Tetraspanins as therapeutic targets in hematological malignancy: a concise review

Kyle A Beckwith, John C Byrd, Natarajan Muthusamy, Kyle A Beckwith, John C Byrd, Natarajan Muthusamy

Abstract

Tetraspanins belong to a family of transmembrane proteins which play a major role in the organization of the plasma membrane. While all immune cells express tetraspanins, most of these are present in a variety of other cell types. There are a select few, such as CD37 and CD53, which are restricted to hematopoietic lineages. Tetraspanins associate with numerous partners involved in a diverse set of biological processes, including cell activation, survival, proliferation, adhesion, and migration. The historical view has assigned them a scaffolding role, but recent discoveries suggest some tetraspanins can directly participate in signaling through interactions with cytoplasmic proteins. Given their potential roles in supporting tumor survival and immune evasion, an improved understanding of tetraspanin activity could prove clinically valuable. This review will focus on emerging data in the study of tetraspanins, advances in the clinical development of anti-CD37 therapeutics, and the future prospects of targeting tetraspanins in hematological malignancy.

Keywords: CD37; CD53; TSPAN; tetraspanin.

Figures

Figure 1
Figure 1
Structural features of tetraspanins. Several common features of tetraspanins are depicted here. They possess 4 transmembrane domains (which are highly conserved), two short cytoplasmic tails, and two extracellular portions known as the EC1 domain (small extracellular loop) and EC2 domain (large extracellular loop). Portions of the EC2 domain are conserved between various tetraspanins, but it also contains a highly variable region (shown in red). One of the features of this segment is the presence of 2–4 disulfide bonds (yellow lines) formed between cysteine residues (yellow circles), the number of which depend on the particular tetraspanin. The variable region of the EC2 domain contains binding sites for interactions with partner proteins and is frequently where epitopes for anti-tetraspanin antibodies are found. Many tetraspanins undergo palmitoylation at cysteine residues located near the intracellular border of the four transmembrane portions. Additionally, most tetraspanins also experience N-linked glycosylation at extracellular asparagine residues (not depicted).
Figure 2
Figure 2
Signaling pathway associated with CD37 ligation by SMIP-016. Lapalombella et al. described a number of cytoplasmic proteins which can associate with CD37, as depicted in the diagram. Ligation by SMIP-016 leads to phosphorylation Tyr13 within an ITIM-like motif found in the N-terminal cytoplasmic tail, which associates with a complex of proteins that includes Syk, Lyn, and SHP1 (which likewise become phosphorylated). In addition, SMIP-016 induces phosphorylation of an ITAM-like motif (containing Tyr274 and Tyr280) located in the C-terminal cytoplasmic tail that recruits PI3Kδ. Mutational studies suggest that the events requiring the N-terminal ITIM drive apoptosis, while the C-terminal tail has a role in promoting cell survival. The proposed mechanism of anti-CD37 induced cellular death involves a balance between these signals, with preferential SHP1 activation driving apoptosis. SHP1 is capable of inactivating both PI3K and Akt. SMIP-016 decreases the nuclear localization of Akt, preventing phosphorylation of FoxO3a (and promoting retention in the nucleus) to allow transcription of pro-apoptotic BIM. An opposing signal is transduced through PI3Kδ recruited to the C-terminal ITAM, activating Akt and resulting in the downstream phosphorylation of GSK3β (which permits nuclear translocation of pro-survival β-catenin). However, the contribution of PI3Kδ to survival can be eliminated by either combination with a PI3K inhibitor or deletion of the ITAM-containing C-terminal domain of CD37. While both pro-survival and pro-apoptotic signaling pathways that are activated upon ligation by anti-CD37 SMIP-016, those that promote cellular death predominate. Several other CD37-targeted antibodies directly induce leukemia cell death, presumably in a similar fashion as SMIP-016/TRU-016. However, they do not require additional receptor crosslinking (by use of anti-Fc antibody to amplify the signal) as was observed with SMIP-016.
