Bicuspid Aortic Valve Stenosis and the Effect of Vitamin K2 on Calcification Using 18F-Sodium Fluoride Positron Emission Tomography/Magnetic Resonance: The BASIK2 Rationale and Trial Design

Frederique E C M Peeters, Manouk J W van Mourik, Steven J R Meex, Jan Bucerius, Simon M Schalla, Suzanne C Gerretsen, Casper Mihl, Marc R Dweck, Leon J Schurgers, Joachim E Wildberger, Harry J G M Crijns, Bas L J H Kietselaer, Frederique E C M Peeters, Manouk J W van Mourik, Steven J R Meex, Jan Bucerius, Simon M Schalla, Suzanne C Gerretsen, Casper Mihl, Marc R Dweck, Leon J Schurgers, Joachim E Wildberger, Harry J G M Crijns, Bas L J H Kietselaer

Abstract

BASIK2 is a prospective, double-blind, randomized placebo-controlled trial investigating the effect of vitamin K2 (menaquinone-7;MK7) on imaging measurements of calcification in the bicuspid aortic valve (BAV) and calcific aortic valve stenosis (CAVS). BAV is associated with early development of CAVS. Pathophysiologic mechanisms are incompletely defined, and the only treatment available is valve replacement upon progression to severe symptomatic stenosis. Matrix Gla protein (MGP) inactivity is suggested to be involved in progression. Being a vitamin K dependent protein, supplementation with MK7 is a pharmacological option for activating MGP and intervening in the progression of CAVS. Forty-four subjects with BAV and mild-moderate CAVS will be included in the study, and baseline 18F-sodiumfluoride (18F-NaF) positron emission tomography (PET)/ magnetic resonance (MR) and computed tomography (CT) assessments will be performed. Thereafter, subjects will be randomized (1:1) to MK7 (360 mcg/day) or placebo. During an 18-month follow-up period, subjects will visit the hospital every 6 months, undergoing a second 18F-NaF PET/MR after 6 months and CT after 6 and 18 months. The primary endpoint is the change in PET/MR 18F-NaF uptake (6 months minus baseline) compared to this delta change in the placebo arm. The main secondary endpoints are changes in calcium score (CT), progression of the left ventricularremodeling response and CAVS severity (echocardiography). We will also examine the association between early calcification activity (PET) and later changes in calcium score (CT).

Keywords: 18F-NaF; PET/MR; bicuspid aortic valve; calcific aortic valve stenosis; menaquinone-7; vitamin K2.

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the writing of the manuscript.

Figures

Figure 1
Figure 1
Study flowchart.* Primary endpoint (change from baseline in tracer uptake in the aortic valve by 18F-NaF PET/MR at 6 months). Abbrevations: 18F-NaF; 18F-sodiumfluoride, CT; computed tomography, MR; magnetic resonance, PET; positron emission tomography.

