C., Kehoe S. Repurposing itraconazole for the treatment of cancer. Oncol. Lett. 2017;14:2587–2597. doi: 10.3892/ol.2017.6569.
    1. Shim J.S., Liu J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 2014;10:654–663. doi: 10.7150/ijbs.9224.
    1. Pantziarka P., Sukhatme V., Bouche G., Meheus L., Sukhatme V.P. Repurposing drugs in oncology (redo)-itraconazole as an anti-cancer agent. Ecancermedicalscience. 2015;9:521. doi: 10.3332/ecancer.2015.521.
    1. Kim J., Aftab B.T., Tang J.Y., Kim D., Lee A.H., Rezaee M., Kim J., Chen B., King E.M., Borodovsky A., et al. Itraconazole and arsenic trioxide inhibit hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell. 2013;23:23–34. doi: 10.1016/j.ccr.2012.11.017.
    1. Kim J., Tang J.Y., Gong R., Kim J., Lee J.J., Clemons K.V., Chong C.R., Chang K.S., Fereshteh M., Gardner D., et al. Itraconazole, a commonly used antifungal that inhibits hedgehog pathway activity and cancer growth. Cancer Cell. 2010;17:388–399. doi: 10.1016/j.ccr.2010.02.027.
    1. Liu R., Li J., Zhang T., Zou L., Chen Y., Wang K., Lei Y., Yuan K., Li Y., Lan J., et al. Itraconazole suppresses the growth of glioblastoma through induction of autophagy: Involvement of abnormal cholesterol trafficking. Autophagy. 2014;10:1241–1255. doi: 10.4161/auto.28912.
    1. Head S.A., Shi W.Q., Yang E.J., Nacev B.A., Hong S.Y., Pasunooti K.K., Li R.J., Shim J.S., Liu J.O. Simultaneous targeting of npc1 and vdac1 by itraconazole leads to synergistic inhibition of mtor signaling and angiogenesis. ACS Chem. Biol. 2017;12:174–182. doi: 10.1021/acschembio.6b00849.
    1. Hu Q., Hou Y.C., Huang J., Fang J.Y., Xiong H. Itraconazole induces apoptosis and cell cycle arrest via inhibiting hedgehog signaling in gastric cancer cells. J. Exp. Clin. Cancer Res. 2017;36:50. doi: 10.1186/s13046-017-0526-0.
    1. Liang G., Liu M., Wang Q., Shen Y., Mei H., Li D., Liu W. Itraconazole exerts its anti-melanoma effect by suppressing hedgehog, wnt, and pi3k/mtor signaling pathways. Oncotarget. 2017;8:28510–28525. doi: 10.18632/oncotarget.15324.
    1. Tsubamoto H., Inoue K., Sakata K., Ueda T., Takeyama R., Shibahara H., Sonoda T. Itraconazole inhibits akt/mtor signaling and proliferation in endometrial cancer cells. Anticancer Res. 2017;37:515–519. doi: 10.21873/anticanres.11343.
    1. Ueda T., Tsubamoto H., Inoue K., Sakata K., Shibahara H., Sonoda T. Itraconazole modulates hedgehog, wnt/beta-catenin, as well as akt signalling, and inhibits proliferation of cervical cancer cells. Anticancer Res. 2017;37:3521–3526.
    1. Chong C.R., Xu J., Lu J., Bhat S., Sullivan D.J., Jr., Liu J.O. Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chem. Biol. 2007;2:263–270. doi: 10.1021/cb600362d.
    1. Ban L., Mei T., Su Q., Li W., Huang Z., Liu L., Wu Y., Lv S., Wang A., Li S. Anti-fungal drug itraconazole exerts anti-cancer effects in oral squamous cell carcinoma via suppressing hedgehog pathway. Life Sci. 2020;254:117695. doi: 10.1016/j.lfs.2020.117695.
    1. Chen K., Cheng L., Qian W., Jiang Z., Sun L., Zhao Y., Zhou Y., Zhao L., Wang P., Duan W., et al. Itraconazole inhibits invasion and migration of pancreatic cancer cells by suppressing tgf-beta/smad2/3 signaling. Oncol. Rep. 2018;39:1573–1582.
    1. Chen M.B., Liu Y.Y., Xing Z.Y., Zhang Z.Q., Jiang Q., Lu P.H., Cao C. Itraconazole-induced inhibition on human esophageal cancer cell growth requires ampk activation. Mol. Cancer Ther. 2018;17:1229–1239. doi: 10.1158/1535-7163.MCT-17-1094.