Figure 3
Figure 3
CD37-Targeted antibody therapeutics. Several anti-CD37 therapies under clinical development are shown. Left: Otlertuzumab is an ADAPTIR™ molecule, constructed from an anti-CD37 single-chain variable fragment (scFv; a binding domain formed by linking the heavy and light chain variable regions of an immunoglobulin) which has been fused to the hinge region and Fc domain of human IgG1. Middle: mAb 37.1 is an Fc-engineered IgG1 with specific amino acid substitutions within the Fc region to increase ADCC mediated by effectors such as NK cells and macrophages. Right: IMGN529 is a humanized anti-CD37 IgG1 (K7153A) conjugated to 3–4 molecules of cytotoxic drug (DM1) by stable thioether bonds. mAb, monoclonal antibody; CHO, Chinese hamster ovary; VH, heavy chain variable region; VL, light chain variable region; CH, heavy chain constant region (1, 2, or 3); CL, light chain constant region; D (orange circles), DM1; SMCC, N-succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate.

References

    1. Amiot M. (1990). Identification and analysis of cDNA clones encoding CD53. A pan-leukocyte antigen related to membrane transport proteins. J. Immunol. 145, 4322–4325.
    1. Andre M., Le Caer J. P., Greco C., Planchon S., El Nemer W., Boucheix C., et al. . (2006). Proteomic analysis of the tetraspanin web using LC-ESI-MS/MS and MALDI-FTICR-MS. Proteomics 6, 1437–1449. 10.1002/pmic.200500180
    1. Angelisová P., Hilgert I., Horejsí V. (1994). Association of four antigens of the tetraspans family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics 39, 249–256. 10.1007/BF00188787
    1. Bandyopadhyay S., Zhan R., Chaudhuri A., Watabe M., Pai S. K., Hirota S., et al. . (2006). Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat. Med. 12, 933–938. 10.1038/nm1444
    1. Barreiro O., Yanez-Mo M., Sala-Valdes M., Gutierrez-Lopez M. D., Ovalle S., Higginbottom A., et al. . (2005). Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105, 2852–2861. 10.1182/blood-2004-09-3606
    1. Barrena S., Almeida J., Yunta M., Lopez A., Fernandez-Mosteirin N., Giralt M., et al. . (2005). Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia 19, 1376–1383. 10.1038/sj.leu.2403822
    1. Beckmann J., Scheitza S., Wernet P., Fischer J. C., Giebel B. (2007). Asymmetric cell division within the human hematopoietic stem and progenitor cell compartment: identification of asymmetrically segregating proteins. Blood 109, 5494–5501. 10.1182/blood-2006-11-055921
    1. Beckwith K. A., Frissora F. W., Stefanovski M. R., Towns W. H., Cheney C., Mo X., et al. . (2014). The CD37-targeted antibody-drug conjugate IMGN529 is highly active against human CLL and in a novel CD37 transgenic murine leukemia model. Leukemia 28, 1501–1510. 10.1038/leu.2014.32
    1. Bell G. M., Seaman W. E., Niemi E. C., Imboden J. B. (1992). The OX-44 molecule couples to signaling pathways and is associated with CD2 on rat T lymphocytes and a natural killer cell line. J. Exp. Med. 175, 527–536. 10.1084/jem.175.2.527
    1. Berditchevski F., Odintsova E., Sawada S., Gilbert E. (2002). Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J. Biol. Chem. 277, 36991–37000. 10.1074/jbc.M205265200
    1. Berditchevski F., Tolias K. F., Wong K., Carpenter C. L., Hemler M. E. (1997). A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J. Biol. Chem. 272, 2595–2598. 10.1074/jbc.272.5.2595
    1. Bos S. D., Lakenberg N., Van Der Breggen R., Houwing-Duistermaat J. J., Kloppenburg M., De Craen A. J., et al. . (2010). A genome-wide linkage scan reveals CD53 as an important regulator of innate TNF-alpha levels. Eur. J. Hum. Genet. 18, 953–959. 10.1038/ejhg.2010.52
    1. Bosca L., Lazo P. A. (1994). Induction of nitric oxide release by MRC OX-44 (anti-CD53) through a protein kinase C-dependent pathway in rat macrophages. J. Exp. Med. 179, 1119–1126. 10.1084/jem.179.4.1119
    1. Byrd J. C., Murphy T., Howard R. S., Lucas M. S., Goodrich A., Park K., et al. . (2001). Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J. Clin. Oncol. 19, 2153–2164.
