Association of the Inactive Circulating Matrix Gla Protein with Vitamin K Intake, Calcification, Mortality, and Cardiovascular Disease: A Review

Stefanos Roumeliotis, Evangelia Dounousi, Theodoros Eleftheriadis, Vassilios Liakopoulos, Stefanos Roumeliotis, Evangelia Dounousi, Theodoros Eleftheriadis, Vassilios Liakopoulos

Abstract

Matrix Gla Protein (MGP), a small Gla vitamin K-dependent protein, is the most powerful natural occurring inhibitor of calcification in the human body. To become biologically active, MGP must undergo vitamin K-dependent carboxylation and phosphorylation. Vitamin K deficiency leads to the inactive uncarboxylated, dephosphorylated form of MGP (dpucMGP). We aimed to review the existing data on the association between circulating dpucMGP and vascular calcification, renal function, mortality, and cardiovascular disease in distinct populations. Moreover, the association between vitamin K supplementation and serum levels of dpucMGP was also reviewed.

Keywords: calcification; cardiovascular disease; dpucMGP; matrix Gla protein; mortality; renal function; vitamin K..

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Chen N.X., Moe S.M. Arterial calcification in diabetes. Curr. Diab. Rep. 2003;3:28–32. doi: 10.1007/s11892-003-0049-2.
    1. Liakopoulos V., Roumeliotis S., Gorny X., Dounousi E., Mertens P.R. Oxidative stress in hemodialysis patients: A review of the literature. Oxid. Med. Cell Longev. 2017;2017:3081856. doi: 10.1155/2017/3081856.
    1. Liakopoulos V., Roumeliotis S., Zarogiannis S., Eleftheriadis T., Mertens P.R. Oxidative stress in hemodialysis: Causative mechanisms, clinical implications, and possible therapeutic interventions. Semin. Dial. 2018;32:58–71. doi: 10.1111/sdi.12745.
    1. Chen N.X., Moe S.M. Vascular calcification in chronic kidney disease. Semin. Nephrol. 2004;24:61–68. doi: 10.1053/j.semnephrol.2003.08.014.
    1. Virchow R. Cellular pathology. As based upon physiological and pathological histology. Lecture XVI—Atheromatous affection of arteries. 1858. Nutr. Rev. 1989;47:23–25. doi: 10.1111/j.1753-4887.1989.tb02747.x.
    1. Doherty T.M., Detrano R.C. Coronary arterial calcification as an active process: A new perspective on an old problem. Calcif. Tissue Int. 1994;54:224–230. doi: 10.1007/BF00301683.
    1. Rennenberg R.J., Kessels A.G., Schurgers L.J., van Engelshoven J.M., de Leeuw P.W., Kroon A.A. Vascular calcifications as a marker of increased cardiovascular risk: A meta-analysis. Vasc. Health Risk Manag. 2009;5:185–197. doi: 10.2147/VHRM.S4822.
    1. Raggi P., Shaw L.J., Berman D.S., Callister T.Q. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J. Am. Coll. Cardiol. 2004;43:1663–1669. doi: 10.1016/j.jacc.2003.09.068.
    1. London G.M., Marchais S.J., Guerin A.P., Metivier F., Adda H. Arterial structure and function in end-stage renal disease. Nephrol. Dial Transplant. 2002;17:1713–1724. doi: 10.1093/ndt/17.10.1713.
    1. Demer L.L., Tintut Y. Vascular calcification: Pathobiology of a multifaceted disease. Circulation. 2008;117:2938–2948. doi: 10.1161/CIRCULATIONAHA.107.743161.
    1. Price P.A. Gla-containing proteins of bone. Connect. Tissue Res. 1989;21:51–60. doi: 10.3109/03008208909049995.
    1. Price P.A., Urist M.R., Otawara Y. Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem. Biophys. Res. Commun. 1983;117:765–771. doi: 10.1016/0006-291X(83)91663-7.
    1. Sato M., Yasui N., Nakase T., Kawahata H., Sugimoto M., Hirota S., Kitamura Y., Nomura S., Ochi T. Expression of bone matrix proteins mRNA during distraction osteogenesis. J. Bone Miner. Res. 1998;13:1221–1231. doi: 10.1359/jbmr.1998.13.8.1221.
    1. Luo G., Ducy P., McKee M.D., Pinero G.J., Loyer E., Behringer R.R., Karsenty G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997;386:78–81. doi: 10.1038/386078a0.
    1. Munroe P.B., Olgunturk R.O., Fryns J.P., Van Maldergem L., Ziereisen F., Yuksel B., Gardiner R.M., Chung E. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat. Genet. 1999;21:142–144. doi: 10.1038/5102.
    1. Teebi A.S., Lambert D.M., Kaye G.M., Al-Fifi S., Tewfik T.L., Azouz E.M. Keutel syndrome: Further characterization and review. Am. J. Med. Genet. 1998;78:182–187. doi: 10.1002/(SICI)1096-8628(19980630)78:2<182::AID-AJMG18>;2-J.
    1. Shanahan C.M. Mechanisms of vascular calcification in renal disease. Clin. Nephrol. 2005;63:146–157. doi: 10.5414/CNP63146.
    1. Schurgers L.J., Teunissen K.J., Knapen M.H., Kwaijtaal M., van Diest R., Appels A., Reutelingsperger C.P., Cleutjens J.P., Vermeer C. Novel conformation-specific antibodies against matrix gamma-carboxyglutamic acid (Gla) protein: Undercarboxylated matrix Gla protein as marker for vascular calcification. Arterioscler. Thromb. Vasc. Biol. 2005;25:1629–1633. doi: 10.1161/01.ATV.0000173313.46222.43.
    1. Shanahan C.M., Cary N.R., Salisbury J.R., Proudfoot D., Weissberg P.L., Edmonds M.E. Medial localization of mineralization-regulating proteins in association with Mönckeberg’s sclerosis: Evidence for smooth muscle cell–mediated vascular calcification. Circulation. 1999;100:2168–2176. doi: 10.1161/01.CIR.100.21.2168.
    1. Bostrom K., Watson K.E., Horn S., Wortham C., Herman I.M., Demer L.L. Bone morphogenetic protein expression in human atherosclerotic lesions. J. Clin. Invest. 1993;91:1800–1809. doi: 10.1172/JCI116391.