    1. Lan K., Yan R., Zhu K., Li W., Xu Z., Dang C., Li K. Itraconazole inhibits the proliferation of gastric cancer cells in vitro and improves patient survival. Oncol. Lett. 2018;16:3651–3657. doi: 10.3892/ol.2018.9072.
    1. Choi C.H., Ryu J.Y., Cho Y.J., Jeon H.K., Choi J.J., Ylaya K., Lee Y.Y., Kim T.J., Chung J.Y., Hewitt S.M., et al. The anti-cancer effects of itraconazole in epithelial ovarian cancer. Sci. Rep. 2017;7:6552. doi: 10.1038/s41598-017-06510-7.
    1. Ally M.S., Ransohoff K., Sarin K., Atwood S.X., Rezaee M., Bailey-Healy I., Kim J., Beachy P.A., Chang A.L., Oro A., et al. Effects of combined treatment with arsenic trioxide and itraconazole in patients with refractory metastatic basal cell carcinoma. JAMA Dermatol. 2016;152:452–456. doi: 10.1001/jamadermatol.2015.5473.
    1. Tsubamoto H., Sonoda T., Ikuta S., Tani S., Inoue K., Yamanaka N. Combination chemotherapy with itraconazole for treating metastatic pancreatic cancer in the second-line or additional setting. Anticancer Res. 2015;35:4191–4196.
    1. Tsubamoto H., Sonoda T., Yamasaki M., Inoue K. Impact of combination chemotherapy with itraconazole on survival of patients with refractory ovarian cancer. Anticancer Res. 2014;34:2481–2487.
    1. Correia A., Silva D., Correia A., Vilanova M., Gartner F., Vale N. Study of new therapeutic strategies to combat breast cancer using drug combinations. Biomolecules. 2018;8:175. doi: 10.3390/biom8040175.
    1. Hara M., Nagasaki T., Shiga K., Takeyama H. Suppression of cancer-associated fibroblasts and endothelial cells by itraconazole in bevacizumab-resistant gastrointestinal cancer. Anticancer Res. 2016;36:169–177.
    1. Antonarakis E.S., Heath E.I., Smith D.C., Rathkopf D., Blackford A.L., Danila D.C., King S., Frost A., Ajiboye A.S., Zhao M., et al. Repurposing itraconazole as a treatment for advanced prostate cancer: A noncomparative randomized phase ii trial in men with metastatic castration-resistant prostate cancer. Oncologist. 2013;18:163–173. doi: 10.1634/theoncologist.2012-314.
    1. Kim D.J., Kim J., Spaunhurst K., Montoya J., Khodosh R., Chandra K., Fu T., Gilliam A., Molgo M., Beachy P.A., et al. Open-label, exploratory phase ii trial of oral itraconazole for the treatment of basal cell carcinoma. J. Clin. Oncol. 2014;32:745–751. doi: 10.1200/JCO.2013.49.9525.
    1. Rudin C.M., Brahmer J.R., Juergens R.A., Hann C.L., Ettinger D.S., Sebree R., Smith R., Aftab B.T., Huang P., Liu J.O. Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. J. Thorac. Oncol. 2013;8:619–623. doi: 10.1097/JTO.0b013e31828c3950.
    1. Tsubamoto H., Sonoda T., Inoue K. Impact of itraconazole on the survival of heavily pre-treated patients with triple-negative breast cancer. Anticancer Res. 2014;34:3839–3844.
    1. Mamtani R., Yang Y.X., Scott F.I., Lewis J.D., Boursi B. Association of itraconazole, a hedgehog inhibitor, and bladder cancer. J. Urol. 2016;196:343–348. doi: 10.1016/j.juro.2016.01.089.
    1. Inoue K., Tsubamoto H., Sakata K., Sakane R., Hao H., Hirota S., Sonoda T., Shibahara H. Expression of hedgehog signals and growth inhibition by itraconazole in endometrial cancer. Anticancer Res. 2016;36:149–153.
    1. Tsubamoto H., Sonoda T., Ikuta S., Tani S., Inoue K., Yamanaka N. Impact of itraconazole after first-line chemotherapy on survival of patients with metastatic biliary tract cancer. Anticancer Res. 2015;35:4923–4927. doi: 10.1200/jco.2015.33.15_suppl.e15145.
    1. Vreugdenhil G., Raemaekers J.M., van Dijke B.J., de Pauw B.E. Itraconazole and multidrug resistance: Possible effects on remission rate and disease-free survival in acute leukemia. Ann. Hematol. 1993;67:107–109. doi: 10.1007/BF01701730.
    1. Shirakawa K., Takara K., Tanigawara Y., Aoyama N., Kasuga M., Komada F., Sakaeda T., Okumura K. Interaction of docetaxel (“taxotere”) with human p-glycoprotein. Jpn. J. Cancer Res. 1999;90:1380–1386. doi: 10.1111/j.1349-7006.1999.tb00723.x.