    1. Byrd J. C., Pagel J. M., Awan F. T., Forero A., Flinn I. W., Deauna-Limayo D. P., et al. . (2014). A phase 1 study evaluating the safety and tolerability of otlertuzumab, an anti-CD37 mono-specific ADAPTIR therapeutic protein in chronic lymphocytic leukemia. Blood 123, 1302–1308. 10.1182/blood-2013-07-512137
    1. Carmo A. M., Wright M. D. (1995). Association of the transmembrane 4 superfamily molecule CD53 with a tyrosine phosphatase activity. Eur. J. Immunol. 25, 2090–2095. 10.1002/eji.1830250743
    1. Charrin S., Le Naour F., Labas V., Billard M., Le Caer J. P., Emile J. F., et al. . (2003). EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem. J. 373, 409–421. 10.1042/BJ20030343
    1. Charrin S., Le Naour F., Oualid M., Billard M., Faure G., Hanash S. M., et al. . (2001). The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J. Biol. Chem. 276, 14329–14337. 10.1074/jbc.M011297200
    1. Charrin S., Le Naour F., Silvie O., Milhiet P. E., Boucheix C., Rubinstein E. (2009). Lateral organization of membrane proteins: tetraspanins spin their web. Biochem. J. 420, 133–154. 10.1042/BJ20082422
    1. Charrin S., Manie S., Oualid M., Billard M., Boucheix C., Rubinstein E. (2002). Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett. 516, 139–144. 10.1016/S0014-5793(02)02522-X
    1. Chen Z., Pasquini M., Hong B., Dehart S., Heikens M., Tsai S. (2005). The human Penumbra gene is mapped to a region on chromosome 7 frequently deleted in myeloid malignancies. Cancer Genet. Cytogenet. 162, 95–98. 10.1016/j.cancergencyto.2005.03.017
    1. Claas C., Stipp C. S., Hemler M. E. (2001). Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J. Biol. Chem. 276, 7974–7984. 10.1074/jbc.M008650200
    1. Clark K. L., Oelke A., Johnson M. E., Eilert K. D., Simpson P. C., Todd S. C. (2004). CD81 associates with 14-3-3 in a redox-regulated palmitoylation-dependent manner. J. Biol. Chem. 279, 19401–19406. 10.1074/jbc.M312626200
    1. Dahle J., Repetto-Llamazares A. H., Mollatt C. S., Melhus K. B., Bruland O. S., Kolstad A., et al. . (2013). Evaluating antigen targeting and anti-tumor activity of a new anti-CD37 radioimmunoconjugate against non-Hodgkin's lymphoma. Anticancer Res. 33, 85–95.
    1. De Bruyne E., Bos T. J., Asosingh K., Vande Broek I., Menu E., Van Valckenborgh E., et al. . (2008). Epigenetic silencing of the tetraspanin CD9 during disease progression in multiple myeloma cells and correlation with survival. Clin. Cancer Res. 14, 2918–2926. 10.1158/1078-0432.CCR-07-4489
    1. Deckert J., Park P. U., Chicklas S., Yi Y., Li M., Lai K. C., et al. . (2013). A novel anti-CD37 antibody-drug conjugate with multiple anti-tumor mechanisms for the treatment of B-cell malignancies. Blood 122, 3500–3510. 10.1182/blood-2013-05-505685
    1. Deckert J., Ponte J. F., Coccia J. A., Lanieri L., Chicklas S., Yi Y., et al. (2014). Preclinical mechanistic studies investigating neutrophil and lymphoid cell depletion by IMGN529, a CD37-targeting antibody-drug conjugate (ADC), in Abstract #3119, 56th Annual Meeting of the American Society of Hematology (San Francisco, CA: ).