    1. Zebboudj A.F., Imura M., Bostrom K. Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J. Biol. Chem. 2002;277:4388–4394. doi: 10.1074/jbc.M109683200.
    1. Shea C.M., Edgar C.M., Einhorn T.A., Gerstenfeld L.C. BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J. Cell Biochem. 2003;90:1112–1127. doi: 10.1002/jcb.10734.
    1. Sweatt A., Sane D.C., Hutson S.M., Wallin R. Matrix Gla protein (MGP) and bone morphogenetic protein-2 in aortic calcified lesions of aging rats. J. Thromb. Haemost. 2003;1:178–185. doi: 10.1046/j.1538-7836.2003.00023.x.
    1. Roy M.E., Nishimoto S.K. Matrix Gla protein binding to hydroxyapatite is dependent on the ionic environment: calcium enhances binding affinity but phosphate and magnesium decrease affinity. Bone. 2002;31:296–302. doi: 10.1016/S8756-3282(02)00821-9.
    1. Murshed M., Schinke T., McKee M.D., Karsenty G. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J. Cell Biol. 2004;165:625–630. doi: 10.1083/jcb.200402046.
    1. Shearer M.J. Vitamin K. Lancet. 1995;345:229–234. doi: 10.1016/S0140-6736(95)90227-9.
    1. Wallin R., Cain D., Hutson S.M., Sane D.C., Loeser R. Modulation of the binding of matrix Gla protein (MGP) to bone morphogenetic protein-2 (BMP-2) Thromb. Haemost. 2000;84:1039–1044.
    1. Schurgers L.J., Spronk H.M., Skepper J.N., Hackeng T.M., Shanahan C.M., Vermeer C., Weissberg P.L., Proudfoot D. Post-translational modifications regulate matrix Gla protein function: importance for inhibition of vascular smooth muscle cell calcification. J. Thromb. Haemost. 2007;5:2503–2511. doi: 10.1111/j.1538-7836.2007.02758.x.
    1. Schurgers L.J., Cranenburg E.C., Vermeer C. Matrix Gla-protein: The calcification inhibitor in need of vitamin K. Thromb. Haemost. 2008;100:593–603.
    1. Wallin R., Wajih N., Greenwood G.T., Sane D.C. Arterial calcification: A review of mechanisms, animal models, and the prospects for therapy. Med. Res. Rev. 2001;21:274–301. doi: 10.1002/med.1010.
    1. Khavandgar Z., Roman H., Li J., Lee S., Vali H., Brinckmann J., Davis E.C., Murshed M. Elastin haploinsufficiency impedes the progression of arterial calcification in MGP-deficient mice. J. Bone Miner. Res. 2014;29:327–337. doi: 10.1002/jbmr.2039.
    1. Shanahan C.M., Cary N.R., Metcalfe J.C., Weissberg P.L. High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J. Clin. Invest. 1994;93:2393–2402. doi: 10.1172/JCI117246.
    1. Dhore C.R., Cleutjens J.P., Lutgens E., Cleutjens K.B., Geusens P.P., Kitslaar P.J., Tordoir J.H., Spronk H.M., Vermeer C., Daemen M.J. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 2001;21:1998–2003. doi: 10.1161/hq1201.100229.
    1. Braam L.A., Dissel P., Gijsbers B.L., Spronk H.M., Hamulyak K., Soute B.A., Debie W., Vermeer C. Assay for human matrix gla protein in serum: Potential applications in the cardiovascular field. Arterioscler. Thromb. Vasc. Biol. 2000;20:1257–1261. doi: 10.1161/01.ATV.20.5.1257.
    1. Schurgers L.J., Dissel P.E., Spronk H.M., Soute B.A., Dhore C.R., Cleutjens J.P., Vermeer C. Role of vitamin K and vitamin K-dependent proteins in vascular calcification. Z. Kardiol. 2001;90:57–63. doi: 10.1007/s003920170043.
    1. Roijers R.B., Debernardi N., Cleutjens J.P., Schurgers L.J., Mutsaers P.H., van der Vusse G.J. Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am. J. Pathol. 2011;178:2879–2887. doi: 10.1016/j.ajpath.2011.02.004.
    1. Chatrou M.L., Cleutjens J.P., van der Vusse G.J., Roijers R.B., Mutsaers P.H., Schurgers L.J. Intra-section analysis of human coronary arteries reveals a potential role for micro-calcifications in macrophage recruitment in the early stage of atherosclerosis. PLoS ONE. 2015;10:e0142335. doi: 10.1371/journal.pone.0142335.
    1. Schurgers L.J., Spronk H.M., Soute B.A., Schiffers P.M., DeMey J.G., Vermeer C. Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood. 2007;109:2823–2831. doi: 10.1182/blood-2006-07-035345.
    1. Lomashvili K.A., Wang X., Wallin R., O’Neill W.C. Matrix Gla protein metabolism in vascular smooth muscle and role in uremic vascular calcification. J. Biol. Chem. 2011;286:28715–28722. doi: 10.1074/jbc.M111.251462.
    1. Rennenberg R.J., de Leeuw P.W., Kessels A.G., Schurgers L.J., Vermeer C., van Engelshoven J.M., Kemerink G.J., Kroon A.A. Calcium scores and matrix Gla protein levels: Association with vitamin K status. Eur. J. Clin. Invest. 2010;40:344–349. doi: 10.1111/j.1365-2362.2010.02275.x.
    1. Dalmeijer G.W., van der Schouw Y.T., Magdeleyns E.J., Vermeer C., Elias S.G., Velthuis B.K., de Jong P.A., Beulens J.W. Circulating species of matrix Gla protein and the risk of vascular calcification in healthy women. Int. J. Cardiol. 2013;168:e168–e170. doi: 10.1016/j.ijcard.2013.08.062.
    1. Parker B.D., Schurgers L.J., Brandenburg V.M., Christenson R.H., Vermeer C., Ketteler M., Shlipak M.G., Whooley M.A., Ix J.H. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: The Heart and Soul study. Ann. Intern. Med. 2010;152:640–648. doi: 10.7326/0003-4819-152-10-201005180-00004.
    1. Nigwekar S.U., Bloch D.B., Nazarian R.M., Vermeer C., Booth S.L., Xu D., Thadhani R.I., Malhotra R. Vitamin K-dependent carboxylation of matrix Gla protein influences the risk of calciphylaxis. J. Am. Soc. Nephrol. 2017;28:1717–1722. doi: 10.1681/ASN.2016060651.
