Minimally Invasive Ponto Surgery compared to the linear incision technique without soft tissue reduction for bone conduction hearing implants: study protocol for a randomized controlled trial

Tim G A Calon, Marc van Hoof, Herbert van den Berge, Arthur J G de Bruijn, Joost van Tongeren, Janny R Hof, Jan Wouter Brunings, Sofia Jonhede, Lucien J C Anteunis, Miranda Janssen, Manuela A Joore, Marcus Holmberg, Martin L Johansson, Robert J Stokroos, Tim G A Calon, Marc van Hoof, Herbert van den Berge, Arthur J G de Bruijn, Joost van Tongeren, Janny R Hof, Jan Wouter Brunings, Sofia Jonhede, Lucien J C Anteunis, Miranda Janssen, Manuela A Joore, Marcus Holmberg, Martin L Johansson, Robert J Stokroos

Abstract

Background: Over the last years, less invasive surgical techniques with soft tissue preservation for bone conduction hearing implants (BCHI) have been introduced such as the linear incision technique combined with a punch. Results using this technique seem favorable in terms of rate of peri-abutment dermatitis (PAD), esthetics, and preservation of skin sensibility. Recently, a new standardized surgical technique for BCHI placement, the Minimally Invasive Ponto Surgery (MIPS) technique has been developed by Oticon Medical AB (Askim, Sweden). This technique aims to standardize surgery by using a novel surgical instrumentation kit and minimize soft tissue trauma.

Methods: A multicenter randomized controlled trial is designed to compare the MIPS technique to the linear incision technique with soft tissue preservation. The primary investigation center is Maastricht University Medical Center. Sixty-two participants will be included with a 2-year follow-up period. Parameters are introduced to quantify factors such as loss of skin sensibility, dehiscence of the skin next to the abutment, skin overgrowth, and cosmetic results. A new type of sampling method is incorporated to aid in the estimation of complications. To gain further understanding of PAD, swabs and skin biopsies are collected during follow-up visits for evaluation of the bacterial profile and inflammatory cytokine expression. The primary objective of the study is to compare the incidence of PAD during the first 3 months after BCHI placement. Secondary objectives include the assessment of parameters related to surgery, wound healing, pain, loss of sensibility of the skin around the implant, implant extrusion rate, implant stability measurements, dehiscence of the skin next to the abutment, and esthetic appeal. Tertiary objectives include assessment of other factors related to PAD and a health economic evaluation.

Discussion: This is the first trial to compare the recently developed MIPS technique to the linear incision technique with soft tissue preservation for BCHI surgery. Newly introduced parameters and sampling method will aid in the prediction of results and complications after BCHI placement.

Trial registration: Registered at the CCMO register in the Netherlands on 24 November 2014: NL50072.068.14 . Retrospectively registered on 21 April 2015 at ClinicalTrials.gov: NCT02438618 . This trial is sponsored by Oticon Medical AB.

Keywords: BAHA; Bone conduction device (BCD); Bone conduction hearing implant (BCHI); MIPS; Randomized Controlled Trial (RCT); Soft tissue preservation.

Figures

Fig. 1
Fig. 1
Surgical implantation techniques. a Implant positioning. b Schematic presentation of the linear incision technique with soft tissue preservation. (I) Linear incision. (II) Opening of skin. (III) Initial hole drilling. (IV) Countersink drilling. (V) Eccentric skin punch to uncover abutment. (VI) Result. c Schematic presentation of Minimally Invasive Ponto Surgery (MIPS) technique. (I) Incision hole. (II) Removal of periost and soft tissue. (III) Placement of cannula. (IV) Drilling procedure (cannula guide drill and cannula widening drill). (V) Implant placement with the insertion indicator. (VI) Result
Fig. 2
Fig. 2
Study design and study flow chart