    1. Gartlan K. H., Belz G. T., Tarrant J. M., Minigo G., Katsara M., Sheng K. C., et al. . (2010). A complementary role for the tetraspanins CD37 and Tssc6 in cellular immunity. J. Immunol. 185, 3158–3166. 10.4049/jimmunol.0902867
    1. Gartlan K. H., Wee J. L., Demaria M. C., Nastovska R., Chang T. M., Jones E. L., et al. . (2013). Tetraspanin CD37 contributes to the initiation of cellular immunity by promoting dendritic cell migration. Eur. J. Immunol. 43, 1208–1219. 10.1002/eji.201242730
    1. Gopal A. K., Tarantolo S. R., Bellam N., Green D. J., Griffin M., Feldman T., et al. . (2014). Phase 1b study of otlertuzumab (TRU-016), an anti-CD37 monospecific ADAPTIR therapeutic protein, in combination with rituximab and bendamustine in relapsed indolent lymphoma patients. Invest. New Drugs 32, 1213–1225. 10.1007/s10637-014-0125-2
    1. Goschnick M. W., Lau L. M., Wee J. L., Liu Y. S., Hogarth P. M., Robb L. M., et al. . (2006). Impaired “outside-in” integrin alphaIIbbeta3 signaling and thrombus stability in TSSC6-deficient mice. Blood 108, 1911–1918. 10.1182/blood-2006-02-004267
    1. Gutierrez-Lopez M. D., Ovalle S., Yanez-Mo M., Sanchez-Sanchez N., Rubinstein E., Olmo N., et al. . (2003). A functionally relevant conformational epitope on the CD9 tetraspanin depends on the association with activated beta1 integrin. J. Biol. Chem. 278, 208–218. 10.1074/jbc.M207805200
    1. Haining E. J., Yang J., Bailey R. L., Khan K., Collier R., Tsai S., et al. . (2012). The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J. Biol. Chem. 287, 39753–39765. 10.1074/jbc.M112.416503
    1. Heider K. H., Kiefer K., Zenz T., Volden M., Stilgenbauer S., Ostermann E., et al. . (2011). A novel Fc-engineered monoclonal antibody to CD37 with enhanced ADCC and high proapoptotic activity for treatment of B-cell malignancies. Blood 118, 4159–4168. 10.1182/blood-2011-04-351932
    1. Heikens M. J., Cao T. M., Morita C., Dehart S. L., Tsai S. (2007). Penumbra encodes a novel tetraspanin that is highly expressed in erythroid progenitors and promotes effective erythropoiesis. Blood 109, 3244–3252. 10.1182/blood-2006-09-046672
    1. Hemler M. E. (2005). Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 6, 801–811. 10.1038/nrm1736
    1. Hemler M. E. (2014). Tetraspanin proteins promote multiple cancer stages. Nat. Rev. Cancer 14, 49–60. 10.1038/nrc3640
    1. Horváth G., Serru V., Clay D., Billard M., Boucheix C., Rubinstein E. (1998). CD19 Is Linked to the Integrin-associated Tetraspans CD9, CD81, and CD82. J. Biol. Chem. 273, 30537–30543. 10.1074/jbc.273.46.30537
    1. Hu X., Xuan H., Du H., Jiang H., Huang J. (2014). Down-regulation of CD9 by methylation decreased bortezomib sensitivity in multiple myeloma. PLoS ONE 9:e95765. 10.1371/journal.pone.0095765
    1. Huhn D., Von Schilling C., Wilhelm M., Ho A. D., Hallek M., Kuse R., et al. . (2001). Rituximab therapy of patients with B-cell chronic lymphocytic leukemia. Blood 98, 1326–1331. 10.1182/blood.V98.5.1326
    1. Imai T., Mayumi K., Nishimura M., Yoshie O. (1995). Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82. J. Immunol. 155, 1229–1239.
    1. Keating M. J., O'Brien S., Albitar M., Lerner S., Plunkett W., Giles F., et al. . (2005). Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J. Clin. Oncol. 23, 4079–4088. 10.1200/JCO.2005.12.051
    1. Kitadokoro K., Bordo D., Galli G., Petracca R., Falugi F., Abrignani S., et al. . (2001). CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J. 20, 12–18. 10.1093/emboj/20.1.12
    1. Knobeloch K. P., Wright M. D., Ochsenbein A. F., Liesenfeld O., Lohler J., Zinkernagel R. M., et al. . (2000). Targeted inactivation of the tetraspanin CD37 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions. Mol. Cell. Biol. 20, 5363–5369. 10.1128/MCB.20.15.5363-5369.2000
    1. Kolstad A., Madsbu U., Dahle J., Stokke C., Bach-Gansmo T., Løndalen A. M., et al. (2014). A phase i study of 177 lu-DOTA-HH1 (Betalutin) radioimmunotherapy for patients with relapsed CD37+ Non-Hodgkin's B cell lymphoma, in Abstract #3094, 56th Annual Meeting of the American Society of Hematology (San Francisco, CA: ).