    1. Hermans M.M., Vermeer C., Kooman J.P., Brandenburg V., Ketteler M., Gladziwa U., Rensma P.L., Leunissen K.M., Schurgers L.J. Undercarboxylated matrix GLA protein levels are decreased in dialysis patients and related to parameters of calcium-phosphate metabolism and aortic augmentation index. Blood Purif. 2007;25:395–401. doi: 10.1159/000108629.
    1. Cranenburg E.C., Brandenburg V.M., Vermeer C., Stenger M., Muhlenbruch G., Mahnken A.H., Gladziwa U., Ketteler M., Schurgers L.J. Uncarboxylated matrix Gla protein (ucMGP) is associated with coronary artery calcification in haemodialysis patients. Thromb. Haemost. 2009;101:359–366.
    1. Cranenburg E.C., Vermeer C., Koos R., Boumans M.L., Hackeng T.M., Bouwman F.G., Kwaijtaal M., Brandenburg V.M., Ketteler M., Schurgers L.J. The circulating inactive form of matrix Gla protein (ucMGP) as a biomarker for cardiovascular calcification. J. Vasc. Res. 2008;45:427–436. doi: 10.1159/000124863.
    1. Shroff R.C., Shah V., Hiorns M.P., Schoppet M., Hofbauer L.C., Hawa G., Schurgers L.J., Singhal A., Merryweather I., Brogan P., et al. The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis. Nephrol. Dial. Transplant. 2008;23:3263–3271. doi: 10.1093/ndt/gfn226.
    1. Fraser J.D., Price P.A. Lung, heart, and kidney express high levels of mRNA for the vitamin K-dependent matrix Gla protein. Implications for the possible functions of matrix Gla protein and for the tissue distribution of the gamma-carboxylase. J. Biol. Chem. 1988;263:11033–11036.
    1. Koos R., Krueger T., Westenfeld R., Kuhl H.P., Brandenburg V., Mahnken A.H., Stanzel S., Vermeer C., Cranenburg E.C., Floege J., et al. Relation of circulating Matrix Gla-Protein and anticoagulation status in patients with aortic valve calcification. Thromb. Haemost. 2009;101:706–713.
    1. O’Donnell C.J., Shea M.K., Price P.A., Gagnon D.R., Wilson P.W., Larson M.G., Kiel D.P., Hoffmann U., Ferencik M., Clouse M.E., et al. Matrix Gla protein is associated with risk factors for atherosclerosis but not with coronary artery calcification. Arterioscler. Thromb. Vasc. Biol. 2006;26:2769–2774. doi: 10.1161/01.ATV.0000245793.83158.06.
    1. Jono S., Ikari Y., Vermeer C., Dissel P., Hasegawa K., Shioi A., Taniwaki H., Kizu A., Nishizawa Y., Saito S. Matrix Gla protein is associated with coronary artery calcification as assessed by electron-beam computed tomography. Thromb. Haemost. 2004;91:790–794.
    1. Parker B.D., Schurgers L.J., Vermeer C., Schiller N.B., Whooley M.A., Ix J.H. The association of uncarboxylated matrix Gla protein with mitral annular calcification differs by diabetes status: The Heart and Soul study. Atherosclerosis. 2010;210:320–325. doi: 10.1016/j.atherosclerosis.2009.11.023.
    1. Schurgers L.J., Barreto D.V., Barreto F.C., Liabeuf S., Renard C., Magdeleyns E.J., Vermeer C., Choukroun G., Massy Z.A. The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: A preliminary report. Clin. J. Am. Soc. Nephrol. 2010;5:568–575. doi: 10.2215/CJN.07081009.
    1. Zwakenberg S.R., van der Schouw Y.T., Vermeer C., Pasterkamp G., den Ruijter H.M., Beulens J.W.J. Matrix Gla protein, plaque stability, and cardiovascular events in patients with severe atherosclerotic disease. Cardiology. 2018;141:32–36. doi: 10.1159/000493006.
    1. Barrett H., O’Keeffe M., Kavanagh E., Walsh M., O’Connor E.M. Is matrix gla protein associated with vascular calcification? A systematic review. Nutrients. 2018;10:415. doi: 10.3390/nu10040415.
    1. Cranenburg E.C., Koos R., Schurgers L.J., Magdeleyns E.J., Schoonbrood T.H., Landewe R.B., Brandenburg V.M., Bekers O., Vermeer C. Characterisation and potential diagnostic value of circulating matrix Gla protein (MGP) species. Thromb. Haemost. 2010;104:811–822. doi: 10.1160/TH09-11-0786.
    1. Delanaye P., Krzesinski J.M., Warling X., Moonen M., Smelten N., Medart L., Pottel H., Cavalier E. Dephosphorylated-uncarboxylated Matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC Nephrol. 2014;15:145. doi: 10.1186/1471-2369-15-145.
    1. Herrmann W., Obeid R. Vitamins in the Prevention of Human Diseases. Walter de Gruyter; Berlin, Germany: 2011.
    1. Wei F.F., Trenson S., Monney P., Yang W.Y., Pruijm M., Zhang Z.Y., Bouatou Y., Huang Q.F., Ponte B., Martin P.Y., et al. Epidemiological and histological findings implicate matrix Gla protein in diastolic left ventricular dysfunction. PLoS ONE. 2018;13:e0193967. doi: 10.1371/journal.pone.0193967.
    1. Dalmeijer G.W., van der Schouw Y.T., Vermeer C., Magdeleyns E.J., Schurgers L.J., Beulens J.W. Circulating matrix Gla protein is associated with coronary artery calcification and vitamin K status in healthy women. J. Nutr. Biochem. 2013;24:624–628. doi: 10.1016/j.jnutbio.2012.02.012.
    1. Boxma P.Y., van den Berg E., Geleijnse J.M., Laverman G.D., Schurgers L.J., Vermeer C., Kema I.P., Muskiet F.A., Navis G., Bakker S.J., et al. Vitamin K intake and plasma desphospho-uncarboxylated matrix Gla-protein levels in kidney transplant recipients. PLoS ONE. 2012;7:e47991. doi: 10.1371/journal.pone.0047991.