References

    1. World Health Organization. WHO global estimates on prevalence of hearing loss. 2012. . Accessed 1 May 2016.
    1. Tjellström A, Lindström J, Hallén O, Albrektsson T, Brånemark PI. Osseointegrated titanium implants in the temporal bone. A clinical study on bone-anchored hearing aids. Am J Otol. 1981;2:304–10.
    1. Stenfelt S, Goode RL. Bone-conducted sound: physiological and clinical aspects. Otol Neurotol. 2005;26:1245–61. doi: 10.1097/01.mao.0000187236.10842.d5.
    1. Crowson MG, Tucci DL. Mini review of the cost-effectiveness of unilateral osseointegrated implants in adults: possibly cost-effective for the correct indication. Audiol Neurootol. 2016;21:69–71. doi: 10.1159/000443629.
    1. Monksfield P, Jowett S, Reid A, Proops D. Cost-effectiveness analysis of the bone-anchored hearing device. Otol Neurotol. 2011;32:1192–7. doi: 10.1097/MAO.0b013e31822e5ae6.
    1. Verkerk MA, Busschbach JJ, Karssing ED. Health-related quality of life research and the capability approach of Amartya Sen. Qual Life Res. 2001;10:49–55. doi: 10.1023/A:1016652515418.
    1. Zawawi F, Kabbach G, Lallemand M, Daniel SJ. Bone-anchored hearing aid: why do some patients refuse it? Int J Pediatr Otorhinolaryngol. 2014;78:232–4. doi: 10.1016/j.ijporl.2013.11.010.
    1. Siau D, Dhillon B, Andrews R, Green KMJ. Bone-anchored hearing aids and unilateral sensorineural hearing loss: why do patients reject them? J Laryngol Otol. 2015;129:321–5. doi: 10.1017/S0022215115000602.
    1. Tjellström A. The father of Osseointegration and the godfather of the BAHA: Professor Per-Ingvar Brånemark, Göteborg Sweden has passed away in his 86th year. Eur Arch Otorhinolaryngol. 2015;272:779–80. doi: 10.1007/s00405-015-3581-1.
    1. Kiringoda R, Lustig LR. A meta-analysis of the complications associated with osseointegrated hearing aids. Otol Neurotol. 2013;34:790–4. doi: 10.1097/MAO.0b013e318291c651.
    1. Holgers KM, Tjellström A, Bjursten LM, Erlandsson BE. Soft tissue reactions around percutaneuous implants: a clinical study of soft tissue conditions around skin-penetrating titanuium implants for bone-anchored hearing aids. Otol Neurotol. 1988;9:56–63.
    1. Tjellström A. Percutaneous implants in clinical practice. CRC Crit Rev Biocompat. 1985;1:205–28.
    1. Holt BM, Bachus KN, Beck JP, Bloebaum RD, Jeyapalina S. Immediate post-implantation skin immobilization decreases skin regression around percutaneous osseointegrated prosthetic implant systems. J Biomed Mater Res A. 2013;101:2075–82. doi: 10.1002/jbm.a.34510.
    1. Anderson JM, Rodriquez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004.
    1. Monksfield P, Chapple ILC, Matthews JB, Grant MM, Addison O, Reid AP, et al. Biofilm formation on bone-anchored hearing aids. J Laryngol Otol. 2011;125:1125–30. doi: 10.1017/S0022215111002143.
    1. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS. 2013;121(s136):1–58. doi: 10.1111/apm.12099.
    1. Singam S, Williams R, Saxby C, Houlihan FP. Percutaneous bone-anchored hearing implant surgery without soft-tissue reduction: up to 42 months of follow-up. Otol Neurotol. 2014;35:1596–600. doi: 10.1097/MAO.0000000000000522.
    1. Mylanus EAM, Johansson CB, Cremers CWRJ. Craniofacial titanium implants and chronic pain: histologic findings. Otol Neurotol. 2002;23:920–5. doi: 10.1097/00129492-200211000-00018.
    1. Hobson JC, Roper AJ, Andrew R, Rothera MP, Hill P, Green KM. Complications of bone-anchored hearing aid implantation. J Laryngol Otol. 2010;124:132–6. doi: 10.1017/S0022215109991708.
    1. van de Berg R, Stokroos RJ, Hof JR, Chenault MN. Bone-anchored hearing aid: a comparison of surgical techniques. Otol Neurotol. 2010;31:129–35. doi: 10.1097/MAO.0b013e3181c29fec.
    1. Hagr A. BAHA: bone-anchored hearing aid. Int J Health Sci. 2007;1:265–76.