    1. Krause G., Patz M., Isaeva P., Wigger M., Baki I., Vondey V., et al. . (2012). Action of novel CD37 antibodies on chronic lymphocytic leukemia cells. Leukemia 26, 546–549. 10.1038/leu.2011.233
    1. Lapalombella R., Yeh Y. Y., Wang L., Ramanunni A., Rafiq S., Jha S., et al. . (2012). Tetraspanin CD37 directly mediates transduction of survival and apoptotic signals. Cancer Cell 21, 694–708. 10.1016/j.ccr.2012.03.040
    1. Lazar G. A., Dang W., Karki S., Vafa O., Peng J. S., Hyun L., et al. . (2006). Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. U.S.A. 103, 4005–4010. 10.1073/pnas.0508123103
    1. Le Naour F., Andre M., Boucheix C., Rubinstein E. (2006a). Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics 6, 6447–6454. 10.1002/pmic.200600282
    1. Le Naour F., Andre M., Greco C., Billard M., Sordat B., Emile J. F., et al. . (2006b). Profiling of the tetraspanin web of human colon cancer cells. Mol. Cell. Proteomics 5, 845–857. 10.1074/mcp.M500330-MCP200
    1. Leung K. T., Chan K. Y., Ng P. C., Lau T. K., Chiu W. M., Tsang K. S., et al. . (2011). The tetraspanin CD9 regulates migration, adhesion, and homing of human cord blood CD34+ hematopoietic stem and progenitor cells. Blood 117, 1840–1850. 10.1182/blood-2010-04-281329
    1. Levy S. (2014). Function of the tetraspanin molecule CD81 in B and T cells. Immunol. Res. 58, 179–185. 10.1007/s12026-014-8490-7
    1. Levy S., Todd S. C., Maecker H. T. (1998). CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annu. Rev. Immunol. 16, 89–109. 10.1146/annurev.immunol.16.1.89
    1. Link M. P., Bindl J., Meeker T. C., Carswell C., Doss C. A., Warnke R. A., et al. . (1986). A unique antigen on mature B cells defined by a monoclonal antibody. J. Immunol. 137, 3013–3018.
    1. Little K. D., Hemler M. E., Stipp C. S. (2004). Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol. Biol. Cell 15, 2375–2387. 10.1091/mbc.E03-12-0886
    1. Luu V. P., Hevezi P., Vences-Catalan F., Maravillas-Montero J. L., White C. A., Casali P., et al. . (2013). TSPAN33 is a novel marker of activated and malignant B cells. Clin. Immunol. 149, 388–399. 10.1016/j.clim.2013.08.005
    1. Maecker H. T., Levy S. (1997). Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J. Exp. Med. 185, 1505–1510. 10.1084/jem.185.8.1505
    1. Maecker H. T., Todd S. C., Levy S. (1997). The tetraspanin superfamily: molecular facilitators. FASEB J. 11, 428–442.
    1. Mannion B. A., Berditchevski F., Kraeft S., Chen L. B., Hemler M. E. (1996). Transmembrane-4 Superfamily Proteins CD81 (TAPA-1), CD82, CD63, and CD53 Specifically Associate with lntegrin α4β1 (CD49d/CD29). J. Immunol. 157, 2039–2047.
    1. Masellis-Smith A., Shaw A. R. (1994). CD9-regulated adhesion. Anti-CD9 monoclonal antibody induce pre-B cell adhesion to bone marrow fibroblasts through de novo recognition of fibronectin. J. Immunol. 152, 2768–2777.
    1. Mattila P. K., Feest C., Depoil D., Treanor B., Montaner B., Otipoby K. L., et al. . (2013). The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 38, 461–474. 10.1016/j.immuni.2012.11.019
    1. Meyer-Wentrup F., Figdor C. G., Ansems M., Brossart P., Wright M. D., Adema G. J., et al. . (2007). Dectin-1 interaction with tetraspanin CD37 inhibits IL-6 production. J. Immunol. 178, 154–162. 10.4049/jimmunol.178.1.154
    1. Min G., Wang H., Sun T. T., Kong X. P. (2006). Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J. Cell Biol. 173, 975–983. 10.1083/jcb.200602086
    1. Mollinedo F., Fontan G., Barasoain I., Lazo P. A. (1997). Recurrent infectious diseases in human CD53 deficiency. Clin. Diagn. Lab. Immunol. 4, 229–231.