    1. Caluwe R., Vandecasteele S., Van Vlem B., Vermeer C., De Vriese A.S. Vitamin K2 supplementation in haemodialysis patients: A randomized dose-finding study. Nephrol. Dial. Transplant. 2013;29:1385–1390. doi: 10.1093/ndt/gft464.
    1. Dalmeijer G.W., van der Schouw Y.T., Magdeleyns E.J., Vermeer C., Verschuren W.M., Boer J.M., Beulens J.W. Matrix Gla protein species and risk of cardiovascular events in type 2 diabetic patients. Diabetes Care. 2013;36:3766–3771. doi: 10.2337/dc13-0065.
    1. Ueland T., Dahl C.P., Gullestad L., Aakhus S., Broch K., Skardal R., Vermeer C., Aukrust P., Schurgers L.J. Circulating levels of non-phosphorylated undercarboxylated matrix Gla protein are associated with disease severity in patients with chronic heart failure. Clin. Sci. (London) 2011;121:119–127. doi: 10.1042/CS20100589.
    1. Shroff R.C., McNair R., Figg N., Skepper J.N., Schurgers L., Gupta A., Hiorns M., Donald A.E., Deanfield J., Rees L., et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation. 2008;118:1748–1757. doi: 10.1161/CIRCULATIONAHA.108.783738.
    1. Westenfeld R., Krueger T., Schlieper G., Cranenburg E.C., Magdeleyns E.J., Heidenreich S., Holzmann S., Vermeer C., Jahnen-Dechent W., Ketteler M., et al. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: A randomized trial. Am. J. Kidney Dis. 2012;59:186–195. doi: 10.1053/j.ajkd.2011.10.041.
    1. Fain M.E., Kapuku G.K., Paulson W.D., Williams C.F., Raed A., Dong Y., Knapen M.H.J., Vermeer C., Pollock N.K. Inactive matrix gla protein, arterial stiffness, and endothelial function in African American hemodialysis patients. Am. J. Hypertens. 2018;31:735–741. doi: 10.1093/ajh/hpy049.
    1. Schlieper G., Westenfeld R., Kruger T., Cranenburg E.C., Magdeleyns E.J., Brandenburg V.M., Djuric Z., Damjanovic T., Ketteler M., Vermeer C., et al. Circulating nonphosphorylated carboxylated matrix gla protein predicts survival in ESRD. J. Am. Soc. Nephrol. 2011;22:387–395. doi: 10.1681/ASN.2010040339.
    1. Hallajzadeh J., Ghorbanihaghjo A., Argani H., Dastmalchi S., Rashtchizadeh N. Growth arrest-specific 6 protein and matrix gla protein in hemodialysis patients. Iran. J. Kidney Dis. 2015;9:249–255.
    1. Roumeliotis S., Roumeliotis A., Panagoutsos S., Giannakopoulou E., Papanas N., Manolopoulos V.G., Passadakis P., Tavridou A. Matrix gla protein T-138C polymorphism is associated with carotid intima media thickness and predicts mortality in patients with diabetic nephropathy. J. Diabetes Complicat. 2017;31:1527–1532. doi: 10.1016/j.jdiacomp.2017.06.012.
    1. Wei F.F., Trenson S., Thijs L., Huang Q.F., Zhang Z.Y., Yang W.Y., Moliterno P., Allegaert K., Boggia J., Janssens S., et al. Desphospho-uncarboxylated matrix Gla protein is a novel circulating biomarker predicting deterioration of renal function in the general population. Nephrol. Dial. Transplant. 2017;33:1122–1128. doi: 10.1093/ndt/gfx258.
    1. Kurnatowska I., Grzelak P., Masajtis-Zagajewska A., Kaczmarska M., Stefanczyk L., Vermeer C., Maresz K., Nowicki M. Plasma desphospho-uncarboxylated matrix Gla protein as a marker of kidney damage and cardiovascular risk in advanced stage of chronic kidney disease. Kidney Blood Press. Res. 2016;41:231–239. doi: 10.1159/000443426.
    1. Puzantian H., Akers S.R., Oldland G., Javaid K., Miller R., Ge Y., Ansari B., Lee J., Suri A., Hasmath Z., et al. Circulating dephospho-uncarboxylated matrix Gla-protein is associated with kidney dysfunction and arterial stiffness. Am. J. Hypertens. 2018;31:988–994. doi: 10.1093/ajh/hpy079.
    1. Sardana M., Vasim I., Varakantam S., Kewan U., Tariq A., Koppula M.R., Syed A.A., Beraun M., Drummen N.E., Vermeer C. Inactive matrix Gla-protein and arterial stiffness in type 2 diabetes mellitus. Am. J. Hypertens. 2017;30:196–201. doi: 10.1093/ajh/hpw146.
    1. Liabeuf S., Bourron O., Vemeer C., Theuwissen E., Magdeleyns E., Aubert C.E., Brazier M., Mentaverri R., Hartemann A., Massy Z.A. Vascular calcification in patients with type 2 diabetes: The involvement of matrix Gla protein. Cardiovasc. Diabetol. 2014;13:85. doi: 10.1186/1475-2840-13-85.
    1. Parker B.D., Ix J.H., Cranenburg E.C., Vermeer C., Whooley M.A., Schurgers L.J. Association of kidney function and uncarboxylated matrix Gla protein: Data from the Heart and Soul Study. Nephrol. Dial. Transplant. 2009;24:2095–20101. doi: 10.1093/ndt/gfp024.
    1. Thamratnopkoon S., Susantitaphong P., Tumkosit M., Katavetin P., Tiranathanagul K., Praditpornsilpa K., Eiam-Ong S. Correlations of plasma desphosphorylated uncarboxylated matrix Gla protein with vascular calcification and vascular stiffness in chronic kidney disease. Nephron. 2017;135:167–172. doi: 10.1159/000453368.
    1. Wei F.F., Drummen N.E., Schutte A.E., Thijs L., Jacobs L., Petit T., Yang W.Y., Smith W., Zhang Z.Y., Gu Y.M. Vitamin K dependent protection of renal function in multi-ethnic population studies. EBioMedicine. 2016;4:162–169. doi: 10.1016/j.ebiom.2016.01.011.