    1. den Besten CA, Bosman AJ, Nelissen RC, Mylanus EAM, Hol MK. Controlled clinical trial on bone-anchored hearing implants and a surgical technique with soft tissue preservation. Otol Neurotol. 2016;37:504–12. doi: 10.1097/MAO.0000000000000994.
    1. Hultcrantz M, Lanis A. A five-year follow-up on the osseointegration of bone-anchored hearing device implantation without tissue reduction. Otol Neurotol. 2014;35:1480–5. doi: 10.1097/MAO.0000000000000352.
    1. Hultcrantz M. Outcome of the bone-anchored hearing aid procedure without skin thinning: a prospective clinical trial. Otol Neurotol. 2011;32:1134–9. doi: 10.1097/MAO.0b013e31822a1c47.
    1. Verheij E, Bezdjian A, Grolman W, Thomeer HG. A systematic review on complications of tissue preservation surgical techniques in percutaneous bone conduction hearing devices. Otol Neurotol. 2016;37:829–37. doi: 10.1097/MAO.0000000000001091.
    1. Johansson M, Holmberg M. Design and clinical evaluation of MIPS – a new perspective on tissue preservation. White Pap. Oticon Medical, Askim, Sweden, 2015 October, Rep. No. M524252. doi:10.13140/RG.2.1.3624.7762.
    1. Dumon T, Medina M, Sperling NM. Punch and drill: implantation of bone anchored hearing device through a minimal skin punch incision versus implantation with dermatome and soft tissue reduction. Ann Otol Rhinol Laryngol. 2015;125:199–206. doi: 10.1177/0003489415606447.
    1. Gordon SA, Coelho DH. Minimally invasive surgery for osseointegrated auditory implants: a comparison of linear versus punch techniques. Otolaryngol Head Neck Surg. 2015;152:1089–93. doi: 10.1177/0194599815571532.
    1. Goldman RA, Georgolios A, Shaia WT. The punch method for bone-anchored hearing aid placement. Otolaryngol Head Neck Surg. 2013;148:878–80. doi: 10.1177/0194599813476666.
    1. Tysome JR, Hill-Feltham P, Hodgetts WE, McKinnon BJ, Monksfield P, Sockalingham R, et al. The Auditory Rehabilitation Outcomes Network: an international initiative to develop core sets of patient-centred outcome measures to assess interventions for hearing loss. Clin Otolaryngol. 2015;40(6):512–5. doi: 10.1111/coa.12559.
    1. Marshall M, Lockwood A, Bradley C, Adams C, Joy C, Fenton M. Unpublished rating scales: a major source of bias in randomised controlled trials of treatments for schizophrenia. Br J Psychiatry. 2000;176:249–52. doi: 10.1192/bjp.176.3.249.
    1. Barker F, MacKenzie E, Elliott L, de Lusignan S. Outcome measurement in adult auditory rehabilitation: a scoping review of measures used in randomized controlled trials. Ear Hear. 2015;36:567–73. doi: 10.1097/AUD.0000000000000167.
    1. Høgsbro M, Agger A, Johansen LV. Successful loading of a bone-anchored hearing implant at two weeks after surgery: randomized trial of two surgical methods and detailed stability measurements. Otol Neurotol. 2015;36:e51–7. doi: 10.1097/MAO.0000000000000647.
    1. Nelissen RC, Stalfors J, de Wolf MJ, Flynn MC, Wigren S, Eeg-Olofsson M, et al. Long-term stability, survival, and tolerability of a novel osseointegrated implant for bone conduction hearing: 3-year data from a multicenter, randomized, controlled, clinical investigation. Otol Neurotol. 2014;35:1486–91. doi: 10.1097/MAO.0000000000000533.
    1. Nelissen RC, den Besten CA, Mylanus EAM, Hol MK. Stability, survival, and tolerability of a 4.5-mm-wide bone-anchored hearing implant: 6-month data from a randomized controlled clinical trial. Eur Arch Otorhinolaryngol. 2016;273:105–11. doi: 10.1007/s00405-015-3593-x.