    1. Mollinedo F., Martin-Martin B., Gajate C., Lazo P. A. (1998). Physiological activation of human neutrophils down-regulates CD53 cell surface antigen. J. Leukoc. Biol. 63, 699–706.
    1. Nakamoto T., Murayama Y., Oritani K., Boucheix C., Rubinstein E., Nishida M., et al. . (2009). A novel therapeutic strategy with anti-CD9 antibody in gastric cancers. J. Gastroenterol. 44, 889–896. 10.1007/s00535-009-0081-3
    1. Nicholson R. H., Pantano S., Eliason J. F., Galy A., Weiler S., Kaplan J., et al. . (2000). Phemx, a novel mouse gene expressed in hematopoietic cells maps to the imprinted cluster on distal chromosome 7. Genomics 68, 13–21. 10.1006/geno.2000.6277
    1. Olweus J., Lund-Johansen F., Horejsi V. (1993). CD53, a protein with four membrane-spanning domains, mediates signal transduction in human monocytes and B cells. J. Immunol. 151, 707–716.
    1. Ono M., Handa K., Withers D. A., Hakomori S. (1999). Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res. 59, 2335–2339.
    1. Ono M., Handa K., Withers D. A., Hakomori S. (2000). Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells. Biochem. Biophys. Res. Commun. 279, 744–750. 10.1006/bbrc.2000.4030
    1. Pagel J. M., Spurgeon S. E., Byrd J. C., Awan F. T., Flinn I. W., Lanasa M. C., et al. . (2015). Otlertuzumab (TRU-016), an anti-CD37 monospecific ADAPTIR therapeutic protein, for relapsed or refractory NHL patients. Br. J. Haematol. 168, 38–45. 10.1111/bjh.13099
    1. Pileri P., Uematsu Y., Campagnoli S., Galli G., Falugi F., Petracca R., et al. . (1998). Binding of hepatitis C virus to CD81. Science 282, 938–941. 10.1126/science.282.5390.938
    1. Press O. W., Eary J. F., Badger C. C., Martin P. J., Appelbaum F. R., Levy R., et al. . (1989). Treatment of refractory non-Hodgkin's lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J. Clin. Oncol. 7, 1027–1038.
    1. Press O. W., Howell-Clark J., Anderson S., Bernstein I. (1994). Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood 83, 1390–1397.
    1. Qi J. C., Wang J., Mandadi S., Tanaka K., Roufogalis B. D., Madigan M. C., et al. . (2006). Human and mouse mast cells use the tetraspanin CD9 as an alternate interleukin-16 receptor. Blood 107, 135–142. 10.1182/blood-2005-03-1312
    1. Rafiq S., Siadak A., Butchar J. P., Cheney C., Lozanski G., Jacob N. K., et al. . (2013). Glycovariant anti-CD37 monospecific protein therapeutic exhibits enhanced effector cell-mediated cytotoxicity against chronic and acute B cell malignancies. MAbs 5, 723–735. 10.4161/mabs.25282
    1. Repetto-Llamazares A. H., Larsen R. H., Giusti A. M., Riccardi E., Bruland O. S., Selbo P. K., et al. . (2014). 177Lu-DOTA-HH1, a novel anti-CD37 radio-immunoconjugate: a study of toxicity in nude mice. PLoS ONE 9:e103070. 10.1371/journal.pone.0103070
    1. Robak T., Hellman A., Kloczko J., Loscertales J., Lech-Maranda E. J., Pagel J. M., et al. (2013). Phase 2 study of otlertuzumab (TRU-016), an anti-CD37 ADAPTIRTM protein, in combination with bendamustine vs bendamustine alone in patients with relapsed chronic lymphocytic leukemia (CLL), in Abstract #2860, 55th Annual Meeting of the American Society of Hematology (New Orleans, LA: ).