References

    1. Siu S.C., Silversides C.K. Bicuspid aortic valve disease. J. Am. Coll. Cardiol. 2010;55:2789–2800. doi: 10.1016/j.jacc.2009.12.068.
    1. Writing Group Members. Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., Das S.R., de Ferranti S., Despres J.P., et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2016;133:e38–e360. doi: 10.1161/CIR.0000000000000350.
    1. Hutcheson J.D., Aikawa E., Merryman W.D. Potential drug targets for calcific aortic valve disease. Nat. Rev. Cardiol. 2014;11:218–231. doi: 10.1038/nrcardio.2014.1.
    1. Roberts W.C., Ko J.M. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation. 2005;111:920–925. doi: 10.1161/01.CIR.0000155623.48408.C5.
    1. Sun L., Chandra S., Sucosky P. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS ONE. 2012;7:e48843. doi: 10.1371/journal.pone.0048843.
    1. New S.E., Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res. 2011;108:1381–1391. doi: 10.1161/CIRCRESAHA.110.234146.
    1. Otto C.M., Kuusisto J., Reichenbach D.D., Gown A.M., O’Brien K.D. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994;90:844–853. doi: 10.1161/01.CIR.90.2.844.
    1. Pawade T.A., Newby D.E., Dweck M.R. Calcification in Aortic Stenosis: The Skeleton Key. J. Am. Coll. Cardiol. 2015;66:561–577. doi: 10.1016/j.jacc.2015.05.066.
    1. Rajamannan N.M., Evans F.J., Aikawa E., Grande-Allen K.J., Demer L.L., Heistad D.D., Simmons C.A., Masters K.S., Mathieu P., O’Brien K.D., et al. Calcific aortic valve disease: Not simply a degenerative process: A review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation. 2011;124:1783–1791. doi: 10.1161/CIRCULATIONAHA.110.006767.
    1. Schurgers L.J., Uitto J., Reutelingsperger C.P. Vitamin K-dependent carboxylation of matrix Gla-protein: A crucial switch to control ectopic mineralization. Trends Mol. Med. 2013;19:217–226. doi: 10.1016/j.molmed.2012.12.008.
    1. Price P.A., Thomas G.R., Pardini A.W., Figueira W.F., Caputo J.M., Williamson M.K. Discovery of a high molecular weight complex of calcium, phosphate, fetuin, and matrix gamma-carboxyglutamic acid protein in the serum of etidronate-treated rats. J. Biol. Chem. 2002;277:3926–3934. doi: 10.1074/jbc.M106366200.
    1. Venardos N., Bennett D., Weyant M.J., Reece T.B., Meng X., Fullerton D.A. Matrix Gla protein regulates calcification of the aortic valve. J. Surg. Res. 2015;199:1–6. doi: 10.1016/j.jss.2015.04.076.
    1. Gast G.C., de Roos N.M., Sluijs I., Bots M.L., Beulens J.W., Geleijnse J.M., Witteman J.C., Grobbee D.E., Peeters P.H., van der Schouw Y.T. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr. Metab. Cardiovasc. Dis. NMCD. 2009;19:504–510. doi: 10.1016/j.numecd.2008.10.004.
    1. Geleijnse J.M., Vermeer C., Grobbee D.E., Schurgers L.J., Knapen M.H., van der Meer I.M., Hofman A., Witteman J.C. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J. Nutr. 2004;134:3100–3105. doi: 10.1093/jn/134.11.3100.
    1. Schurgers L.J., Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis. 2000;30:298–307.
    1. Schurgers L.J., Teunissen K.J., Hamulyak K., Knapen M.H., Vik H., Vermeer C. Vitamin K-containing dietary supplements: Comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood. 2007;109:3279–3283. doi: 10.1182/blood-2006-08-040709.
    1. Irkle A., Vesey A.T., Lewis D.Y., Skepper J.N., Bird J.L., Dweck M.R., Joshi F.R., Gallagher F.A., Warburton E.A., Bennett M.R., et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat. Commun. 2015;6:7495. doi: 10.1038/ncomms8495.
    1. Dweck M.R., Jenkins W.S., Vesey A.T., Pringle M.A., Chin C.W., Malley T.S., Cowie W.J., Tsampasian V., Richardson H., Fletcher A., et al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis. Circ. Cardiovasc. Imaging. 2014;7:371–378. doi: 10.1161/CIRCIMAGING.113.001508.
    1. Jenkins W.S., Vesey A.T., Shah A.S., Pawade T.A., Chin C.W., White A.C., Fletcher A., Cartlidge T.R., Mitchell A.J., Pringle M.A., et al. Valvular (18)F-Fluoride and (18)F-Fluorodeoxyglucose Uptake Predict Disease Progression and Clinical Outcome in Patients With Aortic Stenosis. J. Am. Coll. Cardiol. 2015;66:1200–1201. doi: 10.1016/j.jacc.2015.06.1325.
    1. LaForest R., Woodard P.K., Gropler R.J. Cardiovascular PET/MRI: Challenges and Opportunities. Cardiol. Clin. 2016;34:25–35. doi: 10.1016/j.ccl.2015.08.002.