    1. Wei F.F., Thijs L., Zhang Z.Y., Jacobs L., Yang W.Y., Salvi E., Citterio L., Cauwenberghs N., Kuznetsova T., Drummen N.E.A., et al. The risk of nephrolithiasis is causally related to inactive matrix Gla protein, a marker of vitamin K status: A Mendelian randomization study in a Flemish population. Nephrol. Dial. Transplant. 2018;33:514–522. doi: 10.1093/ndt/gfx014.
    1. Toledo C., Thomas G., Schold J.D., Arrigain S., Gornik H.L., Nally J.V., Navaneethan S.D. Renal resistive index and mortality in chronic kidney disease. Hypertension. 2015;66:382–388. doi: 10.1161/HYPERTENSIONAHA.115.05536.
    1. Pivin E., Pruijm M., Ackermann D., Guessous I., Ehret G., Pechere-Bertschi A., Paccaud F., Mohaupt M., Vermeer C., Staessen J.A., et al. 1d.03: Inactive matrix Gla protein is associated with renal resistive index in a population-based study. J. Hypertens. 2015;33 doi: 10.1097/01.hjh.0000467389.43721.16.
    1. Rennenberg R.J., Schurgers L.J., Vermeer C., Scholte J.B., Houben A.J., de Leeuw P.W., Kroon A.A. Renal handling of matrix Gla-protein in humans with moderate to severe hypertension. Hypertens. Res. 2008;31:1745–1751. doi: 10.1291/hypres.31.1745.
    1. Miyata K.N., Nast C.C., Dai T., Dukkipati R., LaPage J.A., Troost J.P., Schurgers L.J., Kretzler M., Adler S.G. Renal matrix Gla protein expression increases progressively with CKD and predicts renal outcome. Exp. Mol. Pathol. 2018;105:120–129. doi: 10.1016/j.yexmp.2018.07.001.
    1. Roumeliotis S., Roumeliotis A., Stamou A., Panagoutsos S., Theodoridis M., Kantartzi K., Tavridou A., Passadakis P. The inactive dephosphorylated uncarboxylated form of matrix Gla protein is an indepedent predictor of renal function deterioration in diabetic nephropathy. Nephrol. Dial. Transplant. 2018;33:441–442. doi: 10.1093/ndt/gfy104.SP293.
    1. Cranenburg E.C., Schurgers L.J., Uiterwijk H.H., Beulens J.W., Dalmeijer G.W., Westerhuis R., Magdeleyns E.J., Herfs M., Vermeer C., Laverman G.D. Vitamin K intake and status are low in hemodialysis patients. Kidney Int. 2012;82:605–610. doi: 10.1038/ki.2012.191.
    1. Elliott M.J., Booth S.L., Hopman W.M., Holden R.M. Assessment of potential biomarkers of subclinical vitamin K deficiency in patients with end-stage kidney disease. Can. J. Kidney Health Dis. 2014;1:13. doi: 10.1186/2054-3581-1-13.
    1. Holden R.M., Morton A.R., Garland J.S., Pavlov A., Day A.G., Booth S.L. Vitamins K and D status in stages 3–5 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010;5:590–597. doi: 10.2215/CJN.06420909.
    1. Epstein M. Matrix Gla-protein (MGP) not only inhibits calcification in large arteries but also may be renoprotective: Connecting the dots. EBioMedicine. 2016;4:16–17. doi: 10.1016/j.ebiom.2016.01.026.
    1. Ueland T., Gullestad L., Dahl C.P., Aukrust P., Aakhus S., Solberg O.G., Vermeer C., Schurgers L.J. Undercarboxylated matrix Gla protein is associated with indices of heart failure and mortality in symptomatic aortic stenosis. J. Intern. Med. 2010;268:483–492. doi: 10.1111/j.1365-2796.2010.02264.x.
    1. Shea M.K., O’Donnell C.J., Vermeer C., Magdeleyns E.J., Crosier M.D., Gundberg C.M., Ordovas J.M., Kritchevsky S.B., Booth S.L. Circulating uncarboxylated matrix gla protein is associated with vitamin K nutritional status, but not coronary artery calcium, in older adults. J. Nutr. 2011;141:1529–1534. doi: 10.3945/jn.111.139634.
    1. Pivin E., Ponte B., Pruijm M., Ackermann D., Guessous I., Ehret G., Liu Y.P., Drummen N.E., Knapen M.H., Pechere-Bertschi A., et al. Inactive matrix Gla-protein is associated with arterial stiffness in an adult population-based study. Hypertension. 2015;66:85–92. doi: 10.1161/HYPERTENSIONAHA.115.05177.
    1. Knapen M.H., Braam L.A., Drummen N.E., Bekers O., Hoeks A.P., Vermeer C. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb. Haemost. 2015;113:1135–1144. doi: 10.1160/TH14-08-0675.
    1. Mayer O., Jr., Seidlerova J., Wohlfahrt P., Filipovsky J., Vanek J., Cifkova R., Windrichova J., Topolcan O., Knapen M.H., Drummen N.E., et al. Desphospho-uncarboxylated matrix Gla protein is associated with increased aortic stiffness in a general population. J. Hum. Hypertens. 2016;30:418–423. doi: 10.1038/jhh.2015.55.
    1. Aoun M., Makki M., Azar H., Matta H., Chelala D.N. High dephosphorylated-uncarboxylated MGP in hemodialysis patients: Risk factors and response to vitamin K2, A pre-post intervention clinical trial. BMC Nephrol. 2017;18:191. doi: 10.1186/s12882-017-0609-3.
    1. Rennenberg R.J., van Varik B.J., Schurgers L.J., Hamulyak K., Ten Cate H., Leiner T., Vermeer C., de Leeuw P.W., Kroon A.A. Chronic coumarin treatment is associated with increased extracoronary arterial calcification in humans. Blood. 2010;115:5121–5123. doi: 10.1182/blood-2010-01-264598.
    1. Chirinos J.A., Sardana M., Syed A.A., Koppula M.R., Varakantam S., Vasim I., Oldland H.G., Phan T.S., Drummen N.E.A., Vermeer C., et al. Aldosterone, inactive matrix Gla-protein, and large artery stiffness in hypertension. J. Am. Soc. Hypertens. 2018;12:681–689. doi: 10.1016/j.jash.2018.06.018.