    1. Robb L., Tarrant J., Groom J., Ibrahim M., Li R., Borobakas B., et al. . (2001). Molecular characterisation of mouse and human TSSC6: evidence that TSSC6 is a genuine member of the tetraspanin superfamily and is expressed specifically in haematopoietic organs. Biochim. Biophys. Acta 1522, 31–41. 10.1016/S0167-4781(01)00306-2
    1. Romanska H. M., Berditchevski F. (2011). Tetraspanins in human epithelial malignancies. J. Pathol. 223, 4–14. 10.1002/path.2779
    1. Schwartz-Albiez R., Dorken B., Hofmann W., Moldenhauer G. (1988). The B cell-associated CD37 antigen (gp40-52). Structure and subcellular expression of an extensively glycosylated glycoprotein. J. Immunol. 140, 905–914.
    1. Scott A. M., Wolchok J. D., Old L. J. (2012). Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287. 10.1038/nrc3236
    1. Seita J., Sahoo D., Rossi D. J., Bhattacharya D., Serwold T., Inlay M. A., et al. . (2012). Gene Expression Commons: an open platform for absolute gene expression profiling. PLoS ONE 7:e40321. 10.1371/journal.pone.0040321
    1. Shallal S., Kornbluth J. (2000). CD9 expression enhances the susceptibility of myeloma cell lines to cell-mediated cytolysis. Blood 96, 224–233.
    1. Sheng K. C., Van Spriel A. B., Gartlan K. H., Sofi M., Apostolopoulos V., Ashman L., et al. . (2009). Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-stimulation by DC. Eur. J. Immunol. 39, 50–55. 10.1002/eji.200838798
    1. Shinkawa T., Nakamura K., Yamane N., Shoji-Hosaka E., Kanda Y., Sakurada M., et al. . (2003). The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473. 10.1074/jbc.M210665200
    1. Shoham T., Rajapaksa R., Kuo C. C., Haimovich J., Levy S. (2006). Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments. Mol. Cell. Biol. 26, 1373–1385. 10.1128/MCB.26.4.1373-1385.2006
    1. Stathis A., Freedman A. S., Flinn I. W., Maddocks K. J., Weitman S., Berdeja J. G., et al. (2014). A Phase I study of IMGN529, an antibody-drug conjugate (ADC) targeting CD37, in adult patients with relapsed or refractory b-cell non-hodgkin's lymphoma (NHL), in Abstract #1760, 56th Annual Meeting of the American Society of Hematology (San Francisco, CA: ).
    1. Suzuki T., Coustan-Smith E., Mihara K., Campana D. (2002). Signals mediated by FcgammaRIIA suppress the growth of B-lineage acute lymphoblastic leukemia cells. Leukemia 16, 1276–1284. 10.1038/sj.leu.2402523
    1. Szöllósi J., Horejsí V., Bene L., Angelisová P., Damjanovich S. (1996). Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J. Immunol. 157, 2939–2946.
    1. Tai X. G., Yashiro Y., Abe R., Toyooka K., Wood C. R., Morris J., et al. . (1996). A role for CD9 molecules in T cell activation. J. Exp. Med. 184, 753–758. 10.1084/jem.184.2.753
    1. Tarrant J. M., Groom J., Metcalf D., Li R., Borobokas B., Wright M. D., et al. . (2002). The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro T-cell proliferative responses. Mol. Cell. Biol. 22, 5006–5018. 10.1128/MCB.22.14.5006-5018.2002
    1. Tarrant J. M., Robb L., Van Spriel A. B., Wright M. D. (2003). Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol. 24, 610–617. 10.1016/j.it.2003.09.011
    1. Van Spriel A. B., De Keijzer S., Van Der Schaaf A., Gartlan K. H., Sofi M., Light A., et al. . (2012). The tetraspanin CD37 orchestrates the alpha(4)beta(1) integrin-Akt signaling axis and supports long-lived plasma cell survival. Sci. Signal 5, ra82. 10.1126/scisignal.2003113
    1. Van Spriel A. B., Puls K. L., Sofi M., Pouniotis D., Hochrein H., Orinska Z., et al. . (2004). A regulatory role for CD37 in T cell proliferation. J. Immunol. 172, 2953–2961. 10.4049/jimmunol.172.5.2953
    1. Van Spriel A. B., Sofi M., Gartlan K. H., Van Der Schaaf A., Verschueren I., Torensma R., et al. . (2009). The tetraspanin protein CD37 regulates IgA responses and anti-fungal immunity. PLoS Pathog. 5:e1000338. 10.1371/journal.ppat.1000338