    1. Ratib O., Nkoulou R. Potential Applications of PET/MR Imaging in Cardiology. J. Nucl. Med. 2014;55(Suppl. 2):40S–46S. doi: 10.2967/jnumed.113.129262.
    1. Baumgartner H., Falk V., Bax J.J., De Bonis M., Hamm C., Holm P.J., Iung B., Lancellotti P., Lansac E., Munoz D.R., et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease: The Task Force for the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Eur. Heart J. 2017;38:2739–2791.
    1. Cowell S.J., Newby D.E., Prescott R.J., Bloomfield P., Reid J., Northridge D.B., Boon N.A., Scottish Aortic S., Lipid Lowering Trial, Impact on Regression (SALTIRE) Investigators A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med. 2005;352:2389–2397. doi: 10.1056/NEJMoa043876.
    1. Dichtl W., Alber H.F., Feuchtner G.M., Hintringer F., Reinthaler M., Bartel T., Sussenbacher A., Grander W., Ulmer H., Pachinger O., et al. Prognosis and risk factors in patients with asymptomatic aortic stenosis and their modulation by atorvastatin (20 mg) Am. J. Cardiol. 2008;102:743–748. doi: 10.1016/j.amjcard.2008.04.060.
    1. Brandenburg V.M., Reinartz S., Kaesler N., Kruger T., Dirrichs T., Kramann R., Peeters F., Floege J., Keszei A., Marx N., et al. Slower Progress of Aortic Valve Calcification With Vitamin K Supplementation: Results From a Prospective Interventional Proof-of-Concept Study. Circulation. 2017;135:2081–2083. doi: 10.1161/CIRCULATIONAHA.116.027011.
    1. Sievers H.H., Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J. Thorac. Cardiovasc. Surg. 2007;133:1226–1233. doi: 10.1016/j.jtcvs.2007.01.039.
    1. Agatston A.S., Janowitz W.R., Hildner F.J., Zusmer N.R., Viamonte M., Jr., Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990;15:827–832. doi: 10.1016/0735-1097(90)90282-T.
    1. Messika-Zeitoun D., Bielak L.F., Peyser P.A., Sheedy P.F., Turner S.T., Nkomo V.T., Breen J.F., Maalouf J., Scott C., Tajik A.J., et al. Aortic valve calcification: Determinants and progression in the population. Arterioscler. Thromb. Vasc. Biol. 2007;27:642–648. doi: 10.1161/01.ATV.0000255952.47980.c2.
    1. Noordzij M., Tripepi G., Dekker F.W., Zoccali C., Tanck M.W., Jager K.J. Sample size calculations: Basic principles and common pitfalls. Nephrol. Dial. Transplant. 2010;25:1388–1393. doi: 10.1093/ndt/gfp732.
    1. Dweck M.R., Jones C., Joshi N.V., Fletcher A.M., Richardson H., White A., Marsden M., Pessotto R., Clark J.C., Wallace W.A., et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation. 2012;125:76–86. doi: 10.1161/CIRCULATIONAHA.111.051052.
    1. Tahara N., Kai H., Ishibashi M., Nakaura H., Kaida H., Baba K., Hayabuchi N., Imaizumi T. Simvastatin attenuates plaque inflammation: Evaluation by fluorodeoxyglucose positron emission tomography. J. Am. Coll. Cardiol. 2006;48:1825–1831. doi: 10.1016/j.jacc.2006.03.069.
    1. Wu Y.W., Kao H.L., Huang C.L., Chen M.F., Lin L.Y., Wang Y.C., Lin Y.H., Lin H.J., Tzen K.Y., Yen R.F., et al. The effects of 3-month atorvastatin therapy on arterial inflammation, calcification, abdominal adipose tissue and circulating biomarkers. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:399–407. doi: 10.1007/s00259-011-1994-7.
    1. Eveborn G.W., Schirmer H., Heggelund G., Lunde P., Rasmussen K. The evolving epidemiology of valvular aortic stenosis. The Tromso study. Heart. 2013;99:396–400. doi: 10.1136/heartjnl-2012-302265.
    1. Baumgartner H., Hung J., Bermejo J., Chambers J.B., Evangelista A., Griffin B.P., Iung B., Otto C.M., Pellikka P.A., Quinones M., American Society of Echocardiography European Association of Echocardiography. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J. Am. Soc. Echocardiogr. 2009;22:1–23. doi: 10.1016/j.echo.2008.11.029.
    1. Task Force Members. Vahanian A., Alfieri O., Andreotti F., Antunes M.J., Baron-Esquivias G., Baumgartner H., Borger M.A., Carrel T.P., De Bonis M., et al. Guidelines on the management of valvular heart disease (version 2012): The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Eur. Heart J. 2012;33:2451–2496.
    1. Lancellotti P., Moura L., Pierard L.A., Agricola E., Popescu B.A., Tribouilloy C., Hagendorff A., Monin J.L., Badano L., Zamorano J.L., European Association of Echocardiography European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: Mitral and tricuspid regurgitation (native valve disease) Eur. J. Echocardiogr. 2010;11:307–332. doi: 10.1093/ejechocard/jeq031.