    1. Van den Heuvel E.G., van Schoor N.M., Lips P., Magdeleyns E.J., Deeg D.J., Vermeer C., den Heijer M. Circulating uncarboxylated matrix Gla protein, a marker of vitamin K status, as a risk factor of cardiovascular disease. Maturitas. 2014;77:137–141. doi: 10.1016/j.maturitas.2013.10.008.
    1. Liu Y.P., Gu Y.M., Thijs L., Knapen M.H., Salvi E., Citterio L., Petit T., Carpini S.D., Zhang Z., Jacobs L., et al. Inactive matrix Gla protein is causally related to adverse health outcomes: A Mendelian randomization study in a Flemish population. Hypertension. 2015;65:463–470. doi: 10.1161/HYPERTENSIONAHA.114.04494.
    1. Dalmeijer G.W., van der Schouw Y.T., Magdeleyns E.J., Vermeer C., Verschuren W.M., Boer J.M., Beulens J.W. Circulating desphospho-uncarboxylated matrix gamma-carboxyglutamate protein and the risk of coronary heart disease and stroke. J. Thromb. Haemost. 2014;12:1028–1034. doi: 10.1111/jth.12609.
    1. Roumeliotis S., Roumeliotis A., Panagoutsos S., Giannakopoulou E., Papanas N., Manolopoulos V., Tavridou A., Passadakis P. Matrix Gla Protein T 138C polymorphism and its inactive dephosphorylated uncarboxylated form predict mortality in patients with diabetic nephropathy. Nephrol. Dial. Transplant. 2017;32:607–608. doi: 10.1093/ndt/gfx174.MP486.
    1. Keyzer C.A., Vermeer C., Joosten M.M., Knapen M.H., Drummen N.E., Navis G., Bakker S.J., de Borst M.H. Vitamin K status and mortality after kidney transplantation: A cohort study. Am. J. Kidney Dis. 2015;65:474–483. doi: 10.1053/j.ajkd.2014.09.014.
    1. Capoulade R., Cote N., Mathieu P., Chan K.L., Clavel M.A., Dumesnil J.G., Teo K.K., Tam J.W., Fournier D., Despres J.P., et al. Circulating levels of matrix Gla protein and progression of aortic stenosis: A substudy of the Aortic Stenosis Progression Observation: Measuring Effects of rosuvastatin (ASTRONOMER) trial. Can. J. Cardiol. 2014;30:1088–1095. doi: 10.1016/j.cjca.2014.03.025.
    1. Mayer O., Jr., Seidlerova J., Bruthans J., Filipovsky J., Timoracka K., Vanek J., Cerna L., Wohlfahrt P., Cifkova R., Theuwissen E., et al. Desphospho-uncarboxylated matrix Gla-protein is associated with mortality risk in patients with chronic stable vascular disease. Atherosclerosis. 2014;235:162–168. doi: 10.1016/j.atherosclerosis.2014.04.027.
    1. Mayer O., Jr., Seidlerova J., Vanek J., Karnosova P., Bruthans J., Filipovsky J., Wohlfahrt P., Cifkova R., Windrichova J., Knapen M.H., et al. The abnormal status of uncarboxylated matrix Gla protein species represents an additional mortality risk in heart failure patients with vascular disease. Int. J. Cardiol. 2016;203:916–922. doi: 10.1016/j.ijcard.2015.10.226.
    1. Dahlberg S., Ede J., Schurgers L., Vermeer C., Kander T., Klarin B., Schott U. Desphospho-uncarboxylated matrix-Gla protein is increased postoperatively in cardiovascular risk patients. Nutrients. 2018;10:46. doi: 10.3390/nu10010046.
    1. Zhang S., Guo L., Bu C. Vitamin K status and cardiovascular events or mortality: A meta-analysis. Eur. J. Prev. Cardiol. 2018;0:1–5. doi: 10.1177/2047487318808066.
    1. Weaver K.N., El Hallek M., Hopkin R.J., Sund K.L., Henrickson M., Del Gaudio D., Yuksel A., Acar G.O., Bober M.B., Kim J., et al. Keutel syndrome: Report of two novel MGP mutations and discussion of clinical overlap with arylsulfatase E deficiency and relapsing polychondritis. Am. J. Med. Genet. A. 2014;164A:1062–1068. doi: 10.1002/ajmg.a.36390.
    1. Cranenburg E.C., Van Spaendonck-Zwarts K.Y., Bonafe L., Mittaz Crettol L., Rodiger L.A., Dikkers F.G., Van Essen A.J., Superti-Furga A., Alexandrakis E., Vermeer C., et al. Circulating matrix gamma-carboxyglutamate protein (MGP) species are refractory to vitamin K treatment in a new case of Keutel syndrome. J. Thromb. Haemost. 2011;9:1225–1235. doi: 10.1111/j.1538-7836.2011.04263.x.
    1. Cozzolino M., Biondi M.L., Galassi A., Cusi D., Brancaccio D., Gallieni M. Vascular calcification and cardiovascular outcome in dialysis patients: The role of gene polymorphisms. Blood Purif. 2010;29:347–351. doi: 10.1159/000302722.
    1. Herrmann S.M., Whatling C., Brand E., Nicaud V., Gariepy J., Simon A., Evans A., Ruidavets J.B., Arveiler D., Luc G. Polymorphisms of the human matrix Gla protein (MGP) gene, vascular calcification, and myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2000;20:2386–2393. doi: 10.1161/01.ATV.20.11.2386.
    1. Yoshikawa K., Abe H., Tominaga T., Nakamura M., Kishi S., Matsuura M., Nagai K., Tsuchida K., Minakuchi J., Doi T. Polymorphism in the human matrix Gla protein gene is associated with the progression of vascular calcification in maintenance hemodialysis patients. Clin. Exp. Nephrol. 2013;17:882–889. doi: 10.1007/s10157-013-0785-9.
    1. Karsli Ceppioglu S., Yurdun T., Canbakan M. Assessment of matrix Gla protein, Klotho gene polymorphisms, and oxidative stress in chronic kidney disease. Ren. Fail. 2011;33:866–874. doi: 10.3109/0886022X.2011.605534.
    1. Najafi M., Roustazadeh A., Amirfarhangi A., Kazemi B. Matrix Gla protein (MGP) promoter polymorphic variants and its serum level in stenosis of coronary artery. Mol. Biol. Rep. 2014;41:1779–1786. doi: 10.1007/s11033-014-3027-7.