    1. Takara K., Tanigawara Y., Komada F., Nishiguchi K., Sakaeda T., Okumura K. Cellular pharmacokinetic aspects of reversal effect of itraconazole on p-glycoprotein-mediated resistance of anticancer drugs. Biol. Pharm. Bull. 1999;22:1355–1359. doi: 10.1248/bpb.22.1355.
    1. Oldfield V., Plosker G.L. Lopinavir/ritonavir: A review of its use in the management of hiv infection. Drugs. 2006;66:1275–1299. doi: 10.2165/00003495-200666090-00012.
    1. Kumar S., Bryant C.S., Chamala S., Qazi A., Seward S., Pal J., Steffes C.P., Weaver D.W., Morris R., Malone J.M., et al. Ritonavir blocks akt signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells. Mol. Cancer. 2009;8:26. doi: 10.1186/1476-4598-8-26.
    1. Carroll V., Garzino-Demo A. Hiv-associated lymphoma in the era of combination antiretroviral therapy: Shifting the immunological landscape. Pathog. Dis. 2015;73:ftv044. doi: 10.1093/femspd/ftv044.
    1. Shmakova A., Germini D., Vassetzky Y. Hiv-1, haart and cancer: A complex relationship. Int. J. Cancer. 2020;146:2666–2679. doi: 10.1002/ijc.32730.
    1. Cheung T.W. Aids-related cancer in the era of highly active antiretroviral therapy (haart): A model of the interplay of the immune system, virus, and cancer. “On the offensive--the trojan horse is being destroyed”--part b: Malignant lymphoma. Cancer Investig. 2004;22:787–798. doi: 10.1081/CNV-200032792.
    1. Laurence J. Impact of haart on hiv-linked malignancies. AIDS Read. 2003;13:202–205.
    1. Monini P., Toschi E., Sgadari C., Bacigalupo I., Palladino C., Carlei D., Barillari G., Ensoli B. The use of haart for biological tumour therapy. J. HIV Ther. 2006;11:53–56.
    1. Ntekim A., Campbell O., Rothenbacher D. Optimal management of cervical cancer in hiv-positive patients: A systematic review. Cancer Med. 2015;4:1381–1393. doi: 10.1002/cam4.485.
    1. Clifford G.M., Polesel J., Rickenbach M., Dal Maso L., Keiser O., Kofler A., Rapiti E., Levi F., Jundt G., Fisch T., et al. Cancer risk in the swiss hiv cohort study: Associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J. Natl. Cancer Inst. 2005;97:425–432. doi: 10.1093/jnci/dji072.
    1. Kincaid L. Modern haart decreases cancers in children with hiv. Lancet Oncol. 2007;8:103. doi: 10.1016/S1470-2045(07)70021-9.
    1. Long J.L., Engels E.A., Moore R.D., Gebo K.A. Incidence and outcomes of malignancy in the haart era in an urban cohort of hiv-infected individuals. AIDS. 2008;22:489–496. doi: 10.1097/QAD.0b013e3282f47082.
    1. Franzetti M., Ricci E., Bonfanti P. The pattern of non-aids-defining cancers in the hiv population: Epidemiology, risk factors and prognosis. A review. Curr. HIV Res. 2019;17:1–12. doi: 10.2174/1570162X17666190327153038.
    1. Dewan M.Z., Uchihara J.N., Terashima K., Honda M., Sata T., Ito M., Fujii N., Uozumi K., Tsukasaki K., Tomonaga M., et al. Efficient intervention of growth and infiltration of primary adult t-cell leukemia cells by an hiv protease inhibitor, ritonavir. Blood. 2006;107:716–724. doi: 10.1182/blood-2005-02-0735.
    1. Ikezoe T., Daar E.S., Hisatake J., Taguchi H., Koeffler H.P. Hiv-1 protease inhibitors decrease proliferation and induce differentiation of human myelocytic leukemia cells. Blood. 2000;96:3553–3559. doi: 10.1182/blood.V96.10.3553.
    1. Labo N., Miley W., Benson C.A., Campbell T.B., Whitby D. Epidemiology of kaposi’s sarcoma-associated herpesvirus in hiv-1-infected us persons in the era of combination antiretroviral therapy. AIDS. 2015;29:1217–1225. doi: 10.1097/QAD.0000000000000682.