    1. Veenbergen S., Van Spriel A. B. (2011). Tetraspanins in the immune response against cancer. Immunol. Lett. 138, 129–136. 10.1016/j.imlet.2011.03.010
    1. Voehringer D. W., Hirschberg D. L., Xiao J., Lu Q., Roederer M., Lock C. B., et al. . (2000). Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc. Natl. Acad. Sci. U.S.A. 97, 2680–2685. 10.1073/pnas.97.6.2680
    1. Waterhouse R., Ha C., Dveksler G. S. (2002). Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J. Exp. Med. 195, 277–282. 10.1084/jem.20011741
    1. White A., Lamb P. W., Barrett J. C. (1998). Frequent downregulation of the KAI1(CD82) metastasis suppressor protein in human cancer cell lines. Oncogene 16, 3143–3149. 10.1038/sj.onc.1201852
    1. Witherden D. A., Boismenu R., Havran W. L. (2000). CD81 and CD28 costimulate T cells through distinct pathways. J. Immunol. 165, 1902–1909. 10.4049/jimmunol.165.4.1902
    1. Worthington R. E., Carroll R. C., Boucheix C. (1990). Platelet activation by CD9 monoclonal antibodies is mediated by the Fc gamma II receptor. Br. J. Haematol. 74, 216–222. 10.1111/j.1365-2141.1990.tb02568.x
    1. Wright M. D., Geary S. M., Fitter S., Moseley G. W., Lau L. M., Sheng K. C., et al. . (2004). Characterization of mice lacking the tetraspanin superfamily member CD151. Mol. Cell. Biol. 24, 5978–5988. 10.1128/MCB.24.13.5978-5988.2004
    1. Yang X., Claas C., Kraeft S. K., Chen L. B., Wang Z., Kreidberg J. A., et al. . (2002). Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell 13, 767–781. 10.1091/mbc.01-05-0275
    1. Yang X., Kovalenko O. V., Tang W., Claas C., Stipp C. S., Hemler M. E. (2004). Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J. Cell Biol. 167, 1231–1240. 10.1083/jcb.200404100
    1. Yauch R. L., Berditchevski F., Harler M. B., Reichner J., Hemler M. E. (1998). Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol. Biol. Cell 9, 2751–2765. 10.1091/mbc.9.10.2751
    1. Yauch R. L., Kazarov A. R., Desai B., Lee R. T., Hemler M. E. (2000). Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J. Biol. Chem. 275, 9230–9238. 10.1074/jbc.275.13.9230
    1. Yu B., Mao Y., Yuan Y., Yue C., Wang X., Mo X., et al. . (2013). Targeted drug delivery and cross-linking induced apoptosis with anti-CD37 based dual-ligand immunoliposomes in B chronic lymphocytic leukemia cells. Biomaterials 34, 6185–6193. 10.1016/j.biomaterials.2013.04.063
    1. Yunta M., Lazo P. A. (2003). Apoptosis protection and survival signal by the CD53 tetraspanin antigen. Oncogene 22, 1219–1224. 10.1038/sj.onc.1206183
    1. Zevian S., Winterwood N. E., Stipp C. S. (2011). Structure-function analysis of tetraspanin CD151 reveals distinct requirements for tumor cell behaviors mediated by alpha3beta1 versus alpha6beta4 integrin. J. Biol. Chem. 286, 7496–7506. 10.1074/jbc.M110.173583
    1. Zhang X. A., Bontrager A. L., Hemler M. E. (2001). Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J. Biol. Chem. 276, 25005–25013. 10.1074/jbc.M102156200
    1. Zhao X., Lapalombella R., Joshi T., Cheney C., Gowda A., Hayden-Ledbetter M. S., et al. . (2007). Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. Blood 110, 2569–2577. 10.1182/blood-2006-12-062927
    1. Zijlstra A., Lewis J., Degryse B., Stuhlmann H., Quigley J. P. (2008). The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13, 221–234. 10.1016/j.ccr.2008.01.031
    1. Zoller M. (2009). Tetraspanins: push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer 9, 40–55. 10.1038/nrc2543
    1. Zuidscherwoude M., De Winde C. M., Cambi A., Van Spriel A. B. (2014). Microdomains in the membrane landscape shape antigen-presenting cell function. J. Leukoc. Biol. 95, 251–263. 10.1189/jlb.0813440

Source: PubMed

3
Suscribir