    1. Kobayashi N., Kitazawa R., Maeda S., Schurgers L., Kitazawa S. T-138C polymorphism of matrix Gla protein promoter alters its expression but is not directly associated with atherosclerotic vascular calcification. Kobe J. Med. Sci. 2004;50:69–81.
    1. Wang Y., Chen J., Zhang Y., Yu W., Zhang C., Gong L., Shao L., Lu J., Gao Y., Chen X., et al. Common genetic variants of MGP are associated with calcification on the arterial wall but not with calcification present in the atherosclerotic plaques. Circ. Cardiovasc. Genet. 2013;6:271–278. doi: 10.1161/CIRCGENETICS.113.000003.
    1. Wang K., Honda H., Qureshi A., Pecoits-Filho R., Axelsson J., Nordfors L., Schalling M., Hoff C., Holmes C., Heimburger O. The matrix GLA protein-138 genotype is associated with clinical utcome in end-stage renal disease patients; Proceedings of the ERA-EDTA XLI Congress 2004; Lisbon, Portugal. 15–18 May 2004; pp. 15–18.
    1. Farzaneh-Far A., Davies J.D., Braam L.A., Spronk H.M., Proudfoot D., Chan S.W., O’Shaughnessy K.M., Weissberg P.L., Vermeer C., Shanahan C.M. A polymorphism of the human matrix gamma-carboxyglutamic acid protein promoter alters binding of an activating protein-1 complex and is associated with altered transcription and serum levels. J. Biol. Chem. 2001;276:32466–32473. doi: 10.1074/jbc.M104909200.
    1. Brancaccio D., Biondi M.L., Gallieni M., Turri O., Galassi A., Cecchini F., Russo D., Andreucci V., Cozzolino M. Matrix Gla protein gene polymorphisms: Clinical correlates and cardiovascular mortality in chronic kidney disease patients. Am. J. Nephrol. 2005;25:548–552. doi: 10.1159/000088809.
    1. Crosier M.D., Booth S.L., Peter I., Dawson-Hughes B., Price P.A., O’Donnell C.J., Hoffmann U., Williamson M.K., Ordovas J.M. Matrix Gla protein polymorphisms are associated with coronary artery calcification in men. J. Nutr. Sci. Vitaminol. (Tokyo) 2009;55:59–65. doi: 10.3177/jnsv.55.59.
    1. Taylor B.C., Schreiner P.J., Doherty T.M., Fornage M., Carr J.J., Sidney S. Matrix Gla protein and osteopontin genetic associations with coronary artery calcification and bone density: The CARDIA study. Hum. Genet. 2005;116:525–528. doi: 10.1007/s00439-005-1258-3.
    1. Ataman O.V., Polonikov O.V., Harbuzova V., Ataman Iu O., Matlai O.I. Analysis of matrix Gla-protein (MGP) G-7A polymorphism association with ischemic atherothrombotic stroke in persons with risk factors. Tsitol. Genet. 2013;47:33–40.
    1. Garbuzova V.Y., Stroy D.A., Dosenko V.E., Dubovyk Y.I., Borodenko A.O., Shimko K.A., Obukhova O.A., Ataman O.V. Association of allelic polymorphisms of genes matrix Gla-protein system with ischemic atherothrombotic stroke. Fiziol. Zh. 2015;61:19–27. doi: 10.15407/fz61.01.019.
    1. Harbuzova V., Matlai O.I., Ataman Iu O., Dubovyk Ie I., Borodenko A.O., Obukhova O.A., Ataman O.V. The polymorphism of matrix Gla-protein gene in ischemic atherothrombotic stroke patients. Fiziol. Zh. 2012;58:14–21.
    1. Garbuzova V.Y., Gurianova V.L., Stroy D.A., Dosenko V.E., Parkhomenko A.N., Ataman A.V. Association of matrix Gla protein gene allelic polymorphisms (G(-7)-->A, T(-138)-->C and Thr(83)-->Ala) with acute coronary syndrome in the Ukrainian population. Exp. Clin. Cardiol. 2012;17:30–33.
    1. Harbuzova V., Hur’ianova V.L., Parkhomenko O.M., Dosenko V., Ataman O.V. The frequency of allelic polymorphism of matrix Gla-protein gene in acute coronary syndrome patients. Fiziol. Zh. 2011;57:16–24.
    1. Tunon-Le Poultel D., Cannata-Andia J.B., Roman-Garcia P., Diaz-Lopez J.B., Coto E., Gomez C., Naves-Diaz M., Rodriguez I. Association of matrix Gla protein gene functional polymorphisms with loss of bone mineral density and progression of aortic calcification. Osteoporos. Int. 2014;25:1237–1246. doi: 10.1007/s00198-013-2577-1.
    1. Roustazadeh A., Najafi M., Amirfarhangi A., Nourmohammadi I. No association between MGP rs1800802 polymorphism and stenosis of the coronary artery. Ann. Saudi. Med. 2013;33:149–154. doi: 10.5144/0256-4947.2013.149.
    1. Sheng K., Zhang P., Lin W., Cheng J., Li J., Chen J. Association of Matrix Gla protein gene (rs1800801, rs1800802, rs4236) polymorphism with vascular calcification and atherosclerotic disease: A meta-analysis. Sci. Rep. 2017;7:8713. doi: 10.1038/s41598-017-09328-5.
    1. Geleijnse J.M., Vermeer C., Grobbee D.E., Schurgers L.J., Knapen M.H., van der Meer I.M., Hofman A., Witteman J.C. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J. Nutr. 2004;134:3100–3105. doi: 10.1093/jn/134.11.3100.
    1. Beulens J.W., Bots M.L., Atsma F., Bartelink M.L., Prokop M., Geleijnse J.M., Witteman J.C., Grobbee D.E., van der Schouw Y.T. High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis. 2009;203:489–493. doi: 10.1016/j.atherosclerosis.2008.07.010.
    1. Gast G.C., de Roos N.M., Sluijs I., Bots M.L., Beulens J.W., Geleijnse J.M., Witteman J.C., Grobbee D.E., Peeters P.H., van der Schouw Y.T. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 2009;19:504–510. doi: 10.1016/j.numecd.2008.10.004.
    1. Hartley L., Clar C., Ghannam O., Flowers N., Stranges S., Rees K. Vitamin K for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2015;9:CD011148. doi: 10.1002/14651858.CD011148.pub2.