    1. Noy A. Optimizing treatment of hiv-associated lymphoma. Blood. 2019;134:1385–1394. doi: 10.1182/blood-2018-01-791400.
    1. Mazzocchi A.R., Rajan S.A.P., Votanopoulos K.I., Hall A.R., Skardal A. In vitro patient-derived 3d mesothelioma tumor organoids facilitate patient-centric therapeutic screening. Sci. Rep. 2018;8:2886. doi: 10.1038/s41598-018-21200-8.
    1. Meijer T.G., Naipal K.A., Jager A., van Gent D.C. Ex vivo tumor culture systems for functional drug testing and therapy response prediction. Future Sci. OA. 2017;3:FSO190. doi: 10.4155/fsoa-2017-0003.
    1. Ince T.A., Sousa A.D., Jones M.A., Harrell J.C., Agoston E.S., Krohn M., Selfors L.M., Liu W., Chen K., Yong M., et al. Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours. Nat. Commun. 2015;6:7419. doi: 10.1038/ncomms8419.
    1. Swords R.T., Azzam D., Al-Ali H., Lohse I., Volmar C.H., Watts J.M., Perez A., Rodriguez A., Vargas F., Elias R., et al. Ex-vivo sensitivity profiling to guide clinical decision making in acute myeloid leukemia: A pilot study. Leuk. Res. 2018;64:34–41. doi: 10.1016/j.leukres.2017.11.008.
    1. Ghani F.I., Dendo K., Watanabe R., Yamada K., Yoshimatsu Y., Yugawa T., Nakahara T., Tanaka K., Yoshida H., Yoshida M., et al. An ex-vivo culture system of ovarian cancer faithfully recapitulating the pathological features of primary tumors. Cells. 2019;8 doi: 10.3390/cells8070644.
    1. Nelson L., Tighe A., Golder A., Littler S., Bakker B., Moralli D., Murtuza Baker S., Donaldson I.J., Spierings D.C.J., Wardenaar R., et al. A living biobank of ovarian cancer ex vivo models reveals profound mitotic heterogeneity. Nat. Commun. 2020;11:822. doi: 10.1038/s41467-020-14551-2.
    1. Lohse I., Al-Ali H., Volmar C.H., A D.A.T., Brothers S.P., Capobianco A.J., Wahlestedt C. Ex vivo drug sensitivity testing as a means for drug repurposing in esophageal adenocarcinoma. PLoS ONE. 2018;13:e0203173. doi: 10.1371/journal.pone.0203173.
    1. Murumägi A., Ungureanu D., Khan S., Hirasawa A., Arjama M., Välimäki K., Mikkonen P., Niininen W., Kumar A., Eldfors S., et al. Clinical implementation of precision systems oncology in the treatment of ovarian cancer based on ex-vivo drug testing and molecular profiling; Proceedings of the Annual Meeting of the American Association for Cancer Research: Experimental and Molecular Therapeutics; Atlanta, GA, USA. 29 March–3 April 2019; p. 2945.
    1. Lohmussaar K., Boretto M., Clevers H. Human-derived model systems in gynecological cancer research. Trends Cancer. 2020 doi: 10.1016/j.trecan.2020.07.007.
    1. Lengyel E. Ovarian cancer development and metastasis. Am. J. Pathol. 2010;177:1053–1064. doi: 10.2353/ajpath.2010.100105.
    1. Ahmed N., Stenvers K.L. Getting to know ovarian cancer ascites: Opportunities for targeted therapy-based translational research. Front. Oncol. 2013;3:256. doi: 10.3389/fonc.2013.00256.
    1. Ahmed N., Riley C., Oliva K., Rice G., Quinn M. Ascites induces modulation of alpha6beta1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br. J. Cancer. 2005;92:1475–1485. doi: 10.1038/sj.bjc.6602495.
    1. Vlachogiannis G., Hedayat S., Vatsiou A., Jamin Y., Fernandez-Mateos J., Khan K., Lampis A., Eason K., Huntingford I., Burke R., et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920–926. doi: 10.1126/science.aao2774.
    1. Weeber F., Ooft S.N., Dijkstra K.K., Voest E.E. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem. Biol. 2017;24:1092–1100. doi: 10.1016/j.chembiol.2017.06.012.
    1. Mukhopadhyay A., Plummer E.R., Elattar A., Soohoo S., Uzir B., Quinn J.E., McCluggage W.G., Maxwell P., Aneke H., Curtin N.J., et al. Clinicopathological features of homologous recombination-deficient epithelial ovarian cancers: Sensitivity to parp inhibitors, platinum, and survival. Cancer Res. 2012;72:5675–5682. doi: 10.1158/0008-5472.CAN-12-0324.
    1. Sun W., Sanderson P.E., Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov. Today. 2016;21:1189–1195. doi: 10.1016/j.drudis.2016.05.015.

Source: PubMed

3
Suscribir