    1. Dun CA, de Wolf MJ, Hol MK, Wigren S, Eeg-Olofsson M, Green K, et al. Stability, survival, and tolerability of a novel baha implant system: six-month data from a multicenter clinical investigation. Otol Neurotol. 2011;32:1001–7. doi: 10.1097/MAO.0b013e3182267e9c.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, Hróbjartsson A, Mann H, Dickersin K, Berlin JA, Doré CJ. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–7. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Bull World Health Organ. 2001;79(4):373.
    1. Faber HT, Dun CA, Nelissen RC, Mylanus EAM, Cremers CW, Hol MK. Bone-anchored hearing implant loading at 3 weeks: stability and tolerability after 6 months. Otol Neurotol. 2013;34:104–10. doi: 10.1097/MAO.0b013e318277a282.
    1. Sandby-Møller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol. 2003;83:410–3. doi: 10.1080/00015550310015419.
    1. Oticon Medical AB. Surgical manual including linear incision with tissue preservation, M52058INT/ 2015.06. 2015. . Accessed 1 June 2016.
    1. Oticon Medical AB. Addendum to surgical manual including Minimally Invasive Ponto Surgery (MIPS), M52188INT/2015.06. 2015. . Accessed 7 November 2016.
    1. Cox RM, Alexander GC. The abbreviated profile of hearing aid benefit. Ear Hear. 1995;16:176–86. doi: 10.1097/00003446-199504000-00005.
    1. Feeny D, Furlong W, Boyle M, Torrance GW. Multi-attribute health status classification systems. Health Utilities Index. Pharmacoeconomics. 1995;7:490–502. doi: 10.2165/00019053-199507060-00004.
    1. Horsman J, Furlong W, Feeny D, Torrance G. The Health Utilities Index (HUI): concepts, measurement properties and applications. Health Qual Life Outcomes. 2003;1:54. doi: 10.1186/1477-7525-1-54.
    1. Al-Janabi H, Flynn TN, Coast J. Development of a self-report measure of capability wellbeing for adults: the ICECAP-A. Qual Life Res. 2012;21:167–76. doi: 10.1007/s11136-011-9927-2.
    1. Sen A. Development as freedom. Oxford: Oxford University Press; 2001.
    1. Al-Janabi H, Peters TJ, Brazier J, Bryan S, Flynn TN, Clemens S, et al. An investigation of the construct validity of the ICECAP-a capability measure. Qual Life Res. 2013;22:1831–40. doi: 10.1007/s11136-012-0293-5.
    1. van Hoof M, Jeuring SF, Stokroos RJ, Joore MA. A new perspective on measuring quality of life using the capability approach. Ned Tijdschr Geneeskd. 2015;159:A9234.
    1. Ramsey SD, Willke RJ, Glick H, Reed SD, Augustovski F, Jonsson B, et al. Cost-effectiveness analysis alongside clinical trials II—an ISPOR Good Research Practices Task Force Report. Value Health. 2015;18:161–72. doi: 10.1016/j.jval.2015.02.001.
    1. Budding AE, Grasman ME, Lin F, Bogaards JA, Soeltan-Kaersenhout DJ, Vandenbroucke-Grauls CM, et al. IS-pro: high-throughput molecular fingerprinting of the intestinal microbiota. FASEB J. 2010;24:4556–64. doi: 10.1096/fj.10-156190.
    1. Cohen J. Quantitative methods in psychology. Nature. 1938;141:613. doi: 10.1038/141613a0.
    1. Lerman J. Study design in clinical research: sample size estimation and power analysis. Can J Anaesth. 1996;43:184–91. doi: 10.1007/BF03011261.
    1. Law I, Widdows H. Conceptualising health: insights from the capability approach. Heal Care Anal. 2008;16:303–14. doi: 10.1007/s10728-007-0070-8.
    1. Ruger JP. Health capability: conceptualization and operationalization. Am J Public Health. 2010;100:41–9. doi: 10.2105/AJPH.2008.143651.
    1. Marfeo EE, Haley SM, Jette AM, Eisen SV, Ni P, Bogusz K, Meterko M, McDonough CM, Chan L, Brandt DE, Rasch EK. Conceptual foundation for measures of physical function and behavioral health function for social security work disability evaluation. Arch Phys Med Rehabil. 2013;94:1645–52. doi: 10.1016/j.apmr.2013.03.015.
    1. Faber HT, Nelissen RC, Kramer SE, Cremers CW, Snik AF, Hol MK. Bone-anchored hearing implants in single-sided deafness patients: long-term use and satisfaction by gender. Laryngoscope. 2015;125:2790–5. doi: 10.1002/lary.25423.

Source: PubMed

3
Suscribir