    1. Krueger T., Westenfeld R., Ketteler M., Schurgers L.J., Floege J. Vitamin K deficiency in CKD patients: A modifiable risk factor for vascular calcification? Kidney Int. 2009;76:18–22. doi: 10.1038/ki.2009.126.
    1. Pilkey R.M., Morton A.R., Boffa M.B., Noordhof C., Day A.G., Su Y., Miller L.M., Koschinsky M.L., Booth S.L. Subclinical vitamin K deficiency in hemodialysis patients. Am. J. Kidney Dis. 2007;49:432–439. doi: 10.1053/j.ajkd.2006.11.041.
    1. Scheiber D., Veulemans V., Horn P., Chatrou M.L., Potthoff S.A., Kelm M., Schurgers L.J., Westenfeld R. High-dose menaquinone-7 supplementation reduces cardiovascular calcification in a murine model of extraosseous calcification. Nutrients. 2015;7:6991–7011. doi: 10.3390/nu7085318.
    1. Kaesler N., Magdeleyns E., Herfs M., Schettgen T., Brandenburg V., Fliser D., Vermeer C., Floege J., Schlieper G., Kruger T. Impaired vitamin K recycling in uremia is rescued by vitamin K supplementation. Kidney Int. 2014;86:286–293. doi: 10.1038/ki.2013.530.
    1. Dalmeijer G.W., van der Schouw Y.T., Magdeleyns E., Ahmed N., Vermeer C., Beulens J.W. The effect of menaquinone-7 supplementation on circulating species of matrix Gla protein. Atherosclerosis. 2012;225:397–402. doi: 10.1016/j.atherosclerosis.2012.09.019.
    1. Theuwissen E., Cranenburg E.C., Knapen M.H., Magdeleyns E.J., Teunissen K.J., Schurgers L.J., Smit E., Vermeer C. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br. J. Nutr. 2012;108:1652–1657. doi: 10.1017/S0007114511007185.
    1. Theuwissen E., Magdeleyns E.J., Braam L.A., Teunissen K.J., Knapen M.H., Binnekamp I.A., van Summeren M.J., Vermeer C. Vitamin K status in healthy volunteers. Food Funct. 2014;5:229–234. doi: 10.1039/C3FO60464K.
    1. Shea M.K., O’Donnell C.J., Hoffmann U., Dallal G.E., Dawson-Hughes B., Ordovas J.M., Price P.A., Williamson M.K., Booth S.L. Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am. J. Clin. Nutr. 2009;89:1799–1807. doi: 10.3945/ajcn.2008.27338.
    1. Theuwissen E., Teunissen K.J., Spronk H.M., Hamulyak K., Ten Cate H., Shearer M.J., Vermeer C., Schurgers L.J. Effect of low-dose supplements of menaquinone-7 (vitamin K2) on the stability of oral anticoagulant treatment: Dose-response relationship in healthy volunteers. J. Thromb. Haemost. 2013;11:1085–1092. doi: 10.1111/jth.12203.
    1. Delanaye P., Dubois B.E., Lukas P., Peters P., Krzesinski J.M., Pottel H., Cavalier E. Impact of stopping vitamin K antagonist therapy on concentrations of dephospho-uncarboxylated Matrix Gla protein. Clin. Chem. Lab. Med. 2015;53:e191–e193. doi: 10.1515/cclm-2015-0073.
    1. Kurnatowska I., Grzelak P., Masajtis-Zagajewska A., Kaczmarska M., Stefanczyk L., Vermeer C., Maresz K., Nowicki M. Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3–5. Pol. Arch. Med. Wewn. 2015;125:631–640. doi: 10.20452/pamw.3041.
    1. Brandenburg V.M., Reinartz S., Kaesler N., Kruger T., Dirrichs T., Kramann R., Peeters F., Floege J., Keszei A., Marx N., et al. Slower progress of aortic valve calcification with vitamin K supplementation: Results from a prospective interventional proof-of-concept study. Circulation. 2017;135:2081–2083. doi: 10.1161/CIRCULATIONAHA.116.027011.
    1. Caluwe R., Pyfferoen L., De Boeck K., De Vriese A.S. The effects of vitamin K supplementation and vitamin K antagonists on progression of vascular calcification: Ongoing randomized controlled trials. Clin. Kidney J. 2016;9:273–279. doi: 10.1093/ckj/sfv146.
    1. Holden R.M., Booth S.L., Day A.G., Clase C.M., Zimmerman D., Moist L., Shea M.K., McCabe K.M., Jamal S.A., Tobe S. Inhibiting the progression of arterial calcification with vitamin K in HemoDialysis patients (iPACK-HD) trial: Rationale and study design for a randomized trial of vitamin K in patients with end stage kidney disease. Can. J. Kidney Health Dis. 2015;2:17. doi: 10.1186/s40697-015-0053-x.
    1. Krueger T., Schlieper G., Schurgers L., Cornelis T., Cozzolino M., Jacobi J., Jadoul M., Ketteler M., Rump L.C., Stenvinkel P., et al. Vitamin K1 to slow vascular calcification in haemodialysis patients (VitaVasK trial): A rationale and study protocol. Nephrol. Dial. Transplant. 2014;29:1633–1638. doi: 10.1093/ndt/gft459.
    1. Peeters F., van Mourik M.J.W., Meex S.J.R., Bucerius J., Schalla S.M., Gerretsen S.C., Mihl C., Dweck M.R., Schurgers L.J., Wildberger J.E., et al. Bicuspid aortic valve stenosis and the effect of vitamin K2 on calcification using (18)F-sodium fluoride positron emission tomography/magnetic resonance: The BASIK2 rationale and trial design. Nutrients. 2018;10:386. doi: 10.3390/nu10040386.
    1. Vossen L.M., Schurgers L.J., van Varik B.J., Kietselaer B.L., Vermeer C., Meeder J.G., Rahel B.M., van Cauteren Y.J., Hoffland G.A., Rennenberg R.J., et al. Menaquinone-7 supplementation to reduce vascular calcification in patients with coronary artery disease: Rationale and study protocol (VitaK-CAC Trial) Nutrients. 2015;7:8905–8915. doi: 10.3390/nu7115443.

Source: PubMed

3
Suscribir