    1. Lang R.M., Bierig M., Devereux R.B., Flachskampf F.A., Foster E., Pellikka P.A., Picard M.H., Roman M.J., Seward J., Shanewise J.S., et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 2005;18:1440–1463.
    1. Schiller N.B., Shah P.M., Crawford M., DeMaria A., Devereux R., Feigenbaum H., Gutgesell H., Reichek N., Sahn D., Schnittger I., et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J. Am. Soc. Echocardiogr. 1989;2:358–367. doi: 10.1016/S0894-7317(89)80014-8.
    1. Nagueh S.F., Appleton C.P., Gillebert T.C., Marino P.N., Oh J.K., Smiseth O.A., Waggoner A.D., Flachskampf F.A., Pellikka P.A., Evangelisa A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur. J. Echocardiogr. 2009;10:165–193. doi: 10.1093/ejechocard/jep007.
    1. Rudski L.G., Lai W.W., Afilalo J., Hua L., Handschumacher M.D., Chandrasekaran K., Solomon S.D., Louie E.K., Schiller N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010;23:685–713.
    1. MenaQ7. [(accessed on 2 March 2018)]; Available online:
    1. Dalmeijer G.W., van der Schouw Y.T., Magdeleyns E., Ahmed N., Vermeer C., Beulens J.W. The effect of menaquinone-7 supplementation on circulating species of matrix Gla protein. Atherosclerosis. 2012;225:397–402. doi: 10.1016/j.atherosclerosis.2012.09.019.
    1. Westenfeld R., Krueger T., Schlieper G., Cranenburg E.C., Magdeleyns E.J., Heidenreich S., Holzmann S., Vermeer C., Jahnen-Dechent W., Ketteler M., et al. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: A randomized Trial. Am. J. Kidney Dis. 2012;59:186–195. doi: 10.1053/j.ajkd.2011.10.041.
    1. Theuwissen E., Teunissen K.J., Spronk H.M., Hamulyak K., Ten Cate H., Shearer M.J., Vermeer C., Schurgers L.J. Effect of low-dose supplements of menaquinone-7 (vitamin K2) on the stability of oral anticoagulant treatment: Dose-response relationship in healthy volunteers. J. Thromb. Haemost. JTH. 2013;11:1085–1092. doi: 10.1111/jth.12203.
    1. Theuwissen E., Cranenburg E.C., Knapen M.H., Magdeleyns E.J., Teunissen K.J., Schurgers L.J., Smit E., Vermeer C. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br. J. Nutr. 2012;108:1652–1657. doi: 10.1017/S0007114511007185.
    1. Rossebo A.B., Pedersen T.R., Boman K., Brudi P., Chambers J.B., Egstrup K., Gerdts E., Gohlke-Barwolf C., Holme I., Kesaniemi Y.A., et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 2008;359:1343–1356. doi: 10.1056/NEJMoa0804602.
    1. Chan K.L., Teo K., Dumesnil J.G., Ni A., Tam J., Investigators A. Effect of Lipid lowering with rosuvastatin on progression of aortic stenosis: Results of the aortic stenosis progression observation: Measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation. 2010;121:306–314. doi: 10.1161/CIRCULATIONAHA.109.900027.
    1. Van der Linde D., Yap S.C., van Dijk A.P., Budts W., Pieper P.G., van der Burgh P.H., Mulder B.J., Witsenburg M., Cuypers J.A., Lindemans J., et al. Effects of rosuvastatin on progression of stenosis in adult patients with congenital aortic stenosis (PROCAS Trial) Am. J. Cardiol. 2011;108:265–271. doi: 10.1016/j.amjcard.2011.03.032.
    1. Bull S., Loudon M., Francis J.M., Joseph J., Gerry S., Karamitsos T.D., Prendergast B.D., Banning A.P., Neubauer S., Myerson S.G. A prospective, double-blind, randomized controlled trial of the angiotensin-converting enzyme inhibitor Ramipril In Aortic Stenosis (RIAS trial) Eur. Heart J. Cardiovasc. Imaging. 2015;16:834–841. doi: 10.1093/ehjci/jev043.
    1. Stewart R.A., Kerr A.J., Cowan B.R., Young A.A., Occleshaw C., Richards A.M., Edwards C., Whalley G.A., Freidlander D., Williams M., et al. A randomized trial of the aldosterone-receptor antagonist eplerenone in asymptomatic moderate-severe aortic stenosis. Am. Heart J. 2008;156:348–355. doi: 10.1016/j.ahj.2008.03.012.
    1. Helske-Suihko S., Laine M., Lommi J., Kaartinen M., Werkkala K., Kovanen P.T., Kupari M. Is blockade of the Renin-Angiotensin system able to reverse the structural and functional remodeling of the left ventricle in severe aortic stenosis? J. Cardiovasc. Pharmacol. 2015;65:233–240. doi: 10.1097/FJC.0000000000000182.

Source: PubMed

3
Suscribir